JPS5888563A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPS5888563A
JPS5888563A JP18644881A JP18644881A JPS5888563A JP S5888563 A JPS5888563 A JP S5888563A JP 18644881 A JP18644881 A JP 18644881A JP 18644881 A JP18644881 A JP 18644881A JP S5888563 A JPS5888563 A JP S5888563A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
evaporator
temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18644881A
Other languages
Japanese (ja)
Other versions
JPS6350629B2 (en
Inventor
山崎 起助
雅彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18644881A priority Critical patent/JPS5888563A/en
Publication of JPS5888563A publication Critical patent/JPS5888563A/en
Publication of JPS6350629B2 publication Critical patent/JPS6350629B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は複数の温度の異なる保冷室をもつ冷蔵庫などの
冷却装置に関し、その目的とするところ拡圧縮機の成績
係数を向上させ、冷却装置の運転効率の向上を図る点(
ある。
[Detailed Description of the Invention] The present invention relates to a cooling device such as a refrigerator having a plurality of cold storage chambers with different temperatures, and its purpose is to improve the coefficient of performance of an expansion compressor and improve the operating efficiency of the cooling device. point(
be.

従来、温度の異なる置数の保冷室を1台の冷凍ユニット
で冷却する形態の代表的なものに家庭用冷凍冷蔵庫の冷
却システムがあり、基本的Kd第1図に示すよう表冷却
システムを採用していた。
Conventionally, a typical example of a system in which a single refrigeration unit cools a number of cold storage compartments with different temperatures is a cooling system for a home refrigerator/freezer, which uses a basic Kd table cooling system as shown in Figure 1. Was.

第1図において、(1)は圧縮機で、この圧縮機(1)
から吐出され、凝縮器(2)で液化された冷媒液は、第
1毛細管(3)で減圧され、冷蔵室(4)内に配設され
た冷蔵用蒸発器(5)で一部分が蒸発口、その際に上記
冷厳室(4)内の冷却作用を行なう。上記冷蔵用蒸発器
(5)を出た気液2相冷媒は、第2毛細管(6)で再び
減圧され、冷凍室())内に配設された冷凍用蒸発器(
8)で残りが蒸発し、その際に冷凍室())を冷却する
。上記冷凍用蒸発器(8)を出た冷媒ガスはアキュムレ
ータ(9)を介して上記圧縮機(1)に吸い込まれる。
In Figure 1, (1) is a compressor;
The refrigerant liquid discharged from the refrigerant and liquefied in the condenser (2) is depressurized in the first capillary tube (3), and a part of the refrigerant liquid is transferred to the evaporator in the refrigeration evaporator (5) disposed in the refrigerator compartment (4). At that time, the inside of the cold room (4) is cooled. The gas-liquid two-phase refrigerant that has exited the refrigeration evaporator (5) is depressurized again in the second capillary (6), and is then depressurized again in the refrigeration evaporator () disposed in the freezing compartment ().
The remainder evaporates in step 8), at which time the freezer compartment ()) is cooled. The refrigerant gas exiting the freezing evaporator (8) is sucked into the compressor (1) via the accumulator (9).

各庫内の温度管理は。Temperature control inside each warehouse.

冷蔵室(4)か冷凍室(7)のどちらかに配設された温
度調節器(図示せず)によシ、上記圧縮機(1)を発停
させることにより行なう。
This is done by starting and stopping the compressor (1) using a temperature controller (not shown) disposed in either the refrigerator compartment (4) or the freezer compartment (7).

以上のような構成の冷凍冷蔵庫においては。In the refrigerator-freezer configured as above.

圧縮機(1)の吸入圧力は非常に低圧な冷凍用蒸発器(
8)の蒸発圧力で決定してしまうため、冷蔵用蒸発器(
5)の蒸発圧力がいかに高くても、圧縮機(1)の成績
係数は非常に悪いものとなり、冷却システムとしても効
率の悪い運転を余儀なくされていた。また上述のように
庫内温度調整がどちらか一方の庫内温度によらざるを得
ないため。
The suction pressure of the compressor (1) is a very low pressure refrigeration evaporator (
Since it is determined by the evaporation pressure in 8), the refrigerating evaporator (
No matter how high the evaporation pressure (5) is, the coefficient of performance of the compressor (1) is extremely poor, and the cooling system is forced to operate inefficiently. Also, as mentioned above, the temperature inside the refrigerator must be adjusted depending on the temperature inside one of the refrigerators.

他方の庫内温度は成シ行きとなってしまう欠点があった
ー 一方各庫内温度の独立コントロールを可能とするために
、冷凍室(7)内に1台の蒸発器(8)を配設し、それ
によって冷蔵室(4)はダンパー制御によりて室内温1
度をコントロールし、冷凍室(7)の瀉度鉱圧縮機(1
)の発停によって行なうという冷却システムも近年一般
的となっている。この方式は両室内温度の独立コントロ
ール拡可能であるが、蒸発器(8)の蒸発温度はやはり
冷凍室(7)の温度に依存してしまうため、圧縮機(1
)の吸入圧力が低く冷却システムの効率が非常に悪いこ
とは変らない。またこの方式を用いた場合、冷蔵室(4
)はダンパーを介して冷凍室(7)と連通しているため
、冷蔵室(4)内の乾燥過多の問題が生じ。
On the other hand, in order to enable independent control of the temperature inside each refrigerator, one evaporator (8) was installed inside the freezer compartment (7). As a result, the refrigerator compartment (4) is controlled by a damper to maintain the room temperature 1.
The slag compressor (1) in the freezing room (7) controls the temperature.
) has become common in recent years. Although this method allows for independent control of the temperature in both chambers, the evaporation temperature of the evaporator (8) still depends on the temperature of the freezing chamber (7), so the compressor (1)
) The fact remains that the suction pressure is low and the efficiency of the cooling system is very poor. Also, when using this method, the refrigerator compartment (4
) communicates with the freezer compartment (7) via a damper, which causes the problem of excessive dryness within the refrigerator compartment (4).

さらに蒸発器(8)上への着霜量が大きくなシ頻繁な除
霜が必要に表るなどの欠点があった。
Furthermore, there was a drawback that the amount of frost formed on the evaporator (8) was large and frequent defrosting was required.

本発明は上記従来装置の諸欠点を改良するためなされた
もので、保冷温度の異なる複数の冷却室に、それぞれと
の倹却室を冷却する蒸発器を配設し、この各蒸発器を並
列接続するとともに各蒸発器に冷媒を流す時刻を別々に
して同時に流すことない構成にして圧縮機の成績係数を
向上させ、かつ低温側蒸発器で蒸発しきれない冷媒液を
高温側蒸発器で完全に蒸発させたシ。
The present invention was made in order to improve the various drawbacks of the above-mentioned conventional devices.Evaporators for cooling the respective cooling chambers are arranged in a plurality of cooling chambers having different cold storage temperatures, and the evaporators are connected in parallel. In addition to connecting the refrigerant to each evaporator, the timing for flowing refrigerant to each evaporator is set separately so that the refrigerant does not flow at the same time. This improves the coefficient of performance of the compressor, and allows the refrigerant liquid that cannot be completely evaporated in the low-temperature side evaporator to be completely refrigerated in the high-temperature side evaporator. evaporated into.

低温側蒸発器からの冷媒ガスの過熱を高温側蒸発器で行
い低温蒸発器を通過した冷媒の、熱回収を行い、さらK
は低温側蒸発器の除霜を圧縮機から吐出される高温冷媒
ガスによって行いこれを高温側蒸発器で冷却動作させる
ことによって冷却装置全体の運転効率を高めるものであ
る。
The refrigerant gas from the low-temperature side evaporator is superheated by the high-temperature side evaporator, and the heat of the refrigerant passing through the low-temperature evaporator is recovered.
The system defrosts the low-temperature side evaporator using high-temperature refrigerant gas discharged from the compressor, and then cools the high-temperature side evaporator using the high-temperature side evaporator, thereby increasing the operating efficiency of the entire cooling system.

以下家庭用冷凍冷蔵庫を例に本発明の詳細について説明
する。
The details of the present invention will be explained below using a household refrigerator-freezer as an example.

第2図は本発明の一実施例を示す冷却システム図であり
、(1)は圧縮機、(2)は凝縮器、(4)は冷蔵室、
(団はこの冷蔵室(4)内に配設された冷蔵用蒸発器、
(7)は冷凍室、(8)はこの冷凍室(7)内に配設さ
れた冷凍用蒸発器、(9>Iriアキュームレータであ
る。(3)は上記冷蔵用蒸発器(5)の冷媒通路上流側
忙配設された第1の減圧器としての第1毛細管、(6)
は上記冷凍用蒸発器(8)の冷媒通路上流側に配設され
た第2の減圧器としての第2毛細管、舖は第1毛細管(
3)の冷媒通路上流側に配設された第1の開閉弁、al
は冷凍用蒸発器(8)の下流側に設けられた三方弁であ
り、この三方弁Iの一方ヰ上1圧縮−(1)の冷媒吸込
流路と連通しく第2図a4bで示す)、他方紘逆止弁a
1Jを介して第1毛細管(3)の上流側および冷罵用蒸
発器(5)の上流側に第3の開閉弁asを介し連通(第
2図中$%−+Qで示す)されている。そして上記三方
弁aDと第3の開閉弁(1:Iとで冷媒制御を構成して
いる。
FIG. 2 is a cooling system diagram showing an embodiment of the present invention, in which (1) is a compressor, (2) is a condenser, (4) is a refrigerator compartment,
(The group is a refrigerating evaporator installed in this refrigerating room (4),
(7) is a freezing compartment, (8) is a freezing evaporator disposed in this freezing compartment (7), and (9>Iri accumulator). (3) is a refrigerant for the refrigeration evaporator (5). a first capillary tube as a first pressure reducer disposed on the upstream side of the passage; (6)
is a second capillary tube as a second pressure reducer disposed on the upstream side of the refrigerant passage of the freezing evaporator (8), or a first capillary tube (
3), the first on-off valve disposed on the upstream side of the refrigerant passage, al
is a three-way valve installed on the downstream side of the refrigeration evaporator (8), and one of the three-way valves I communicates with the refrigerant suction channel of the upper 1 compression (1) (shown in Fig. 2 a4b), On the other hand, Hiro check valve a
1J to the upstream side of the first capillary tube (3) and the upstream side of the cooling evaporator (5) via a third on-off valve AS (indicated by $%-+Q in FIG. 2). . The three-way valve aD and the third on-off valve (1:I) constitute refrigerant control.

また第1の開閉弁a・、第1毛細管(3)、冷麓用蒸発
器(5)の直列冷媒回路と第2毛細管(6)、冷凍用蒸
発器(8)、三方弁6Dの直列冷媒回路とは並列接続さ
れて上記凝縮器(2)と上記アキュムレータ(9)との
間に接続されている。Iは上記圧縮機(1)の吐出側と
上記冷凍用蒸発器(8)の流入側に第2の開閉弁α啼を
介して接続されたバイパス路である0 第2図に示す実施例は9通常の蒸発器を並列接続した冷
却システムに似ているが基本的には−全く異ったもので
ある。
In addition, the series refrigerant circuit of the first on-off valve a, the first capillary tube (3), and the cold foot evaporator (5), and the series refrigerant circuit of the second capillary tube (6), the freezing evaporator (8), and the three-way valve 6D. The circuit is connected in parallel between the condenser (2) and the accumulator (9). I is a bypass path connected to the discharge side of the compressor (1) and the inflow side of the refrigeration evaporator (8) via a second on-off valve α. Although it resembles a cooling system with nine conventional evaporators connected in parallel, it is basically - quite different.

まず異なる温度レベルにある蒸発器の蒸発圧力を同一の
吸入圧力に整合させるため従来装置では高温側蒸発器の
後にあった圧力調整部が本発明では不要となる。つま夛
本発明の特徴的動作は両蒸発器(51、(8)には同時
に冷媒を流さない点にある さ、らに詳しくは第2毛細
管(6)、冷凍用蒸発器(8)、三方弁aカとで構成さ
れる低温側。
First, in order to match the evaporation pressures of evaporators at different temperature levels to the same suction pressure, the present invention does not require a pressure adjustment section that was located after the high temperature side evaporator in conventional devices. The characteristic operation of the present invention is that refrigerant is not allowed to flow into both evaporators (51, (8) at the same time). The low temperature side consists of a valve and a.

即ち冷凍用冷媒回路と、第1の開閉弁aユ、第1毛細管
(3)、冷蔵用蒸発器(5)とで構成される高温側、即
ち冷蔵用冷媒回路とに凝縮器(2)を出た冷媒液を両室
内温度変化状況に応じて時系列的に分配し、冷蔵室(4
)を冷却する際の冷蔵用蒸発器(5)の蒸発圧力を高く
維持するととKよって圧縮機(1)の成績係数を向上さ
せ、また冷凍用蒸発器(8)内で蒸発しきれ表い冷媒液
を冷厳用蒸発器(5)内で完全に蒸発させたシ、冷凍用
蒸発器(8)から出てくる冷媒ガスの過熱を冷厳用蒸発
器(5)で行うととKよって冷凍用蒸発器(8)を通過
した冷媒の熱回収を冷厳用蒸発器(5)で行い、さらに
は冷凍用蒸発器(8)の除霜時における冷媒液を冷蔵用
蒸発器(5)で蒸発させて冷却動作を行わせ これらを
併せて冷却装置全体の運転効率を高めるものである。
That is, a condenser (2) is installed on the high temperature side, that is, a refrigerant circuit for refrigeration, which is composed of a refrigerant circuit for freezing, a first on-off valve a, a first capillary tube (3), and an evaporator for refrigeration (5). The discharged refrigerant liquid is distributed chronologically according to the temperature changes in both rooms, and
) When the evaporation pressure of the refrigeration evaporator (5) is maintained high, the coefficient of performance of the compressor (1) is improved by K, and the evaporation pressure in the refrigeration evaporator (8) is also increased. The refrigerant liquid is completely evaporated in the refrigeration evaporator (5), and the refrigerant gas coming out of the refrigeration evaporator (8) is superheated in the refrigeration evaporator (5). Heat recovery from the refrigerant that has passed through the evaporator (8) is performed in the refrigeration evaporator (5), and furthermore, the refrigerant liquid during defrosting of the refrigeration evaporator (8) is evaporated in the refrigeration evaporator (5). The cooling operation is performed by the cooling system, and together they increase the operating efficiency of the entire cooling system.

第3図は第2図に示す家庭用冷凍冷蔵庫の除霜運転系を
除く運転制御ブロック図で1輪は冷蔵室(船内に配設さ
れた温度検出センサー、aηは冷凍室(7)内に配設さ
れた温度検出センサー、aSは冷蔵室用温度制御器で温
度検出センサー収・からの検出値が冷蔵室(4)の所定
上限値以上の時扛ON信号を、所定下限値以下の時Fi
、第1のOFF信号を、またこの所定下限値より少し高
い温度値、即ち第2の所定下限値で第2の0FIF信号
を出力する。収・は冷凍室用温度制御器で温度検出セン
サーaηからの″検出値が冷C室(7)の所定上限値以
上の時qON信号を、所定下限値以下の時はOFF信号
を出力する。(2)はこの温度制御器a唾のON信号と
、上記温度検出器α・の第1の01FF信号とにより0
N(1号を出′力するANDゲートなどの論理積回路、
 c!1)はこのANDゲート(1)のON信号と上記
温度制御器(2)のON信号の何れかによ!1lON信
号を出力するORグー) 、 (1)はこのORゲート
(21)のON信号で駆動される圧縮機。
Figure 3 is an operation control block diagram of the domestic refrigerator-freezer shown in Figure 2, excluding the defrosting operation system. The installed temperature detection sensor aS is a temperature controller for the refrigerator compartment, and it outputs an ON signal when the detected value from the temperature detection sensor is above a predetermined upper limit value of the refrigerator compartment (4), and when it is below a predetermined lower limit value. Fi
, a first OFF signal, and a second 0FIF signal at a temperature value slightly higher than this predetermined lower limit value, that is, a second predetermined lower limit value. A temperature controller for the freezer compartment outputs a qON signal when the detected value from the temperature detection sensor aη is above a predetermined upper limit value of the cold C compartment (7), and outputs an OFF signal when it is below a predetermined lower limit value. (2) is 0 due to the ON signal of this temperature controller a and the first 01FF signal of the temperature sensor α.
N (an AND circuit such as an AND gate that outputs No. 1,
c! 1) is determined by either the ON signal of this AND gate (1) or the ON signal of the temperature controller (2)! (1) is a compressor driven by the ON signal of this OR gate (21).

輪は上記温度制御器(2)のON信号で開、第2の0F
IF信号で閉する第1の開閉弁、I嫁上記ANDゲーH
1力のON信号で流路をa−+ bに、01F信号の時
はa−+Cに切替る三方弁である。(2)は上記温度制
御器(2)からの第2の011P信号で開し。
The ring opens with the ON signal of the temperature controller (2), and the second 0F
The first on-off valve that closes with an IF signal, the above AND game H
It is a three-way valve that switches the flow path to a-+b when the ON signal is 01F, and to a-+C when the signal is 01F. (2) is opened by the second 011P signal from the temperature controller (2).

第1のOFF信号で閉する第3の開閉弁で通常は閉して
いるものである。
This is a third on-off valve that closes in response to the first OFF signal and is normally closed.

以上のように構成されたものにおいて、冷蔵室(4)の
温度が所定上限温度より高いと温度検出センサー舖から
の信号により温度制御器側からはON信号が出るので第
1の開閉伸側を開およ・び三方弁を3−+ c 、なら
びに第3の開閉弁osを閉+(1,、かつORゲート(
財)を介して圧縮機(1)を駆動する。従って冷媒は第
1毛細管(3)を通り。
In the device configured as described above, when the temperature of the refrigerator compartment (4) is higher than the predetermined upper limit temperature, an ON signal is output from the temperature controller side based on a signal from the temperature detection sensor, so the first opening/closing extension side is turned on. Open and open the three-way valve 3-+c, and close the third on-off valve os+(1, and OR gate (
The compressor (1) is driven through the compressor (1). Therefore, the refrigerant passes through the first capillary tube (3).

冷厳用蒸発器(5)のみ通過し冷蔵室(4)内を冷却す
る。冷蔵室(4)が冷却され所定上限温度より低くなり
、下限温度より少し高いとき、即ち第2の所定下限値以
下に声シ、冷凍室(7)が所定上限温度より高いときは
温度検出センサー翰からの検出値により温度制御器側か
らの信号(第2の01F?信号)で三方弁aSはそのi
ま流路を6−+ 6KL、第1の開閉弁(IQを閉、第
3の開閉弁t1sを開にする。すると凝縮器(2)を出
た冷媒が第2毛細管(6)、冷蔵用蒸発器(8)を通シ
、冷凍庫(7)内を冷却する0さらに三方弁1の@−+
Q及び逆止弁Iならびに第3の開閉弁a場を通過して冷
厳用蒸発器(5)K入シ、低温冷媒の熱回収が行われる
と同時に低温で蒸発した冷媒がスーツく−ヒートされ冷
蔵室(4)が多少冷却される。このとき冷蔵室(4)内
が所定下限温度以下に冷却され、まだ冷凍室(7)が所
定下限温度以上のときは温度検出センサーαeの検出値
により温度制御器a!9からの第1のOFF信号でA、
HDダグ−all)を介して三方弁αDを6−+ l)
に切替え、冷蔵用蒸発器(5)内に冷媒が流れないよう
Kする。またこのとき第3の開閉弁峙は閉する。
It passes only through the refrigeration evaporator (5) to cool the inside of the refrigerator compartment (4). When the refrigerator compartment (4) is cooled to a temperature lower than the predetermined upper limit temperature and slightly higher than the lower limit temperature, that is, the temperature is lower than the second predetermined lower limit value, and when the freezing compartment (7) is higher than the predetermined upper limit temperature, the temperature detection sensor is activated. The three-way valve aS uses the signal from the temperature controller side (second 01F? signal) based on the detected value from the wire.
Then, the flow path is set to 6-+6KL, the first on-off valve (IQ is closed, and the third on-off valve t1s is opened. Then, the refrigerant exiting the condenser (2) is transferred to the second capillary (6), for refrigeration. Pass through the evaporator (8) and cool the inside of the freezer (7) 0 and the three-way valve 1@-+
The refrigerant passes through the check valve I and the third on-off valve A and enters the refrigeration evaporator (5) K, where the heat of the low-temperature refrigerant is recovered and, at the same time, the refrigerant evaporated at low temperature is heated. The refrigerator compartment (4) is cooled down to some extent. At this time, when the inside of the refrigerator compartment (4) is cooled to a predetermined lower limit temperature or less, and the freezer compartment (7) is still above the predetermined lower limit temperature, the temperature controller a! A with the first OFF signal from 9,
HD Doug-all) 3-way valve αD 6-+l)
to prevent refrigerant from flowing into the refrigeration evaporator (5). Also, at this time, the third on-off valve is closed.

両冷却室(41、(71が所定下限温度以下のときは温
度検出センサーαe、αηからの検出値で温度制御器+
11 、α優より信号が出、ANDゲートfi、ORゲ
ート(財)を介して圧縮機(1)の運転を停止する。
When both cooling chambers (41, (71) are below the predetermined lower limit temperature, the temperature controller +
11. A signal is output from α-yu, and the operation of the compressor (1) is stopped via the AND gate fi and the OR gate.

次に冷凍用蒸発器(8)K霜が積層して除霜する必要が
あるときは第1の開閉弁alを閉、第2の開閉弁(19
を開とし、圧縮機(1)から吐出された高温冷媒ガスを
凝縮器(2)をバイパスして、冷凍用蒸発器(8)に導
いて冷凍用蒸発器(8)の霜を融解し。
Next, when the freezing evaporator (8) K frost has accumulated and it is necessary to defrost, close the first on-off valve al, and close the second on-off valve (19
is opened, and the high temperature refrigerant gas discharged from the compressor (1) bypasses the condenser (2) and is guided to the freezing evaporator (8) to melt the frost in the freezing evaporator (8).

高温冷媒ガスは液化する。この冷媒液は三方弁αDの1
i14Qを通過し、第3の開閉弁α罎が閉じているので
第1毛細管(3)の上流側に導かれ、この毛細管(3)
で減圧され冷蔵用蒸発器(5)で蒸発し。
The hot refrigerant gas liquefies. This refrigerant liquid is
i14Q, and since the third on-off valve α is closed, it is guided to the upstream side of the first capillary (3), and this capillary (3)
The pressure is reduced and evaporated in the refrigerating evaporator (5).

冷蔵室(4)内を冷却して、除霜時の熱回収を行なう。The inside of the refrigerator compartment (4) is cooled to recover heat during defrosting.

通常塗置用蒸発器(5)は冷媒の蒸発温度が高いので、
この蒸発器(5)に霜が積層することは少いが、このと
きに第3の開閉弁α場を開にすれば冷蔵用蒸発器(5)
の除霜もできる。
Since the evaporator (5) for normal application has a high evaporation temperature of the refrigerant,
It is rare that frost builds up on this evaporator (5), but if you open the third on-off valve α field at this time, the refrigeration evaporator (5)
It can also defrost.

第4図扛本発明による他の実施例を示す冷却システム図
であり、(2)は第2図における三方弁Iの代りに逆止
弁α■への冷媒分岐路の下流に設置された第4の開閉弁
である。この第4の開閉弁@扛第2図における三方弁I
の流通路がa→bKなりているときは開、a−+Qにな
っているときは閉となるが第1の開閉弁鱒が開のときは
閉、第1の開閉弁a0が閉のときは冷蔵室(4)内の温
度状況によって開閉する。このように構成しても同様の
機能を有し、同等の効来傘有する。
FIG. 4 is a cooling system diagram showing another embodiment of the present invention, in which (2) is a cooling system installed downstream of the refrigerant branch path to the check valve α■ instead of the three-way valve I in FIG. 4 on-off valve. This fourth on-off valve @3-way valve I in Fig. 2
When the flow path is a → bK, it is open, and when it is a-+Q, it is closed, but when the first on-off valve trout is open, it is closed, and when the first on-off valve a0 is closed, it is closed. is opened and closed depending on the temperature inside the refrigerator compartment (4). Even if configured in this way, it has the same function and has the same effectiveness.

また上記実施例では減圧器として毛細管を使用した場合
について述べたが膨張弁などを用いてもよいことは勿論
であシ、負荷側が2系統以上の多系統の場合についても
それぞれ温度レベルに適合した減圧器を各系統に設定し
、冷媒制御弁を多系統に設定することによって本発明を
多系統に適合させることができる。
In the above embodiment, a capillary tube is used as a pressure reducer, but it goes without saying that an expansion valve or the like may also be used, and even in the case of multiple systems with two or more load sides, each can be adapted to the temperature level. By setting pressure reducers in each system and setting refrigerant control valves in multiple systems, the present invention can be applied to multiple systems.

本発明は以上述べてきたように、冷媒を蒸発圧力の異彦
る蒸発器に時系列的に゛分配することにより圧縮機およ
び冷却装置全体の運転効率を向上させることができ、加
えて各冷却室内温度の独立制御が可能なこと、また高温
側保冷室の冷却が適正な高い蒸発温度で行なわれるため
As described above, the present invention can improve the operating efficiency of the compressor and cooling system as a whole by distributing refrigerant to evaporators with different evaporation pressures in time series. The indoor temperature can be controlled independently, and the high-temperature cold storage compartment is cooled at an appropriately high evaporation temperature.

高温側保冷室の乾燥などの問題も生じないものである。Problems such as drying of the cold storage compartment on the high temperature side do not occur.

さらに従来の蒸発器を並列接続した冷凍システムは冷媒
を同時に両蒸発器に流しているので両蒸発器の蒸発後圧
力を同一の吸入圧力に整合させるための圧力調整部が高
温側蒸発器(8)の後に必要であったが本発明ではこれ
が不要となりしかも低温側冷却運転時、圧縮機に吸い込
まれる冷媒のスーパーヒートが充分行表われこの面から
も効率向上が図れるものである。さらにまた低温側蒸発
器の除霜時において、この蒸発器で凝縮された冷媒液を
第1減圧器を介して高温側蒸発器で蒸発させ高温側冷室
の冷却動作に用いているのでさらに効率向上が図れる。
Furthermore, in conventional refrigeration systems in which evaporators are connected in parallel, refrigerant flows through both evaporators at the same time, so a pressure adjustment section is required to match the post-evaporation pressures of both evaporators to the same suction pressure. ), but this is not necessary in the present invention, and moreover, during low-temperature side cooling operation, the refrigerant sucked into the compressor is sufficiently superheated, and efficiency can be improved from this aspect as well. Furthermore, when defrosting the low-temperature side evaporator, the refrigerant liquid condensed in this evaporator is evaporated in the high-temperature side evaporator via the first pressure reducer and used for cooling the high-temperature side cold room, making it even more efficient. Improvements can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の家庭用冷凍冷鼠庫の冷却システム図、第
2図は本発明の一実施例を示す家庭用冷凍冷菫庫の冷却
システム図、第3図はその除霜運転制御系を除いた制御
ブロック図、第4図は本発明の他の実施例を示す冷却シ
ステム図である。 図中同一符号は同一または相当部分を示し。 (1)は圧縮機、(2)は凝縮器、(3)は第1毛細管
、(4)は冷蔵室、(5)は冷蔵用蒸発器、(6)は第
2毛細管。 (71社冷凍室、(8)は冷凍用蒸発器、 cmは第1
の開閉弁、alは三方弁、a湯は逆止弁、asは第3の
開閉弁、aSは第2の開閉弁、(2)、aηは温度検出
センサー、αS、a場は温度制御器、cohムNDゲー
ト。 (財)はORゲートである。 代理人 葛 野 信 − !!2図 第4図
Fig. 1 is a diagram of the cooling system of a conventional domestic refrigeration refrigerator, Fig. 2 is a diagram of the cooling system of a domestic refrigeration refrigerator showing an embodiment of the present invention, and Fig. 3 is the defrosting operation control system. FIG. 4 is a cooling system diagram showing another embodiment of the present invention. The same reference numerals in the figures indicate the same or corresponding parts. (1) is a compressor, (2) is a condenser, (3) is a first capillary, (4) is a refrigerator compartment, (5) is a refrigeration evaporator, and (6) is a second capillary. (71 company freezing room, (8) is the freezing evaporator, cm is the 1st
On-off valve, al is a three-way valve, hot water is a check valve, as is a third on-off valve, aS is a second on-off valve, (2), aη is a temperature detection sensor, αS, a field is a temperature controller , cohm ND gate. (Foundation) is an OR gate. Agent Shin Kuzuno −! ! Figure 2 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)保冷温度の異る複数の冷却室、この各冷却室を個
別に冷却する冷媒流方向に順次直列接続された第1の開
閉弁と減圧器と蒸−発器の冷媒回路、この各冷媒回路が
並列接続されて1台の圧縮機と凝縮機に直列接続されゼ
なシ。 上記各冷却室の温度を検出し、上記各冷媒回路の開閉弁
を制御して上記各冷媒回路の何れか一つに選択的に冷媒
を流す温度制御器と。 上記蒸発器を出た冷媒が上記圧縮機の吸入側ならびに逆
止弁を介してよフ高温側冷却室に対応する冷媒回路の減
圧器流入部または蒸発器流入部に逍択的に流す冷媒制御
弁と、上記圧縮機の吐出側とより低温側蒸発器の流入部
とを第2の開閉弁を介して接続したバイパス路とを備え
てなることを特徴とする冷却装置。
(1) A plurality of cooling chambers with different cold storage temperatures, a refrigerant circuit including a first on-off valve, a pressure reducer, and an evaporator connected in series in the refrigerant flow direction to individually cool each cooling chamber; The refrigerant circuits are connected in parallel and one compressor and condenser are connected in series. a temperature controller that detects the temperature of each of the cooling chambers and controls an on-off valve of each of the refrigerant circuits to selectively flow a refrigerant into any one of the refrigerant circuits; Refrigerant control in which the refrigerant exiting the evaporator selectively flows through the suction side of the compressor and the check valve to the pressure reducer inlet or evaporator inlet of the refrigerant circuit corresponding to the high-temperature cooling chamber. A cooling device comprising: a valve; and a bypass path connecting the discharge side of the compressor and the inlet of the lower temperature side evaporator via a second on-off valve.
(2)冷却室が2室からなるとき、減圧器を毛細管で構
成するととKより、低温側冷媒回路の第1の開閉弁を省
いたことを特徴とする特許請求の範囲第1項記載の冷却
装置。
(2) When the cooling chamber consists of two chambers, the first on-off valve of the low-temperature side refrigerant circuit is omitted when the pressure reducer is composed of a capillary tube. Cooling system.
(3)冷媒制御弁を圧縮機吸入側とより高温側冷媒回路
への分岐部に設けられた三方弁ならびに逆止弁とよシ高
温側蒸発器流入部との間に設けられ走路3の開閉弁とに
より構成したことを特徴とする特許請求の範囲第1項ま
たは第2項記載の冷却装置。
(3) The refrigerant control valve is a three-way valve and a check valve installed between the compressor suction side and the branch to the higher temperature side refrigerant circuit, and a check valve is installed between the high temperature side evaporator inlet to open and close the running path 3. The cooling device according to claim 1 or 2, characterized in that the cooling device comprises a valve.
(4)冷媒制御弁をよシ高温側冷媒回路への分岐部よシ
下流側に設けられた開閉弁ならびに逆止弁と、よシ高温
側蒸発器流入部との間に設けられたwtsの開閉弁とに
よシ構成したことを特徴とする特許請求の範囲第1項ま
たFi第2項記載の冷却装置。
(4) WTS installed between the refrigerant control valve and the on-off valve and check valve provided downstream of the branch to the high-temperature side refrigerant circuit and the high-temperature side evaporator inlet. The cooling device according to claim 1 or claim 2, characterized in that it is configured in combination with an on-off valve.
JP18644881A 1981-11-20 1981-11-20 Cooling device Granted JPS5888563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18644881A JPS5888563A (en) 1981-11-20 1981-11-20 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18644881A JPS5888563A (en) 1981-11-20 1981-11-20 Cooling device

Publications (2)

Publication Number Publication Date
JPS5888563A true JPS5888563A (en) 1983-05-26
JPS6350629B2 JPS6350629B2 (en) 1988-10-11

Family

ID=16188626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18644881A Granted JPS5888563A (en) 1981-11-20 1981-11-20 Cooling device

Country Status (1)

Country Link
JP (1) JPS5888563A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128773U (en) * 1985-01-31 1986-08-12
CN103712369A (en) * 2012-10-05 2014-04-09 通用汽车环球科技运作有限责任公司 Vehicular heat pump system and control method
WO2016110481A1 (en) * 2015-01-05 2016-07-14 Arcelik Anonim Sirketi A cooling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128773U (en) * 1985-01-31 1986-08-12
CN103712369A (en) * 2012-10-05 2014-04-09 通用汽车环球科技运作有限责任公司 Vehicular heat pump system and control method
CN103712369B (en) * 2012-10-05 2016-05-11 通用汽车环球科技运作有限责任公司 Vehicle heat pump and control method
WO2016110481A1 (en) * 2015-01-05 2016-07-14 Arcelik Anonim Sirketi A cooling device

Also Published As

Publication number Publication date
JPS6350629B2 (en) 1988-10-11

Similar Documents

Publication Publication Date Title
JPH04113183A (en) Method for operating open show case
JPS6350628B2 (en)
JPS5888563A (en) Cooling device
CN113685916A (en) Air conditioning system and control method thereof
JP2003139459A (en) Refrigerator
JPS5888559A (en) Cooling device
JPH0222615Y2 (en)
JPH0350958B2 (en)
JP2001280768A (en) Refrigerator
JPH0243995B2 (en) KUKICHOWASOCHI
KR930004393B1 (en) Operating method for refrigerating device
JPS58198668A (en) Cooling device
KR950004396Y1 (en) Arrangement for vaporising residuum of liquid refrigerant
JPS5895161A (en) Cooling device
JPS5952175A (en) Cooling device
JPS5952171A (en) Cooling device
JPS5825233Y2 (en) air conditioner
JPS58210454A (en) Cooling device
JP2513165Y2 (en) Multi-source refrigerator
JPS58108364A (en) Cooling device
JPS5895162A (en) Cooling device
JPS58210450A (en) Cooling device
JPS5880459A (en) Cooling device
JPH01123965A (en) Air conditioner
JPS6260627B2 (en)