JPS5888050A - Two-fluids nozzle - Google Patents

Two-fluids nozzle

Info

Publication number
JPS5888050A
JPS5888050A JP18632681A JP18632681A JPS5888050A JP S5888050 A JPS5888050 A JP S5888050A JP 18632681 A JP18632681 A JP 18632681A JP 18632681 A JP18632681 A JP 18632681A JP S5888050 A JPS5888050 A JP S5888050A
Authority
JP
Japan
Prior art keywords
injection
pipe
emitting
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18632681A
Other languages
Japanese (ja)
Other versions
JPS615788B2 (en
Inventor
Sadao Ebata
江端 貞夫
Seiji Bando
板東 清次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18632681A priority Critical patent/JPS5888050A/en
Publication of JPS5888050A publication Critical patent/JPS5888050A/en
Publication of JPS615788B2 publication Critical patent/JPS615788B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To carry out stable spraying, by providing throttling and inclination to the slit like emitting ports of a stream dividing jet pipe for emitting a mixed stream of a liquid and a gas to carry out the control of a wide injection angle and a wide range fluid injection amount. CONSTITUTION:A mixed stream of a liquid and a gas is introduced into a stream dividing pipe 14 connected in a T-shape from a rectifying pipe 11. The mixed stream is made extremely smooth in a width direction at the emitting slit part of an emitting port having an expanded part of which the central part is throttled into a narrow width and an inclined surface 18 formed by inclining the inner wall surface of a passage in the stream dividing pipe 14 and sprayed externally from the emitting port 15. By forming this emitting port, an injection angle becomes wide and a stable spray pattern without the variation of the injection angle due to the adjustment of an injection amount is obtained.

Description

【発明の詳細な説明】 本発明は液体と気体との混合流を同時に噴射するための
2流体噴射ノズルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-fluid injection nozzle for simultaneously ejecting a mixed flow of liquid and gas.

一般K、洗浄や塗装、あるいは冷却などに使用するスプ
レーノズルに、#:を噴射パターンにより線状(フラッ
トスプレー)、円形(フルコーンスプレー>、環状<ホ
ローコーンスプレー)、角形、楕円形などの多種多様の
形式があり、それぞれ用途に応じて使い分けされている
General K: For spray nozzles used for cleaning, painting, cooling, etc., mark the spray pattern with #: linear (flat spray), circular (full cone spray), annular (hollow cone spray), square, oval, etc. There are a wide variety of formats, each of which is used depending on its purpose.

ところで、移動する平板材料の洗浄、塗装、冷却などを
行う場合KFi、通常、フラットスプレーノズルが使用
される。これは、1箇のノズルで噴射量が多く、巾方向
に広くスプレーパターンを形成し、故にノズル出口面積
も大きく、ノズル詰りか少ないためである。
By the way, when cleaning, painting, cooling, etc. a moving flat plate material, a KFi, usually a flat spray nozzle is used. This is because a single nozzle has a large amount of spray, forms a spray pattern wide in the width direction, and therefore has a large nozzle exit area, making it less likely that the nozzle will become clogged.

このようなスプレーノズルのうち、単一流体を吐出噴射
せしめるl流体噴射ノズルは、供給流体圧力の調整によ
る噴射量制御であるため広い範囲に至る流体噴射量の調
節ができず、しかもノズル出口面積が最大噴射量で決定
される場合においては、低流量噴射時にスプレー噴出速
度が小さくなり、スプレーが材料まで到達せず、あるい
は所定のスプレーパターンが得られない問題がある。更
に、1j射流量が変わった場合&′cFi、第1図の如
く、噴射角度がθ!、θ嘗の如く大きく変動し、特にノ
ズルlを並設使用した場合において、スプレーパターン
の重合部の流体密度分布が変わり(同図A)、巾方向に
一様な分布とならず(同図B)、製品品質の著しい低下
を招く問題も有している。このようなことから、特に広
い流量範囲で使用可能ならしめるため、液体と気体の混
合流を噴射する構造とし、流体を気体により加速させて
噴射速度を大きくした2流体噴射ノズルが使用されてい
る。
Among such spray nozzles, fluid injection nozzles that eject a single fluid are unable to adjust the fluid injection amount over a wide range because the injection amount is controlled by adjusting the supply fluid pressure, and the nozzle exit area is When is determined by the maximum injection amount, there is a problem that the spray ejection speed becomes small during low flow rate injection, and the spray does not reach the material or a predetermined spray pattern cannot be obtained. Furthermore, when the 1j injection flow rate changes &'cFi, as shown in Figure 1, the injection angle becomes θ! , θ varies greatly, especially when nozzles L are used in parallel, the fluid density distribution at the overlapping part of the spray pattern changes (A in the same figure), and the distribution is not uniform in the width direction (A in the same figure). B) also has the problem of causing a significant decline in product quality. For this reason, in order to be usable over a particularly wide flow range, a two-fluid injection nozzle is used, which has a structure that injects a mixed flow of liquid and gas, and increases the injection speed by accelerating the fluid with gas. .

従来の2流体噴射ノズルは、第2図に示されるように、
ノズル本体2の先端に開口された吐出開口3に対し、同
心円状の円環流路4.5を連通させ、内側通路4に液体
を供給するとともに外側通路5に気体を供給し、吐出開
口3がら気体により液体を加速させて大きい噴射速゛度
で吐出させるものとしている。したがって、前記!流体
ノズルのように、スプレーが材料まで到達しないような
問題が解消され、広い流量範囲での使用が可能となる。
The conventional two-fluid injection nozzle, as shown in FIG.
A concentric circular flow path 4.5 is communicated with the discharge opening 3 opened at the tip of the nozzle body 2, and liquid is supplied to the inner passage 4 and gas is supplied to the outer passage 5. The liquid is accelerated by gas and ejected at a high jetting speed. Therefore, said! This eliminates the problem of spray not reaching the material as with fluid nozzles, and allows use over a wide flow rate range.

しかしながら、斯かる2流体ノズルでFi、液体流量を
変更した場合、ノズル内部あるいは吐出開口部3におけ
る2流体の混合状態が費わり、スプレーパターン内の液
体密度分布が必ずしも一様とならず、均一な液体密度分
布となるのは極めて狭い液体流量範囲であるという欠点
を有している。
However, when Fi and the liquid flow rate are changed in such a two-fluid nozzle, the mixing state of the two fluids inside the nozzle or in the discharge opening 3 is affected, and the liquid density distribution within the spray pattern is not necessarily uniform. This method has the disadvantage that a liquid density distribution is obtained within an extremely narrow liquid flow rate range.

ま九、スプレー噴射角度も同様に液体流量の変化に伴な
って変動し、スプレーパターン面積が大きく変化してし
まう問題がある。これは1流体ノズルにおける流量変化
に伴なう噴射角度変化と同様な問題であるが(第1図参
照)、2流体ノズルの場合は、特に気体の膨張量が大き
く変わることから、この傾向が著しい。表IK第2図に
示される如き2流体ノズルを用いて行なった液体流量と
対応する噴射角度を求めた実験値を示す。但し、気体圧
力を4.0 kg/cm、気体流量を221 N//m
inにおける値である。
Finally, there is a problem in that the spray injection angle similarly fluctuates with changes in the liquid flow rate, resulting in a large change in the spray pattern area. This is a similar problem to the change in injection angle due to a change in flow rate in a one-fluid nozzle (see Figure 1), but in the case of a two-fluid nozzle, this tendency is particularly strong because the amount of gas expansion changes greatly. Significant. Table IK shows experimental values for determining the liquid flow rate and the corresponding injection angle using a two-fluid nozzle as shown in FIG. However, the gas pressure is 4.0 kg/cm and the gas flow rate is 221 N//m.
This is the value at in.

表  1 このように、従来の2流体ノズルでは、噴射速度を大き
くできるKもかかわらず、巾方向の特性が極めて悪く、
噴射角度の不安定性から流体噴射量の調節を広範囲に亘
って行うことができず、製品品質の均一さを確保できな
いという問題点を有している。
Table 1 As described above, in the conventional two-fluid nozzle, despite K which can increase the injection speed, the characteristics in the width direction are extremely poor.
Due to the instability of the injection angle, the amount of fluid injection cannot be adjusted over a wide range, resulting in a problem that uniform product quality cannot be ensured.

本発明は上記従来の問題点に着目し、広い噴射角度を有
し、広範囲で流体噴射量を制御でき、特に、噴射量調節
に伴なう噴射角度の変動のない極めて安定したスプレー
パターンを得ることのできる2流体噴射ノズルを提供す
ることを目的とする。
The present invention has focused on the above-mentioned conventional problems, and has a wide injection angle, can control the amount of fluid injection over a wide range, and in particular, obtains an extremely stable spray pattern without fluctuations in the injection angle due to adjustment of the injection amount. The purpose of the present invention is to provide a two-fluid injection nozzle that is capable of ejecting two fluids.

上記目的を達成するために1本発明に係る2流体噴射ノ
ズルは、液体と気体の混合流を導入する整流管に円形外
表面部を有する分流噴射管をT字状に連結し、分流噴射
管の両側部における円形外表面部に周方向に沿うスリッ
ト状の吐出口を形成し、この吐出口の中央部を狭小罠形
成するとともKこの挟小部に至る通路内壁面を傾斜面圧
形成して構成した。
In order to achieve the above object, 1 a two-fluid injection nozzle according to the present invention connects a branching injection pipe having a circular outer surface portion in a T-shape to a rectifying pipe that introduces a mixed flow of liquid and gas. A slit-shaped outlet along the circumferential direction is formed on the circular outer surface on both sides of the outlet, and the central part of the outlet is formed into a narrow trap. It was composed of

斯かる構成により、対象材料の巾方向に広い噴射角度で
噴射しつつ、流体流量の調節によってもスプレーパター
ンが安定し、噴射角度が変動しない。しかも液体蝋の分
布も平滑かつ安定したものとすることができる。
With this configuration, while spraying at a wide spray angle in the width direction of the target material, the spray pattern is stabilized even by adjusting the fluid flow rate, and the spray angle does not fluctuate. Moreover, the distribution of liquid wax can be made smooth and stable.

以下に本発明に係る2流体噴射ノズルの実施例を図面を
参照し7て詳細に説明する。
Embodiments of the two-fluid injection nozzle according to the present invention will be described in detail below with reference to the drawings.

第3〜5図には本実施例に係る2流体噴射ノズルの正面
断面図、側面断面図および底面図を示す。
3 to 5 show a front sectional view, a side sectional view, and a bottom view of the two-fluid injection nozzle according to this embodiment.

これらの図に示されるよう罠、この2流体噴射ノズルは
、予め液体と気体とを混合させた混合流10を導入する
円管状の整流管11を有し、この整流管11の管端に円
管状の分流噴射管12を連結している。整流管11と分
流噴射管12とは両者の管軸が互いに直交するようKT
字形に連結され、混合流10が分流噴射管12内に導入
される際に当該分流噴射管12の両側に分流するものと
なっている。
As shown in these figures, this two-fluid injection nozzle has a circular rectifying tube 11 that introduces a mixed flow 10 in which liquid and gas are mixed in advance, and a circular rectifying tube 11 is installed at the end of the rectifying tube 11. Tubular branch injection pipes 12 are connected. The rectifier pipe 11 and the branch injection pipe 12 are arranged so that their pipe axes are perpendicular to each other.
When the mixed flow 10 is introduced into the branch injection pipe 12, it is divided into both sides of the branch injection pipe 12.

前記分流噴射管12tj、管本体13の両端をキャップ
14により閉塞してなるもので、キャップ14間長さl
を整流管11の内径d+より大ならしめ、かつ整流管1
1の単位長さ当り容積より分流噴射管12の単位長さ当
り容積を太き(している。このような分流噴射管12の
外面側の円形外表面部KFi、その両側端においてスリ
ット状の吐出口15が周方向に沿って形成されている。
The branch injection pipe 12tj is formed by closing both ends of the pipe body 13 with caps 14, and the length between the caps 14 is l.
be larger than the inner diameter d+ of the rectifier tube 11, and the rectifier tube 1
The volume per unit length of the branch injection pipe 12 is larger than the volume per unit length of the branch injection pipe 12. A discharge port 15 is formed along the circumferential direction.

この吐出口15は管本体13の端壁に形成された切欠き
部16とキャップ14の内壁面とにより構成され、特に
キャップ14側に膨出部17を設けて当該吐出口15の
開口巾が中央において狭小となるように画成されている
。また、吐出口15の挟小部に至る流体通路を形成する
キャップ14の内壁面は、第6図に示される如く、膨出
部17に対応して一様な傾斜角度ψ含有する傾斜面18
とされている。
The discharge port 15 is constituted by a notch 16 formed in the end wall of the tube body 13 and the inner wall surface of the cap 14. In particular, a bulge 17 is provided on the cap 14 side to increase the opening width of the discharge port 15. It is defined to be narrow in the center. Further, the inner wall surface of the cap 14 forming the fluid passage leading to the narrow portion of the discharge port 15 has an inclined surface 18 having a uniform inclination angle ψ corresponding to the bulging portion 17, as shown in FIG.
It is said that

斯かる構成の2流体噴射ノズルでは整流管11の内部の
流れ方向と吐出口15からの流れ方向とを直角に違えて
整流管11の流れ分布が噴射パターンに直接的に影響を
及ぼすことが防止される。
In a two-fluid injection nozzle with such a configuration, the flow direction inside the rectifier tube 11 and the flow direction from the discharge port 15 are set at right angles to prevent the flow distribution of the rectifier tube 11 from directly influencing the injection pattern. be done.

また、吐出口15を2箇所とし噴射パターンを組み合わ
せ、パターン厚み方向のパターン形状を中央線に対して
対称とすることができる。
Further, by providing two ejection ports 15 and combining the ejection patterns, the pattern shape in the pattern thickness direction can be made symmetrical with respect to the center line.

更に、吐出口15Fi中央部で狭巾とされているため、
平板面とされる噴射対象において噴射密度が一定となる
。し、かも、傾斜面18の存在により吐出口15のスリ
ット巾の変化と相俟って水量変化しこ充分応じ得るもの
とされている。これは、傾斜面18に流れが衝突するこ
とにより、流れは吐出口15の中央から両側に向って流
れる傾向を示し、より両端側の噴射水量が多くなり、噴
射密度の均一化をより促進するものである。
Furthermore, since the width is narrow at the center of the discharge port 15Fi,
The injection density becomes constant on the injection target which is a flat plate surface. Moreover, the presence of the inclined surface 18 can sufficiently respond to changes in the amount of water that occur together with changes in the slit width of the discharge port 15. This is because when the flow collides with the inclined surface 18, the flow tends to flow from the center of the discharge port 15 to both sides, and the amount of water jetted at both ends becomes larger, which further promotes uniformity of jet density. It is something.

このように構成され7’c2流体噴射ノズルについて、
具体的に整流管11の内径d1を5龍、分流噴射管12
の内径d2および長さlを・d、=121Al、l 二
3 Q 非、吐出口15の最大中bmax=1.2II
j、最小巾bmin=0.6m、傾斜面18の角度ψ=
6.5畦とし、スプレーパターン内流量分布を液体流量
を変えて測定した結果を第7図に示す。この第7図に示
されるよ5VC1本実施例に係る2流体噴射ノズルでは
、液体流量を大巾に変化させた場合(50〜5001/
Hr>  Kも、スプレーパターンが安定し、液体流量
分布も変動しない。このときの噴射条件(液体流量、気
体圧力、気体流量)を表2VC示す。
Regarding the 7'c2 fluid injection nozzle configured in this way,
Specifically, the inner diameter d1 of the rectifying pipe 11 is 5mm, and the branching injection pipe 12 is
Inner diameter d2 and length l of ・d, = 121Al, l 23 Q Non, maximum medium bmax of discharge port 15 = 1.2II
j, minimum width bmin=0.6m, angle ψ of inclined surface 18=
Figure 7 shows the results of measuring the flow rate distribution in the spray pattern by changing the liquid flow rate with 6.5 ridges. As shown in this FIG.
When Hr>K, the spray pattern is stable and the liquid flow rate distribution does not fluctuate. The injection conditions (liquid flow rate, gas pressure, gas flow rate) at this time are shown in Table 2VC.

表  2 このように、本実施例によれば、スプレーパターン内液
体量分布は巾方向罠おいて極めて平滑であり、しかも液
体流量の調節に対して分布状態が変わらず、噴射角度の
変動も極めて微小であり、優れた特徴を有していること
は、明らかである。
Table 2 As described above, according to this example, the liquid amount distribution within the spray pattern is extremely smooth in the width direction, and the distribution state does not change even when the liquid flow rate is adjusted, and the injection angle does not fluctuate significantly. It is clear that it is minute and has excellent characteristics.

なお、上記実施例において、具体的な数値はこれに限定
されるものではなく、混合流の噴射量範囲において各数
値を変更しても一様の特性が得られる。特に、仁の場合
に、整流管11の断面積と分流噴射管12の断面積およ
び吐出口15の開口面積の比を一定にすれば、より安定
した特性が得られる。
Note that in the above embodiments, the specific numerical values are not limited to these, and uniform characteristics can be obtained even if each numerical value is changed within the injection amount range of the mixed flow. In particular, in the case of fuel, more stable characteristics can be obtained by keeping the ratio of the cross-sectional area of the rectifier tube 11, the cross-sectional area of the branch injection tube 12, and the opening area of the discharge port 15 constant.

また、分流噴射管12Fi、少なくとも吐出口15側の
外表面部を円形外表面とすればよく、必ずしも円管形状
とする必要はない。更K、吐出口15も側端でなくとも
よく、整流管11の管軸との交点から外れるものであれ
ばよい。要は円周方向のスリットとし、中央部が狭小と
なり、挟小部罠至る通路内壁面が傾斜面とされる形状で
足る。
Moreover, the outer surface of the branch injection pipe 12Fi, at least on the side of the discharge port 15, may have a circular outer surface, and does not necessarily have to have a circular tube shape. Furthermore, the discharge port 15 does not have to be at the side end, but may be located away from the intersection with the tube axis of the rectifier tube 11. In short, it is sufficient to have a slit in the circumferential direction, which is narrow in the center, and in which the inner wall surface of the passage leading to the narrow part trap is an inclined surface.

以上説明したように、本発明罠係る2流体噴射ノズルに
よれば、円周スリット状の吐出口罠より巾方向に広い噴
射角度を有し、液体流量の広範囲に郵る調節によっても
安定したスプレーパターンを得、またパターン内流量分
布の安定性も良好となる。加えて、噴射角度変動がな(
なり、平板材料に対し、巾方向に均一な被噴射分布が可
能となり、均一な洗浄、塗装、冷却などの作業ができる
As explained above, the two-fluid injection nozzle according to the trap of the present invention has a wider injection angle in the width direction than the circumferential slit-shaped discharge port trap, and can spray stably even by adjusting the liquid flow rate over a wide range. A pattern is obtained, and the stability of the flow rate distribution within the pattern is also improved. In addition, there is no injection angle fluctuation (
This enables uniform spray distribution in the width direction of the flat plate material, allowing uniform cleaning, painting, cooling, and other operations.

および液量分布図、第2図は従来の2流体噴射ノズルの
断面図、I!3図は本実施例罠係る2流体噴射ノズルの
正面断面図、第4図は同側面断面図、第5囚に同底面図
、第6図は吐出口の拡大断面図、第7図は同ノズルによ
るスプレーパターン内液体量分布図である。
and a liquid volume distribution diagram, Figure 2 is a cross-sectional view of a conventional two-fluid injection nozzle, I! Figure 3 is a front sectional view of the two-fluid injection nozzle according to the present embodiment, Figure 4 is a side sectional view of the same, Figure 5 is a bottom view of the same, Figure 6 is an enlarged sectional view of the discharge port, and Figure 7 is the same. It is a liquid amount distribution diagram in a spray pattern by a nozzle.

11・・・整流管、12・・・分流噴射管、14・・・
キャップ、15・・・吐出口、17・・・膨出部、18
・・・傾斜面。
11... Rectifier pipe, 12... Branch injection pipe, 14...
Cap, 15... Discharge port, 17... Swelling part, 18
...Slope surface.

代理人  鵜 沼 辰 之 (ほか2名) 第1図 第2図Agent Tatsuyuki Unuma (2 others) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)液体と気体の混合流を導入する整流管と円形外表
面部を有する分流噴射管をT字状に連結し、前記分流噴
射管の両側部における円形外表面9に周方向に沿うスリ
ット状の吐出口を形成し、当該吐出口の中央部を狭小に
形成するとともにこの狭/J%部に至る通路内壁面を傾
斜面に形成したことを特徴とする2流体ノズル。
(1) A rectifying pipe that introduces a mixed flow of liquid and gas and a branch injection pipe having a circular outer surface are connected in a T-shape, and slits are provided along the circumferential direction on the circular outer surface 9 on both sides of the branch injection pipe. A two-fluid nozzle characterized in that a discharge port is formed in the shape of a shape, a central portion of the discharge port is formed narrowly, and an inner wall surface of a passage leading to the narrow /J% portion is formed as an inclined surface.
JP18632681A 1981-11-20 1981-11-20 Two-fluids nozzle Granted JPS5888050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18632681A JPS5888050A (en) 1981-11-20 1981-11-20 Two-fluids nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18632681A JPS5888050A (en) 1981-11-20 1981-11-20 Two-fluids nozzle

Publications (2)

Publication Number Publication Date
JPS5888050A true JPS5888050A (en) 1983-05-26
JPS615788B2 JPS615788B2 (en) 1986-02-21

Family

ID=16186379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18632681A Granted JPS5888050A (en) 1981-11-20 1981-11-20 Two-fluids nozzle

Country Status (1)

Country Link
JP (1) JPS5888050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881958A (en) * 1996-02-14 1999-03-16 Kyoritsu Gokin Mfg. Co., Ltd. Fluid discharge nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881958A (en) * 1996-02-14 1999-03-16 Kyoritsu Gokin Mfg. Co., Ltd. Fluid discharge nozzle

Also Published As

Publication number Publication date
JPS615788B2 (en) 1986-02-21

Similar Documents

Publication Publication Date Title
US4646977A (en) Spray nozzle
JPS62204873A (en) Spray nozzle
EP2268366B1 (en) Fire suppression system with improved two-phase flow distribution
US8857740B2 (en) Two-component nozzle with secondary air nozzles arranged in circular form
JP2597410B2 (en) Foam-off nozzle structure with barrel screen insert for triggered atomizer
US4103876A (en) Method and apparatus for continuously producing and applying foam
JP2005508741A (en) Full cone spray nozzle for metal casting cooling system
JPH0787907B2 (en) Improved spray nozzle design
JPH09220495A (en) Fluid injection nozzle
JP2005288390A (en) Two-fluid nozzle and spraying method
JPS5888050A (en) Two-fluids nozzle
US4092003A (en) Spray nozzle
JPH01228564A (en) Nozzle for spraying liquid adjustable for spraying distance
US4231524A (en) Large flow nozzle
JP3209676B2 (en) Tip structure of low pressure spray gun
JPH0788531A (en) Spray nozzle
JPS604613Y2 (en) Aerosol jet head
JP3709433B2 (en) spray nozzle
JPS5917409Y2 (en) spray cooling device
JPS6212439Y2 (en)
JP6741959B1 (en) spray nozzle
JPS635145B2 (en)
US3550860A (en) Spray nozzles
DK174157B1 (en) Jet-spray and procedure for projecting fluid as fine particles
JPH084119Y2 (en) Fan-shaped spray nozzle