JPS5885528A - Forming method of electrode for semiconductor device - Google Patents

Forming method of electrode for semiconductor device

Info

Publication number
JPS5885528A
JPS5885528A JP18297881A JP18297881A JPS5885528A JP S5885528 A JPS5885528 A JP S5885528A JP 18297881 A JP18297881 A JP 18297881A JP 18297881 A JP18297881 A JP 18297881A JP S5885528 A JPS5885528 A JP S5885528A
Authority
JP
Japan
Prior art keywords
electrode
region
hole
type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18297881A
Other languages
Japanese (ja)
Inventor
Yoshinori Oota
好紀 太田
Toshio Yamamoto
敏雄 山本
Akira Oota
亮 太田
Atsushi Sakai
淳 酒井
Isao Ichinose
一瀬 功
Yasuo Nakamura
康男 中村
Hisayuki Komaki
小牧 久幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP18297881A priority Critical patent/JPS5885528A/en
Publication of JPS5885528A publication Critical patent/JPS5885528A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To obtain electrodes for semiconductor devices which can improve electrical characteristics, by a method wherein a hole is bored from the surface of a semiconductor toward the inside by anisotropic etching, and a conductive film is formed on the surface thereof. CONSTITUTION:An N type buried diffusion region 12, an N type epitaxial growth region 14, a base region 18 and an emitter region 20 are formed in turn on a P type semiconductor substrate 10 having the crystal surface <100>, and an oxide film insulating layer 22 is formed on the surface of the substrate 15. Then, a hole 30 is bored at the position where a collector electrode is to be formed from the surface 15 of the semiconductor substrate toward the inside up to the buried layer 12. A rectangular window is provided at the position on the insulating layer on the substrate surface where the collector electrode is to be formed so that each side is parallel with the crystal axis <111>. The N type epitaxial region 14 is etched anisotropically (EPW etching) through the window so as to form the V-shaped cross section of the hole 30 reaching the buried layer 12. Then, windows for taking out emitter and base electrodes are provided on the insulating layer 22. After that, an emitter electrode 24, a base electrode 26, and a collector electrode 28 are formed by evaporating aluminum electrode layer simultaneously on each region through the above three windows and the hole 30 for taking out the collector electrode.

Description

【発明の詳細な説明】 本発明は十淘体装置用電柿Iの形成方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a persimmon I for a ten-body device.

従来半導体装置の電極(ゴ、半導体基板表面に酸化膜8
1の絶縁層を形成し、この絶縁層の上にアルミニウム等
の導電層を蒸着等により形bν1し、この導tlL層が
絶縁層しこ設けられた窓を介して基板表面上1こ接動す
るようにして、半導体基板表面と導電層とのオーミック
接触を得ていた。
Electrodes of conventional semiconductor devices (eg, oxide film 8 on the surface of the semiconductor substrate)
A conductive layer such as aluminum is formed on this insulating layer by vapor deposition or the like, and this conductive TL layer is brought into contact with the substrate surface through a window provided in the insulating layer. In this way, ohmic contact between the semiconductor substrate surface and the conductive layer was obtained.

しかし半導体装置の領域9こは半導体基板表面からある
程度の深さの所をこ位置して、基板前m口こ達していな
いものがある。このような表面下の領域9こは基、板表
面から電極を直接接続することができす、このことが従
来半導体装fftの型動特性の但下□を招いていた。
However, some regions of the semiconductor device are located at a certain depth from the surface of the semiconductor substrate and do not reach the front surface of the substrate. In such a subsurface region 9, an electrode can be directly connected from the surface of the substrate or the plate, and this has conventionally led to poor type dynamic characteristics of semiconductor devices fft.

本発明の目的(、゛I上述した欠めを除去し、半導体装
圧tの714気% ’t<トを向上さぜることのできる
半導体装置用電極の形成方法を提供することシこある。
The object of the present invention is to provide a method for forming an electrode for a semiconductor device that can eliminate the above-mentioned defects and improve the semiconductor packaging pressure t by 714%. .

本発明は午涛体装簡が形成ざねる1”導体基板り面から
該基板W Ill下の所定深さに位置する領域【こ向け
て異方性エツチングを行ない、これ(こより形成された
エツチング面上Eこ電極屑を設けることを特徴とする半
導体装置用電極の形成方法にある。
In the present invention, anisotropic etching is performed toward a region located at a predetermined depth below the 1" conductor substrate surface where the carrier structure is formed, and the etching formed from this A method for forming an electrode for a semiconductor device, characterized in that electrode scraps are provided on a surface.

図面【こつき本発明を説明する。Drawings [Explanation of the present invention]

第1図は従来の電t!!I/構造をηするNPN形のバ
イ1ホーラトランジスタの一例を示す断面図であり、。
Figure 1 shows the conventional electric t! ! FIG. 3 is a cross-sectional view showing an example of an NPN bi-1 Hola transistor having an I/structure.

ここにlθけP形基板、/2けN形拡散領域をもって形
成するfill込み胎、/ぐはコレクタ領域を成すN形
エピタキシャル領域、16は高濃度N影領域、7gけP
形ベース拡散領域、〃はN形エミッタ拡散領域、〃は絶
縁層、2グはエミッタ電極、左はベースπL極、Iはコ
レクタ電極であ4ノ。
Here, lθ is a P-type substrate, /2 is a fill region formed with an N-type diffusion region, / is an N-type epitaxial region forming a collector region, 16 is a high concentration N shadow region, and 7g is a P-type substrate.
type base diffusion region, 〃 is the N type emitter diffusion region, 〃 is the insulating layer, 2g is the emitter electrode, the left is the base πL pole, and I is the collector electrode.

lυrFMのトランジスタFこおいては、コレクタシリ
ーズ抵抗を低泗させるため(こ、坪込み層12を股ケ1
1ており、本来コレクタ電極jはこの埋込み層12に直
接接続するのが債ましいが、コレクタ電狗、Iは半導体
基板の表面と接峡するので、叩込み層12とは直fi−
’rx (,4することはできない。そこで表面コレク
タ′11)極jを取出す部分〔こ高濃度領域/6を拡散
波“術を用いて形成して、コレクタシリーズ抵抗の低力
、も1化を図っていた。
In the transistor F of lυrFM, in order to reduce the collector series resistance (in this case, the depression layer 12 is
1, and originally it is desirable to connect the collector electrode j directly to this buried layer 12, but since the collector electrode I is in contact with the surface of the semiconductor substrate, it should be directly connected to the buried layer 12.
'rx (, 4) Therefore, the part where the surface collector '11) pole j is taken out [this high concentration region/6] is formed using the diffusion wave technique, and the low force of the collector series resistance is also reduced to 1. was aiming for

しかしコレクタとして作用する主要部分は埋込み痩/2
とベース領域1g&こ挾まれた領域であり、主なコレク
タTri流は埋込み僧12を流れる。したかつ−゛て、
高濃度N形不純物拡散領域16がら埋込み+9572 
However, the main part that acts as a collector is embedded thin/2
The main collector Tri flow flows through the embedded monk 12. Shitakatsu-te,
High concentration N type impurity diffusion region 16 buried +9572
.

をこ至るまでのN形エピタキシャル領域/lの部分はコ
レクタ電こ直列に接続された抵抗として作用し、コレク
タ抵抗を薩くする要因となっており、これがバイポーラ
トランジスタの電気的特性の低下を招いていた。
The part of the N-type epitaxial region /l up to the point acts as a resistor connected in series with the collector voltage, and is a factor that reduces the collector resistance, which causes a deterioration of the electrical characteristics of the bipolar transistor. was.

以下実施例として、第1図の場合と同様、NPN形バイ
ポーラトランジスタ(こっきそのコレクタ領域9こ本発
明方法を適用した場合につき説明する。
As an example, a case in which the method of the present invention is applied to the collector region 9 of an NPN type bipolar transistor (hereinafter referred to as the collector region 9) will be described as in the case of FIG. 1.

なお、各図において、第1図のトランジスタと同□日−
mi分を示すものをこけ同一符号を付して示しである。
In addition, in each figure, the same day as the transistor in Figure 1 -
The same reference numerals are used to indicate the mi minutes.

第2,3およびダ図は半導体装置としてのNPN形バイ
ポーラトランジスタの製造工程の各断面図を示したもの
である。
Figures 2, 3 and 3 show cross-sectional views of the manufacturing process of an NPN type bipolar transistor as a semiconductor device.

先ず第2図に示すようしこ、通常のバイポーラトランジ
スタ製造技術を用いて、結晶面<ioo>を有するP形
半導体基板/θ上にN形埋込み拡散領域/2、N形エピ
タキシャル成長領域/グ、ベース領域/に、エミッタ領
域〃を順次形成し、さらに基板表面/S上【こ酸化膜の
絶縁層nを形成する。従来の 1NPN形バイポーラト
ランジスタの製造工程では、第1図に示すように、エミ
ッタ領域〃を熱拡散法によって形成する工程において、
四時にアルミニウムのような金FA 電極ffとのオー
ミック接触を容易ならしめるため、高不純物濃度のN影
領域16をコレクタ領域/りの表面【こ形成していたが
、本実施例ではコレクタ[tdI/にこ本発明方法を適
用するため、エミッタ領域〃のみを高濃度N形不純物熱
拡散する。
First, as shown in FIG. 2, an N-type buried diffusion region /2, an N-type epitaxial growth region /G, An emitter region is sequentially formed on the base region /, and an insulating layer n of this oxide film is further formed on the substrate surface /S. In the conventional manufacturing process of a 1NPN type bipolar transistor, as shown in FIG. 1, in the process of forming the emitter region by a thermal diffusion method,
In order to facilitate ohmic contact with the gold FA electrode ff, such as aluminum, an N shadow region 16 with a high impurity concentration was formed on the surface of the collector region. In order to apply the method of the present invention, only the emitter region is thermally diffused with high concentration N-type impurities.

つぎ(こ第3図番こ示すようしこ、コレクタ電極を取出
すgl’分Eこ、半導体基板の表面/Sから内部【こ向
け、埋込み層/2&こ達するまでの穴3θをあける。こ
の穴30目つきのようをこして形成する。
Next (as shown in Figure 3), a hole 3θ is made from the surface /S of the semiconductor substrate until it reaches the buried layer /2&. Strain and form a 30-mesh mixture.

先ず、ホトエツチング法により基板表面lj上の□絶縁
層nのコレクタ電極形成予定部をこ、各辺が結晶軸</
//>と平行となるように矩形の窓をあけ、ついでこの
窓を通してN形エピタキシャル領域/りを異方性エツチ
ングし、埋込み層/2 &こ達する断面かV字状の穴3
θを形成する。この実施例では異方゛□性エツチングと
してエチレンジアミン曽ピロカテコール水混合液による
エツチング(以下JEPWエツチング」と称する)技術
を用いる。EPWエツチングによれは、<///>面の
エツチング速度が他に比べて非常に遅いため、絶縁層〃
の窓の直下のエピタキシャル領域/グにはV字状の穴3
θをあけることができる。この穴3θの深さは絶縁層〃
にあける窓の幅で一義的に定まるので、穴3θの深さの
制御は正確(こ行なうことができる。例えは、穴3θの
深さを5μmとするには窓の幅を約7μmにすれば□よ
い。
First, by photo-etching the portion where the collector electrode is to be formed of the insulating layer n on the substrate surface lj, each side is aligned with the crystal axis.
A rectangular window is made parallel to //>, and then the N-type epitaxial region /2 is anisotropically etched through this window to form a buried layer /2 & a V-shaped hole 3 in cross section.
form θ. In this embodiment, an etching technique using a mixture of ethylene diamine and pyrocatechol water (hereinafter referred to as JEPW etching) is used as anisotropic etching. Due to EPW etching, the etching speed of the <///> plane is very slow compared to other surfaces, so the insulating layer
There is a V-shaped hole 3 in the epitaxial region directly under the window.
θ can be opened. The depth of this hole 3θ is the insulating layer
Since it is uniquely determined by the width of the window drilled in the hole, the depth of the hole 3θ can be accurately controlled. For example, in order to make the depth of the hole 3θ 5 μm, the width of the window should be approximately 7 μm. It's good.

その後第グ肉に示すようをこ、絶縁層22にエミッタ’
ashおよびペース電極取出し用の窓もあけ、これらの
窓と前記コレクタ1[1tti<取出し用の穴3θを介
して従来法をこならって各領域にアルミニウム電極1膜
を同時(こ蒸着してエミッタ電極24t1ベース電極x
Hよびコレクタ電@r 、2J’を形成する。
After that, apply the emitter to the insulating layer 22 as shown in the figure.
Windows for taking out the ash and pace electrodes were also opened, and one aluminum electrode film was simultaneously deposited on each area using the conventional method through these windows and the collector 1[1tti<exit hole 3θ. Electrode 24t1 base electrode x
H and collector voltage @r, 2J' are formed.

上述したようにすれは、アルミニウム’KThffは埋
込み層/2とi[t6オーミツク接触するため、従来構
造の′電極の場合に存在したコレクタ電極と埋込み僧/
2との間の抵抗を取り除くことができる。 □上>?l
\の実施例ではNPN形バイホーラトランジスタの例を
こつきk、明したが、本発明はPNP j? hランジ
スタても同ト)【こ適用てきることは勿M:ilであり
、Hた11・しこバイポーラトランジスタのコレクタ面
々11抵抗の但滅たけで7’l: < 、竿本体基板内
部に存在する領域9こili、 fdl、を]11杉、
掻糾する場合に全て適月Jすることができる。
As mentioned above, since the aluminum 'KThff is in i[t6 ohmic contact with the buried layer /2, the collector electrode and the buried layer /2, which existed in the case of the ' electrode of the conventional structure,
2 can be removed. □Top>? l
In the embodiment of \, an example of an NPN type bihole transistor was explained, but the present invention is a PNP type bihole transistor. (The same applies to the H transistor) [This can of course be applied to M:il, and the collector side of the bipolar transistor is 7'l: <, inside the rod main board. Existing area 9 koili, fdl,] 11 cedar,
If you want to discuss everything, you can do it all at the appropriate time.

l「お、第3図図下のJ2施例において、EPV/エッ
士ング後に、穴ゴ0の表面から高濃度N形不純物を′□
4]/、 fXvL/て破ζ17 fこて示すようEこ
高濃度N形り八じr領域3ノを升e成すれは、アルミニ
ウム電神12XとIJ >bエピタキシャル領域/グと
のオーミック接触面積を大きくシ、エレクトロマイグレ
ーションの防+I−にこ役立つ。さらGこその場合【こ
は、例えは第S図のように”…[而か7字状の穴3θの
先端3グかN形坤込み拡1け領rp>化ル遡〃にあける
窓中11Tを1・きくすることもできる。
``Oh, in the J2 example shown at the bottom of Figure 3, after EPV/etching, high concentration N-type impurities were removed from the surface of the hole 0.''
4] /, f It increases the area and helps prevent electromigration. Furthermore, in the case of G [for example, as shown in Figure S]...[And the window to be made in the tip 3 of the 7-shaped hole 3θ or the N-shaped kon-in-in expansion area rp>retrograde] You can also listen to 11T in middle school.

以上実施例で革[7たよう(こ、半導体表面がら内部に
向けて異方性エラチンブレこより穴をあけ、その穴の表
面に導電膜を形成した電挿シを使用することにより、あ
る深さをもって形成された14 Gこ′電極を必要とす
る領域を有する半導体装置の電気特性の低下を防ぐこと
ができると云う優れた効果がある。
In the above embodiments, holes were made inward from the semiconductor surface using an anisotropic elastomer, and a conductive film was formed on the surface of the holes. This has the excellent effect of preventing deterioration of the electrical characteristics of a semiconductor device having a region requiring a 14G electrode formed using the same method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電極構造を有するNPN形のバイポーラ
トランジスタの一例を示すi+面図、第2〜1図は本発
明方法を適用してNPN形のバイポーラトランジスタを
形成する順次の製造工程【こおけ□る断面図、第乏図は
本発明方法の他の実施例を示す断面図である。 lθ・・・P形基板、12・・・埋込み層、/グ・・・
N形エピタキシャル領域、/S・・・半導体基板の表面
、lt・・・高濃度N影領域、7g・・・P形ベース領
域、〃・・・N形エミ)ツタ領域、〃・・・わ・I縁層
、2り・・・エミッタ電極、n・・・ベース電極、π・
・フレフタ’KL%、3θ・・・穴、32.・・・高濃
度N形拡散領域。 第1図 第2図 汝 σ]  で− 5−丁二rtイー−1 第4図 iI塚に 、T伊 lノ+7 v、、   、/さ4 34 3022 ziシーゴ7ジーf5 第1頁の続き ■発 明 者 −瀬功 東京都渋谷区幡ケ谷2丁目43番 2号才リンパス光学工業株式会 社内 、塑合 明 者 中村康男 東京都渋谷区幡ケ谷2丁目43番 2号才リンパス光学工業株式会 社内 塑合 明 者 小牧大卒 東京都渋谷区幡ケ谷2丁目43番 2号才リンパス光学工業株式会 社内 112−
FIG. 1 is an i+ side view showing an example of an NPN bipolar transistor having a conventional electrode structure, and FIGS. The sectional views shown in the left and right are sectional views showing other embodiments of the method of the present invention. lθ...P-type substrate, 12...buried layer, /G...
N-type epitaxial region, /S...Semiconductor substrate surface, lt...High concentration N shadow region, 7g...P-type base region, 〃...N-type emitter) ivy region, 〃...W・I edge layer, 2...emitter electrode, n...base electrode, π・
・Frefter'KL%, 3θ...hole, 32. ...High concentration N-type diffusion region. Fig. 1 Fig. 2 Thou σ] de-5-cho2 rtE-1 Fig. 4 iI mound , Tilno+7 v,, , /sa4 34 3022 zi Shego 7 Zi f5 Continuation of page 1 ■Inventor: Seko, 2-43-2 Hatagaya, Shibuya-ku, Tokyo, within Lymphus Optical Industry Co., Ltd.; Yasuo Nakamura, 2-43-2 Hatagaya, Shibuya-ku, Tokyo; within Lymphus Optical Industry Co., Ltd. Graduated from Komaki University 2-43-2 Hatagaya, Shibuya-ku, Tokyo 112-2, Lymphus Optical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】 L 半導体装置が形成される半導体基板表面から該基板
前1ni下の所定深さに位置する領域に向けて異方性エ
ツチングを行ない、これにより形成されたエツチング面
上をこ霜′、極層を設けることを特徴とする半導体装置
用電極の形成方法。 2、特許請求の範囲第1頂記載の方法(こおいて・ζ異
方1)1:エツチングをEPWエツチングとすることを
特徴とする半導体装置用電極の形成方法。 3 特許請求の範囲第2項記1モ・の方法において、E
PWエツチングを行なう半44体基板の結晶面を< 1
00 >面とすることを特徴とする半導体装置用電極の
形成方法。
[Claims] L Anisotropic etching is performed from the surface of a semiconductor substrate on which a semiconductor device is formed to a region located at a predetermined depth 1 ni below the front of the substrate, and the etched surface formed thereby is etched. A method for forming an electrode for a semiconductor device, characterized by providing a frost layer and a polar layer. 2. The method described in the first claim (herein: ζ anisotropy 1) 1: A method for forming an electrode for a semiconductor device, characterized in that the etching is EPW etching. 3 In the method of Claim 2, Paragraph 1,
The crystal plane of the semi-44-piece substrate to be subjected to PW etching is < 1
A method for forming an electrode for a semiconductor device, characterized in that the electrode has a 00> plane.
JP18297881A 1981-11-17 1981-11-17 Forming method of electrode for semiconductor device Pending JPS5885528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18297881A JPS5885528A (en) 1981-11-17 1981-11-17 Forming method of electrode for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18297881A JPS5885528A (en) 1981-11-17 1981-11-17 Forming method of electrode for semiconductor device

Publications (1)

Publication Number Publication Date
JPS5885528A true JPS5885528A (en) 1983-05-21

Family

ID=16127623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18297881A Pending JPS5885528A (en) 1981-11-17 1981-11-17 Forming method of electrode for semiconductor device

Country Status (1)

Country Link
JP (1) JPS5885528A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162270A (en) * 1979-06-02 1980-12-17 Sharp Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162270A (en) * 1979-06-02 1980-12-17 Sharp Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US4333224A (en) Method of fabricating polysilicon/silicon junction field effect transistors
GB1083273A (en) Semiconductor integrated circuits and method of making the same
JPS6046074A (en) Semiconductor device and manufacture thereof
GB1110224A (en) Improvements in or relating to methods of producing semiconductor arrangements
JPS6252963A (en) Manufacture of bipolar transistor
JPH02210860A (en) Semiconductor integrated circuit device
JPS6128236B2 (en)
JPS5885528A (en) Forming method of electrode for semiconductor device
JPS5834943A (en) Semiconductor device and manufacture thereof
US5107309A (en) Double diffused leadout for a semiconductor device
KR840005930A (en) Semiconductor device
JP3041908B2 (en) Semiconductor device
KR960011182B1 (en) Bipolar device fabrication process
JPH0518470B2 (en)
JPS5847867B2 (en) Hand tie souchi
US3134159A (en) Method for producing an out-diffused graded-base transistor
JP2511993B2 (en) Method for manufacturing semiconductor device
JPS59117174A (en) Constant-voltage diode
JPS59214250A (en) Semiconductor device
JPS58164269A (en) Field effect semiconductor device
JPS60157265A (en) Constant voltage diode
JPH06341913A (en) Integrated semiconductor pressure sensor
JPS6084878A (en) Semiconductor device having negative resistance characteristic and manufacture thereof
JPS5856352A (en) Semiconductor integrated circuit
JPS6194378A (en) Semiconductor device