JPS5887763A - Cadmium electrode for sealed type alkaline storage battery and its manufacture - Google Patents

Cadmium electrode for sealed type alkaline storage battery and its manufacture

Info

Publication number
JPS5887763A
JPS5887763A JP56184442A JP18444281A JPS5887763A JP S5887763 A JPS5887763 A JP S5887763A JP 56184442 A JP56184442 A JP 56184442A JP 18444281 A JP18444281 A JP 18444281A JP S5887763 A JPS5887763 A JP S5887763A
Authority
JP
Japan
Prior art keywords
cadmium
electrode
paste
charging
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56184442A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawano
川野 博志
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56184442A priority Critical patent/JPS5887763A/en
Publication of JPS5887763A publication Critical patent/JPS5887763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve discharge performance and gas absorption, make possible quick charge, prevent escape of an electrolyte to the outside of a battery, and increase the life of the battery by uniformly depositing metal cadmium on the surface of an electrode plate when a paste type electrode is partially charged continuously. CONSTITUTION:Cadmium oxide, a solution obtained by dissolving polyvinyl alcohol in ethylene glycol, and vinyl chloride-acrylonitrile copolymer fiber obtained by cutting to a length of 3-4mm. are mixed to form a paste. This paste is spreaded on both surfaces of a core material, then excess paste is removed by passing through a slit. The coated core material is passed through a dryer set at 180 deg.C to obtain a 0.7mm. thick paste type cadmium electrode hoop. A part of cadmium oxide of the cadmium electrode hoop is converted to metal cadmium with continuous partially-charging equipment shown in the figure. Both ends 12 of the hoop are coated with fluorine resin, and the center 13 is charged with a current collecting roller which the surface of stainless steel is exposed. Because matal cadmium is uniformly formed on the electrode surface, discharge performance and quick charge performance are excellent.

Description

【発明の詳細な説明】 現在、多くのポータプル機器、移動用電源などに密閉形
の二次電池が使われている。その実用の状況から見ると
、やはシ歴史的に普及率の高い鉛蓄電池とニッケルカド
ミウム蓄電池が大半を占めている。
DETAILED DESCRIPTION OF THE INVENTION Currently, sealed secondary batteries are used in many portable devices, mobile power sources, and the like. In terms of practical use, lead-acid batteries and nickel-cadmium batteries, which have historically been popular, account for the majority.

密閉化の方法としては、過充電時での水の電気分解によ
る酸素と水素とを触媒により水にもどす方式と、いわゆ
るノイマン方式とがある。一般に、小形のポータプル機
器用には後者の方式が採用されている。
There are two methods of sealing: a method in which oxygen and hydrogen are returned to water through electrolysis during overcharging using a catalyst, and a so-called Neumann method. Generally, the latter method is adopted for small portable devices.

このノイマン方式は、充電時に正極から発生する酸素を
負極で負極活物質と反応させて、電池外部へ酸素の逸散
を防止し、負極は過充電にならないので触媒は必要とし
ない。しかし、電解液量を限定する必要があシ、鉛電池
などでは、充放電特性、寿命のある程度の低下は止むを
得ないとしている。このような特性面の若干の低下を考
慮しても、電池構造は簡1であシ、低コストになるので
/j・形電池には広く採用されている。
In this Neumann method, oxygen generated from the positive electrode during charging is reacted with the negative electrode active material at the negative electrode, preventing oxygen from escaping to the outside of the battery, and the negative electrode is not overcharged, so no catalyst is required. However, it is necessary to limit the amount of electrolyte, and for lead batteries, etc., some reduction in charge/discharge characteristics and lifespan is unavoidable. Even if such a slight deterioration in characteristics is taken into account, the battery structure is simple and low cost, so it is widely used in /J-type batteries.

本発明は、このようなノイマン方式による密閉形アルカ
リ蓄電池の負極を改良する製造法に関するもので、負極
による酸素ガス吸収をよシ迅速にすることを可能にし、
さらに低温、大電流放電特性を向上させるものである。
The present invention relates to a manufacturing method for improving the negative electrode of such a Neumann type sealed alkaline storage battery, which makes it possible to more quickly absorb oxygen gas by the negative electrode,
Furthermore, the low temperature and large current discharge characteristics are improved.

このことによシ、最近とくに要望されている急速充電を
可能にするとともに、緩充電であれば当然余裕のあるガ
ス吸収が可能になり、電解液中の水の消耗を大きく抑制
できるものである。
This makes it possible to perform rapid charging, which has been particularly requested recently, and also allows for ample gas absorption during slow charging, which greatly reduces the consumption of water in the electrolyte. .

密閉形アルカリ蓄電池の負極としては、カドミウム極、
亜鉛極、電極などが用いられている。このうち最も広く
実用化されているのはカドミウム極で、ニッケル正極と
組みあわせニッケルーカドミウム蓄電池として製造、販
売されている。
The negative electrode of a sealed alkaline storage battery is a cadmium electrode,
Zinc electrodes, electrodes, etc. are used. The most widely used of these is the cadmium electrode, which is manufactured and sold in combination with a nickel positive electrode as a nickel-cadmium storage battery.

カドミウム極の製法としては焼結式電極と4−スト式電
極に大別される。前者の焼結式電極はカドミウム塩の水
溶液を用い、ニッケル焼結体内へ、カドミウム塩を充て
んし、乾燥後アルカリ溶液中に浸漬あるいは、電解し、
水酸化カドミウムに転化し、水洗、乾燥を行なう。この
工程を数回、繰りかえして得る。後者の非焼結式電極(
被−スト式電極)・ば、酸化カドミウム粉末を非水溶媒
と結着剤などで被−スト状として、導電性多孔体に塗着
させ乾燥後、必要であればプレス工程を経て電極として
いる。前者に比べ、後者の場合は、二。
The manufacturing methods for cadmium electrodes are broadly divided into sintering type electrodes and 4-stroke type electrodes. The former sintered electrode uses an aqueous solution of cadmium salt, fills the nickel sintered body with cadmium salt, dries it, then immerses it in an alkaline solution or electrolyzes it.
Convert to cadmium hydroxide, wash with water, and dry. This process is repeated several times. The latter non-sintered electrode (
For example, cadmium oxide powder is coated with a nonaqueous solvent and a binder, applied to a conductive porous body, dried, and then subjected to a pressing process if necessary to form an electrode. . Compared to the former, the latter is two.

ケルの焼結体か必要でなく、活物質の充てん工程も簡単
である。したがって、電極製造コストが大巾に低下でき
、綬−スト式電極の占める割合が増加しつつある。
There is no need for a sintered body of Kel, and the process of filling the active material is simple. Therefore, the manufacturing cost of electrodes can be significantly reduced, and the proportion of ribbon-stripe electrodes is increasing.

この非焼結式電極(−′−!1′−スト式電極)上電極
属の多孔体、たとえば鉄にニッケルメッキを施したパン
チングメタル、ネット、エキスノぞンドメタルなどが使
用されている。連続生産ができ、高粘度の4−スト内を
通過しても変形、切断が起こらないことなどを考慮し、
パンチングメタルの両端部に無開孔部を設けたものが主
流となってきた。
For this non-sintered electrode (-'-!1'-st type electrode), porous materials such as punched metal made of nickel-plated iron, net, and exposed metal are used for the upper electrode. We have taken into consideration that continuous production is possible and that no deformation or cutting occurs even when passing through a high viscosity 4-stroke.
Punched metal with non-perforated parts on both ends has become mainstream.

しかし、この集電体は、焼結式電極のニッケル焼結体に
比べ平面状で、極板の厚みの方向への電−r電導性は低
い。1全充電状態すなわち、酸化カドミウムあるいは水
酸化カドミウムをすべて金属ツノドミウムに変化させた
場合でもカドミウムの利用率は焼結式電極に比べ10チ
程度の低下は免がわ、ない。前述したノイマン方式を採
用した密閉電池においては、カドミウム負極は完全充電
状態に至らず、利用率の低下はさらに大きくなる。
However, this current collector has a planar shape compared to the nickel sintered body of the sintered electrode, and has low electrical conductivity in the thickness direction of the electrode plate. 1. Even in the fully charged state, that is, when all cadmium oxide or cadmium hydroxide is changed to metal tunodium, the utilization rate of cadmium is inevitably reduced by about 10 cm compared to a sintered electrode. In the sealed battery employing the above-mentioned Neumann method, the cadmium negative electrode does not reach a fully charged state, and the reduction in utilization rate becomes even greater.

二、ケルカドミウム蓄電池に用いられているニッケル正
極とカドミウム負極の放電利用率は異なり、前者の利用
率は5時間率程度の放電においては理論容量の100%
近く示すのに対し、後者は同じ条件で70〜80チであ
る。このような電極を同じ放電状態で密閉電池に組み込
み、充電・放電を行なった場合、カドミウム極の電位低
下により、電池電圧が低下する。一般にカドミウム極に
より電池電圧を低下させる電池を構成した場合は充放電
のくりかえしとと3にカドミウム極の放電容量の低下が
著しく大きくなる。このような問題が発生しないように
密閉電池においては、あらかじめカドミウム極を部分充
電し、放電状態のニッケル極と組みあわせ構成されてい
る。さらに、過充電時にニッケル極から発生する酸素ガ
スと金属カドミウムの反応を効率よく行なわせるために
も、余分な金属カドミウムが多いほうが好ましい。しか
し同量の酸化カドミウムを用い、必要以上に金属カドミ
ウムを大きくした場合カドミウム極から充電末期に水素
発生が起こる。したがって、電池の放電容量に見合った
金属カドミウムの最適量を求める必要がある。
2. The discharge utilization rate of the nickel positive electrode and cadmium negative electrode used in Kelcadmium storage batteries is different, and the former's utilization rate is 100% of the theoretical capacity when discharged at a rate of about 5 hours.
The latter is 70 to 80 inches under the same conditions. When such an electrode is assembled into a sealed battery and charged and discharged in the same discharge state, the battery voltage decreases due to the potential drop of the cadmium electrode. In general, when a battery is configured with a cadmium electrode to reduce the battery voltage, the discharge capacity of the cadmium electrode significantly decreases when charging and discharging are repeated. To avoid such problems, sealed batteries are constructed by partially charging the cadmium electrode in advance and combining it with the nickel electrode in a discharged state. Further, in order to efficiently react the oxygen gas generated from the nickel electrode with the metal cadmium during overcharging, it is preferable that the amount of excess metal cadmium be large. However, if the same amount of cadmium oxide is used but the metal cadmium is made larger than necessary, hydrogen will be generated from the cadmium electrode at the end of charging. Therefore, it is necessary to find the optimum amount of metal cadmium commensurate with the discharge capacity of the battery.

従来、この部分充電を工業的に行なう場合は、焼結式、
ペースト式ともに帯状の極板を得て、第1図に示すよう
な工程によシ、連続的に充電を行ない酸化カドミウム、
あるいは水酸化カドミウムの一部を金属カドミウムに変
化させ、水洗、乾燥して、その後、必要な大きさに切断
し、電極としている。この図において、1は帯状のカド
ミウム極を巻いているアンコイラ−で、2は帯状のカド
ミウム極、3は方向転換用ローラ、4は集電ローラ、5
は充電用対極である。6は駆動用ローラで10鰭/秒で
カドミウム極が送られるようになっている。7は電解槽
ヤ12係苛性カリ水溶液8で満たされている。
Conventionally, when performing this partial charging industrially, sintering type,
For both the paste method, a strip-shaped electrode plate is obtained, and it is continuously charged using the process shown in Figure 1 to form cadmium oxide,
Alternatively, a part of the cadmium hydroxide is changed into metal cadmium, washed with water, dried, and then cut into a required size to make an electrode. In this figure, 1 is an uncoiler that wraps a band-shaped cadmium pole, 2 is a band-shaped cadmium pole, 3 is a direction change roller, 4 is a current collector roller, and 5
is the counter electrode for charging. Reference numeral 6 denotes a driving roller that feeds the cadmium pole at a rate of 10 fins/second. An electrolytic tank 7 is filled with an aqueous caustic potash solution 8.

この装置において、集電ローラ4の接液部は通常ステン
レスで構成されて込る。第1図に示すように部分充電を
行うカドミウム極側の充電端子は極板表面から集電ロー
ラ4を通して通電されている。このような方式により部
分充電を行った場合、r7ケル焼結体の一部が極板表面
に露出している焼結式電極においては集電ローラとの接
触抵抗は小さく、中央部と両端部ともにほとんど均一で
あり、効率よく極板表面に金属カドミウムが均一に析出
する。一方のペースト式電極は、塗着工程で、高粘度の
ペースト内を通過させる。この時、パンチングメタルは
伸長、破断が起こることがある。
In this device, the liquid contact portion of the current collecting roller 4 is usually made of stainless steel. As shown in FIG. 1, the charging terminal on the cadmium electrode side that performs partial charging is energized from the surface of the electrode plate through a current collecting roller 4. When partial charging is performed using this method, the contact resistance with the current collecting roller is small in the case of a sintered electrode in which a part of the R7 Kel sintered body is exposed on the electrode plate surface, and the contact resistance between the center and both ends is small. Both are almost uniform, and metal cadmium is efficiently and uniformly deposited on the electrode plate surface. On the other hand, paste-type electrodes pass through a highly viscous paste during the coating process. At this time, the punched metal may stretch or break.

これを防止する目的でパンチングメタルの両端部に無I
11口部を設けている。この無開口部とペーストの塗着
性は悪く、その後の乾燥工程で簡単にはく離し、芯材表
面が露出してくる。もっとも露出した無開口部は電池を
構成する時のカドミウム極リード板にも使用できる。従
ってこの部分゛の存在は、芯材の補強、リード板溶接の
不要など効果は大きい。さて、第1図に示すような装い
により部分充電を行なう場合、帯状極板の両端部は金属
部が露出し、その他の部分は酸化カドミウムあるいは水
酸化カドミウムと結着剤などで覆われている。
To prevent this, there is no I on both ends of the punching metal.
It has 11 openings. The adhesiveness of the paste to this non-opening area is poor, and it easily peels off during the subsequent drying process, exposing the surface of the core material. The most exposed non-opening part can also be used as a cadmium electrode lead plate when constructing a battery. Therefore, the existence of this part has great effects such as reinforcing the core material and eliminating the need for lead plate welding. Now, when performing partial charging using the arrangement shown in Figure 1, the metal parts are exposed at both ends of the strip-shaped electrode plate, and the other parts are covered with cadmium oxide or cadmium hydroxide and a binder. .

したがって、両端部とその他の部分とでは集電ローラと
の接触抵抗が異なシ、芯拐の露出している両端部近傍に
カドミウム金属が偏析する。この金属カドミウムが偏析
した帯状の極板を第1図の帯状電極の移動方向と直角に
切断した電極は第2図のようになる。第2図において9
は塗着前のパンチングメタル、10は無開口部、11は
偏析したカドミウム金属である。このカドミウム極を二
1ッケル極と組み合せ、渦巻状丸缶電池を試作した場合
、巻きはじめと巻き終りに、金属カドミウムが多く析出
した部分が配備されることになる。したがって、とくに
カドミウム律速になるといわれる低温大電流放電時の放
電特性の低下、過充電時に正極から発生する酸素ガスの
吸収反応の低下などが起こる。本発明においては、ペー
スト式電極を神続的に部分充電り行う際にカドミラ、″
・金属を極板表面に均一に析出させ以上のような問題点
がないよりに放電特性、ガス吸収特性を向上させ、急速
充電を可能にすると同時に電解液を電池外部へ逸散する
ことも防止し、電池の長寿命化を図るものである。以下
、本発明を実施例によシ説明する。
Therefore, the contact resistance with the current collecting roller is different between both ends and other parts, and cadmium metal is segregated near both ends where the core is exposed. The electrode shown in FIG. 2 is obtained by cutting the strip-shaped electrode plate in which metal cadmium is segregated at right angles to the moving direction of the strip-shaped electrode in FIG. 1. 9 in Figure 2
1 is punched metal before coating, 10 is a non-opening portion, and 11 is segregated cadmium metal. When this cadmium electrode is combined with a 21-K electrode to produce a prototype spiral round can battery, parts where a large amount of metallic cadmium is precipitated will be located at the beginning and end of the winding. Therefore, the discharge characteristics deteriorate particularly during low-temperature, large-current discharge which is said to be rate-limited by cadmium, and the absorption reaction of oxygen gas generated from the positive electrode during overcharging deteriorates. In the present invention, when a paste type electrode is partially charged divinely, Cadmira,
・By uniformly depositing metal on the surface of the electrode plate, the above-mentioned problems are eliminated, and the discharge characteristics and gas absorption characteristics are improved, enabling rapid charging and at the same time preventing electrolyte from escaping to the outside of the battery. This is intended to extend the life of the battery. The present invention will be explained below using examples.

鉄にニッケルメッキして得られる厚さ0.1111%孔
径2咽中心間ピッチ2.5 mm 、幅280瓢の帯状
の・Pンチングメタルで、両端部10■無開口部を設け
たものを芯材とする。捷た、酸化カドミウム4 k、5
1−、 Z !jビニールアルコール30 ffヲエチ
レングリコール12に溶解した液、3〜4m+に裁断し
た塩化ビニルーアクリロニ) IJル共重合体繊維27
gを十分混合して、K−ストを得る。
The core material is a band-shaped P punching metal with a thickness of 0.1111% obtained by nickel plating on iron, a hole diameter of 2.5 mm, a pitch between two throat centers, and a width of 280 mm, with 10 mm of non-opening on both ends. shall be. Crushed, cadmium oxide 4k, 5
1-, Z! (vinyl alcohol 30 ff) solution dissolved in ethylene glycol 12, vinyl chloride-acryloni cut into 3-4 m+ pieces) IJ le copolymer fiber 27
Mix thoroughly to obtain K-st.

この(−ストを前記芯材の両面に塗着し、スリットを通
して、余分のイーストを除き、約180℃匹設定された
乾燥炉内を通過させ、厚さ0.7 wsの帯状の4−ス
ト式刀ドミウム極を得る。
This (-st) was applied to both sides of the core material, passed through a slit to remove excess yeast, and passed through a drying oven set at about 180°C to form a strip of 4-stst with a thickness of 0.7 ws. Obtain the Shikito Domium Kiwami.

この帯状のカドミウム極を第1図に示す連続部分充電装
置により酸化カドミウムの一部を金属カドミウムに変化
させた。本発明においては、第3図に示すよう両端部 
12に弗素樹脂のコーチノブを行ない中央から左右に1
20mの部分13はそのままステンレスの面を露出させ
た集電ローラを用いて部分充電を行なった極板aと第4
図に示す集電l−ラの中央部の直径が最大で両端部が小
さくなっている集電ローラを用いて部分充電を行なった
極板すを得た。これらa+bの極板と従来の集電ローラ
を用いた極板の表面状態は明らかにa、bが均一に金属
カドミウムが形成されていることが確認された。
This band-shaped cadmium electrode was subjected to a continuous partial charging device shown in FIG. 1 to convert a portion of the cadmium oxide into metallic cadmium. In the present invention, as shown in FIG.
12 to the left and right from the center.
The 20m section 13 is made up of electrode plate a and the fourth electrode, which were partially charged using a collector roller with the stainless steel surface exposed.
An electrode plate was obtained which was partially charged using the current collecting roller shown in the figure, which had the largest diameter at the center and smaller diameters at both ends. It was clearly confirmed that the surface conditions of the electrode plates a+b and the electrode plates using the conventional current collecting roller were such that metal cadmium was uniformly formed on a and b.

つぎに、これらの電極特性を単2形ニッケルーカドミウ
ム蓄電池で比較した。電池構成条件は下記のようにした
Next, these electrode characteristics were compared for AA nickel-cadmium storage batteries. The battery configuration conditions were as follows.

ニッケル極;公知の焼結式ニッケル極で極板寸法は22
0X38餌で厚さ0.65關 セハレータ:ポリアミド不織布で550X42mm厚さ
02叫 カドミウム極は前述した従来例とa+bを用い、極板寸
法280X38m、厚さ0.75mmにして、密閉形電
池を構成また。電解液として25チ苛性カリ水溶液1.
、eに407の水酸化リチウムを溶解した液を1セル当
F) 6 cc使用した。この電池の充放電特性を表1
に示す。
Nickel electrode: A known sintered nickel electrode, plate size is 22
0x38 bait, 0.65mm thickness Sehalator: Polyamide non-woven fabric, 550x42mm thickness 02mm Cadmium electrode uses the conventional example and a+b described above, and the plate dimensions are 280x38m and thickness 0.75mm to form a sealed battery. . 25 ml of caustic potassium aqueous solution as electrolyte 1.
, F) 6 cc of a solution of 407 lithium hydroxide dissolved in F) was used per cell. Table 1 shows the charging and discharging characteristics of this battery.
Shown below.

単位 (mAh) 充電はすべて、20℃、0.2Aで15時間行った。Unit (mAh) All charges were performed at 20° C. and 0.2 A for 15 hours.

終止電圧1.0!に設定し、放電容量を算出した。Final voltage 1.0! The discharge capacity was calculated.

この結果、従来の集電ローラを用いて部分充電を行った
カドミウム極は20℃で2A(らいの放電電流において
は本願のa+bとは大差は認められなかった。これは放
電電圧の低下がニッケル極の容量低下によるものである
。しかし、0℃、6Aの放電電流においての電圧低下は
カドミウム極の容量低下によるもので、a、bは従来例
にくらべ放電容量が大きくなった。この理由としては、
部分充電工程によシ表面に均一にカドミウム金属を析出
させたa+bは従来例に比較して、電池内充電において
もカドミウム極が均一に充電され、放電反応も全面から
均一に反応したものと考えられる。
As a result, the cadmium electrode that was partially charged using a conventional current collector roller was found to be 2A at 20°C (no significant difference was observed in the discharge current of leprosy compared to a + b of the present application. This is because the drop in discharge voltage This is due to a decrease in the capacity of the electrode. However, the voltage decrease at 0°C and a discharge current of 6A is due to a decrease in the capacity of the cadmium electrode, and the discharge capacity of a and b is larger than that of the conventional example.The reason for this is teeth,
Compared to the conventional example, in a+b, in which cadmium metal was deposited uniformly on the surface through the partial charging process, the cadmium electrode was charged evenly during internal charging, and the discharge reaction was thought to occur uniformly from the entire surface. It will be done.

また、同一条件の電池を試作し、カドミウム極のガス吸
収特性を比較した。この場合の充放電は下記の条件で行
った。
They also prototyped batteries under the same conditions and compared the gas absorption characteristics of the cadmium electrodes. Charging and discharging in this case was performed under the following conditions.

1サイクル目 充電20℃ IAで4時間放電 20℃
、0.4A2サイクル目 充電0℃ LAで4時間放電
 0℃ 0.4Aこのうち2サイクル目の充放電時の電
池内圧を第5図に示す。
1st cycle: Charge at 20℃ Discharge at IA for 4 hours at 20℃
, 0.4A 2nd cycle charging 0°C Discharging at LA for 4 hours 0°C 0.4A The internal pressure of the battery during charging and discharging in the second cycle is shown in FIG.

この図において、電池内圧が低い方が酸素ガスの吸収反
応速度が早く、大電流で充電が行なえ、カドミウム極の
処)であると言える。この理由も部分充電によシ、カド
ミウム金属が均一に析出し、電池構成後の充電も均一に
充電が進んだことによるものと考えられる。すなわち、
過充電時にニッケル極から発生した酸素がスはセ・ぞレ
ータを通過し、相対するカドミウム極表面で容易に酸化
物が形成、電池内圧の上昇が少なかったものと考えられ
る。
In this figure, it can be said that the lower the battery internal pressure is, the faster the oxygen gas absorption reaction rate is, the faster charging can be performed with a large current, and the lower the battery internal pressure is (at the cadmium electrode). The reason for this is thought to be that cadmium metal was deposited uniformly during partial charging, and that charging proceeded uniformly after the battery was constructed. That is,
It is thought that the oxygen gas generated from the nickel electrode during overcharging passed through the separator, and oxides were easily formed on the surface of the opposing cadmium electrode, resulting in a small rise in battery internal pressure.

以上のように、本発明はに一スト式カドミウム極を連続
的に部分充電を行なう時に析出する金属カドミウムを極
板表面に均一に析出させ、放電特性、急速充電特性を向
上さるカドミウム極の製造法であって、工業的価値は大
きい。
As described above, the present invention is capable of manufacturing a cadmium electrode that improves discharge characteristics and rapid charging characteristics by uniformly depositing metallic cadmium on the surface of the electrode plate when a one-stroke cadmium electrode is continuously partially charged. It is a law and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は部分充電装置を示す図、第2図は帯状極板を示
す図、第3図、第4図は本発明による集電ローラを示す
図、第5図は電池内圧特性を示す図である。 9・・・塗着前のi?ンチングメタル、10・・・無開
口部、11・・・偏析したカドミウム金属、12・・・
弗素樹脂でコーテングゝした部分、13・・・ステンレ
ス製の集電ローラ。
FIG. 1 is a diagram showing a partial charging device, FIG. 2 is a diagram showing a strip-shaped electrode plate, FIGS. 3 and 4 are diagrams showing a current collecting roller according to the present invention, and FIG. 5 is a diagram showing battery internal pressure characteristics. It is. 9... i before painting? 10... Non-opening portion, 11... Segregated cadmium metal, 12...
Portion coated with fluororesin, 13...Stainless steel current collecting roller.

Claims (3)

【特許請求の範囲】[Claims] (1)  m化カドミウムあるいは水酸化カドミウム主
体粉末と結着剤溶液によシペースト状とし、端部に無開
口部を設けた帯状の導電性多孔体に塗着し得られるペー
スト式カドミウム極を連続的に部分充電を行なう化成工
程において、極板表面に金属カドミウムを均一に形成さ
せたことを特徴とする密閉形アルカリ蓄電池カドミウム
極の製造法。
(1) Make a paste of cadmium mide or cadmium hydroxide-based powder and a binder solution, and apply it to a strip-shaped conductive porous body with no openings at the end to create a continuous paste-type cadmium electrode. A method for manufacturing a cadmium electrode for a sealed alkaline storage battery, characterized in that metal cadmium is uniformly formed on the surface of the electrode plate in a chemical formation process that performs partial charging.
(2)  前記連続的に部分充電を行なう化成工程の電
解液中における充電用対極の一方となる集電ローラの両
端に、耐アルカリ性絶縁被膜を形成した集電ローラを使
用する特許請求の範囲第(1)項記載の密閉形アルカリ
蓄電池カドミウム極の製造法。
(2) The present invention uses a current collecting roller having an alkali-resistant insulating coating formed on both ends of the current collecting roller, which serves as one of the counter electrodes for charging in the electrolytic solution in the chemical conversion process in which partial charging is performed continuously. A method for manufacturing a cadmium electrode for a sealed alkaline storage battery as described in (1).
(3)  前記連続的に部分充電を行なう化成工程の電
解液中における充電用対極の一方となる集電ローラの直
径が中央部が大きく、両端部が小さい集電ローラを使用
することを特徴とする特許請求の範囲第(1)項記載の
密閉形アルカリ蓄電池カドミウム極の製造法。
(3) A current collecting roller serving as one of the counter electrodes for charging in the electrolytic solution in the chemical conversion process in which partial charging is performed continuously has a diameter larger at the center and smaller at both ends. A method for manufacturing a cadmium electrode for a sealed alkaline storage battery according to claim (1).
JP56184442A 1981-11-19 1981-11-19 Cadmium electrode for sealed type alkaline storage battery and its manufacture Pending JPS5887763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56184442A JPS5887763A (en) 1981-11-19 1981-11-19 Cadmium electrode for sealed type alkaline storage battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184442A JPS5887763A (en) 1981-11-19 1981-11-19 Cadmium electrode for sealed type alkaline storage battery and its manufacture

Publications (1)

Publication Number Publication Date
JPS5887763A true JPS5887763A (en) 1983-05-25

Family

ID=16153215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184442A Pending JPS5887763A (en) 1981-11-19 1981-11-19 Cadmium electrode for sealed type alkaline storage battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS5887763A (en)

Similar Documents

Publication Publication Date Title
JP4411690B2 (en) Lithium ion secondary battery
JP2018505538A5 (en)
EP0573040B1 (en) A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode
CN1332484A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
JP4205209B2 (en) Nonaqueous electrolyte secondary battery
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JP2003249223A (en) Lithium ion secondary battery and its manufacturing method
JPH11135116A (en) Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, and manufacture of the negative electrode for the lithium secondary battery
JP3508455B2 (en) Negative electrode plate for lithium ion battery and method for producing the same
JPH06310126A (en) Nonaquous electrolytic secondary battery
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
US2880258A (en) Method of making negative electrodes for electric batteries
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
KR100439350B1 (en) Method for Continuously Making Band Type Lithium Metal Anode, Rechargeable Lithium Polymer Battery and Method for Making the Same Using the Lithium Metal Anode
JP3533032B2 (en) Alkaline storage battery and its manufacturing method
JPS5887763A (en) Cadmium electrode for sealed type alkaline storage battery and its manufacture
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JPH08195197A (en) Nonaqueous electrolyte secondary battery
WO1999062133A1 (en) Battery plate and battery
CN1185666A (en) Positive pole-plate for lithium cell and lithium cell thereof
JPH0536401A (en) Lithium secondary battery
JPH0554912A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
KR101749898B1 (en) Manufacturing method of electrode using of third dimension electrode base material for electro-chemical applied product
JPH0982364A (en) Nonaqueous electrolyte secondary battery