JPS5883231A - Method and device for measuring characteristic of red blood cell - Google Patents

Method and device for measuring characteristic of red blood cell

Info

Publication number
JPS5883231A
JPS5883231A JP56182563A JP18256381A JPS5883231A JP S5883231 A JPS5883231 A JP S5883231A JP 56182563 A JP56182563 A JP 56182563A JP 18256381 A JP18256381 A JP 18256381A JP S5883231 A JPS5883231 A JP S5883231A
Authority
JP
Japan
Prior art keywords
red blood
pores
blood cells
filter
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56182563A
Other languages
Japanese (ja)
Other versions
JPH0247692B2 (en
Inventor
Masayoshi Hayashi
正好 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Tao Medical Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp, Tao Medical Electronics Co Ltd filed Critical Sysmex Corp
Priority to JP56182563A priority Critical patent/JPS5883231A/en
Publication of JPS5883231A publication Critical patent/JPS5883231A/en
Publication of JPH0247692B2 publication Critical patent/JPH0247692B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Ecology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To measure the deforming ability of red blood cells by passing dilute red blood through a filter having many pores of around 3mu diameter then passing the same through a fine hole. CONSTITUTION:An adapter 6 provided with a filter 5 having many pores of around 3mu diameter in the lower part is fitted to the bottom end of a detector 3 having a fine hole 4. A disc 7 consisting of rubby or sapphire having the hole 4 is fixed to the preceding end of the detector 3 consisting of glass or a synthetic resin and with the hole 4 as an electrical circuit, detecting electrodes 8, 9 are provided at the inside and outside of the detector. The adapter 6 is constituted of a soft synthetic resin or conductive metal, assumes a cylindrical vessel shape fixed with the filter 5 in the bottom and has a bore to fit onto the preceding end of the detector 3. The filter 5 is so constituted that the total areas of the pores is >=10 times the area of the hole 4 or that the total area of the pores is equal to or smaller than the area of the hole 4. Thus, red cells are detected by each piece and the height of detecting pulses is proportional to the size of the particles. The state of the red blood cells is monitored by viewing the sizes of the detecting pulses.

Description

【発明の詳細な説明】 本発明は、赤血球の特性、とくに赤血球が毛細管を通過
する際に様々な状態に変形する能力、すなわち変形能を
測定する方法およびその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring the properties of red blood cells, particularly the ability of red blood cells to deform into various states when passing through capillary tubes, that is, their deformability.

赤血球の種々の特性のうち、赤血球が血管内を絶えず循
環し、通常約8μ前後の直径を有するものが、直径数μ
足らずの毛細管内を自由に通過しているが、これは赤血
球が変形能を有しているためであり、この変形能を調べ
ることにより一微小循環障害などの診断に役立てること
ができる。一方、赤血球の変形能を定量化する手法の1
つとして、3μ程度のガラス毛細管に吸い込まれるに要
する除圧(吸引圧力)を一定のpH,浸透圧で測定する
方法、または他の手法として、3〜5μ程度の多孔性の
フィルタに赤血球を透過させ流量を測定する方法が用い
られていたが、前者は顕微鏡下における赤血球1個宛の
測定であり、測定結果が必ずしも赤血球全体の平均値を
代表しているとは限らず、熟練を要し実用的ではない。
Among the various characteristics of red blood cells, red blood cells constantly circulate within blood vessels and have a diameter of approximately 8 μm, whereas red blood cells have a diameter of several μm.
The red blood cells pass freely through the small capillaries, but this is because red blood cells have deformability, and examining this deformability can be useful in diagnosing microcirculatory disorders. On the other hand, one of the methods for quantifying the deformability of red blood cells is
One method is to measure the pressure relief (suction pressure) required for the red blood cells to be sucked into a glass capillary of about 3 μm using a constant pH and osmotic pressure, or another method is to pass red blood cells through a porous filter of about 3 to 5 μm. However, the former method involves measuring one red blood cell under a microscope, and the measurement result does not necessarily represent the average value for all red blood cells, and requires skill. Not practical.

後者は多数の赤血球に対する平均値が得られる反面、赤
血球の崩壊による誤差、赤血球を浮懸する液の粘度、温
度などの影響を受け、流量が必ずしも変形能に関連した
パラメータであるとは断定できない欠点があった。また
いずれの方法も測定に手間を要し、l検体当りの測定所
要時間けかなシ長いものであった。上、記従来の測定手
法においては、血R1個に注目すると平均的な値が得ら
れず、一方、流量から変形能を測定する方法においては
、赤血球の1個1個についてはいかなる状態にあるかは
不明であるという間頂点があった。
Although the latter allows obtaining an average value for a large number of red blood cells, it is affected by errors due to the collapse of red blood cells, the viscosity of the liquid in which the red blood cells are suspended, temperature, etc., and it cannot be concluded that the flow rate is necessarily a parameter related to deformability. There were drawbacks. Furthermore, both methods require time and effort for measurement, and the time required for measurement per 1 sample is long. In the above-mentioned conventional measurement method, when focusing on one blood R, an average value cannot be obtained.On the other hand, in the method of measuring deformability from the flow rate, it is difficult to obtain an average value for each red blood cell. There was a peak during which it is unknown.

本発明は上記の諸点に鑑みなされたもので、血液希釈液
を細孔に通過させ赤血球と希釈液との電気的差異に基づ
いて赤血球を検出する検出方法において、血液希釈液を
直径3μ前後の孔隙を多数有するフィルタに通過させた
後、前記細孔を通過させることにより、赤血球の変形能
を正確に測定することができる方法およびその装置を提
供せんとするものである。
The present invention has been made in view of the above points, and is a detection method in which blood diluent is passed through a pore and red blood cells are detected based on the electrical difference between the red blood cells and the diluent. It is an object of the present invention to provide a method and an apparatus for accurately measuring the deformability of red blood cells by passing the red blood cells through a filter having a large number of pores and then passing through the pores.

本発明の第1の方法においては、液の流量を一定に保ち
、所定の時間内に検出される赤血球数により変形能を測
定するものである。したがって、従来の手法における単
位時間当シの流量から変形能を測定する方法に比べ、液
の流量、すなわち流速を一定に保つために、液の粘性や
温度による測定結果の影響を軽減できる。液の流量を一
定に保つ有効な手段として、ルビー、サファイアなどの
円板に直径100μ前後の細孔を設け、細孔の裏側から
所定の圧力で吸引圧力を与える。圧力はたとえば200
ffHg一定とすることによシ、細孔にりまシが生じな
い限り流速はほぼ一定に保たれる。
In the first method of the present invention, the flow rate of the liquid is kept constant and the deformability is measured by the number of red blood cells detected within a predetermined period of time. Therefore, compared to the conventional method of measuring deformability from the flow rate per unit time, the influence of the viscosity and temperature of the liquid on the measurement results can be reduced because the flow rate of the liquid, that is, the flow velocity, is kept constant. As an effective means of keeping the flow rate of the liquid constant, pores with a diameter of about 100 μm are provided in a disk made of ruby, sapphire, etc., and suction pressure is applied from the back side of the pores at a predetermined pressure. For example, the pressure is 200
By keeping ffHg constant, the flow rate can be kept almost constant unless pores are clogged.

液の温度変化による液自体の粘度の影響を防止するため
に、恒温槽などによシ一定温度に保つことが望ましい。
In order to prevent the viscosity of the liquid itself from being affected by changes in the temperature of the liquid, it is desirable to maintain the temperature at a constant temperature using a constant temperature bath or the like.

前記細孔は流速を一定に保つための流量調整用オリフィ
スだけでなく、血球と血球を浮懸する液とのインピーダ
ンスの差異に基づいて血球がオリフィスを通過する際に
血球を検出するための検出孔としての役目をも兼ねる。
The pores are not only an orifice for adjusting the flow rate to maintain a constant flow rate, but also a detection orifice for detecting blood cells as they pass through the orifice based on the impedance difference between the blood cells and the liquid in which they are suspended. It also serves as a hole.

さらに前記細孔の前部(上流側)に、間隙の孔径が3μ
前後で少なくとも1万個以上の孔を有するフィルタを設
ける。すなわち、検出孔(細孔)の孔径が100μ前後
で、間隙の孔径が3μ前後であるから、検出孔1個と間
隙1000個前後とで両者の開孔の面積が等しくなり、
フィルタの孔隙の総面積が検出孔の面積の少なくともl
O倍以上有しないと、流速がフィルタで規制されること
になる。したがって、フィルタの孔面積を検出孔の面積
の10倍程度以上−とすれば、流速は前記検出孔によっ
てのみ規制される。
Furthermore, in the front part (upstream side) of the pore, the pore diameter of the gap is 3 μm.
A filter having at least 10,000 or more holes is provided at the front and rear. That is, since the pore diameter of the detection hole (pore) is around 100 μm and the pore diameter of the gap is around 3 μm, the area of 1 detection hole and around 1000 gaps are equal.
The total area of the pores of the filter is at least l of the area of the detection holes.
If it does not have O times or more, the flow rate will be regulated by the filter. Therefore, if the pore area of the filter is about 10 times or more the area of the detection hole, the flow rate is regulated only by the detection hole.

以上の手段によシ、5万倍程度に希釈された血液を前記
フィルタおよび検出孔が液面下にあるようにセットし、
検出孔の裏側から吸引圧力を与えると、赤血球が3μ程
度のフィルタを通過した後、検出孔で1個宛検出される
。所定の時間検出される血球数を計数することによシ、
フィルタを通過した血球の数が測定される。すなわち、
赤血球の直径は通常8μ程度であるが、フィルタの孔隙
は3μ前後であシ、このフィルタを通過するためには赤
血球の変形が必要である。したがって変形能を有する赤
血球のみが通過可能であり、たとえば溶血状態で通過し
たものは赤血球1個と数えられないために、変形能を数
値で表示することができる。測定時間はlO秒〜1分程
度に設定されるが、あまりに長時間設定すると、変形能
を有しない赤血球、あるいけその他の粒子により目づま
°bを生じ、測定値に誤差を与える。
Using the above method, blood diluted approximately 50,000 times is set so that the filter and detection hole are below the liquid level,
When suction pressure is applied from the back side of the detection hole, red blood cells are detected one by one at the detection hole after passing through a filter with a diameter of about 3μ. By counting the number of blood cells detected over a given period of time,
The number of blood cells passing through the filter is measured. That is,
The diameter of red blood cells is normally about 8μ, but the pores of the filter are around 3μ, and red blood cells must be deformed in order to pass through this filter. Therefore, only red blood cells that have deformability can pass through, and for example, red blood cells that pass in a hemolyzed state are not counted as one red blood cell, so the deformability can be expressed numerically. The measurement time is set to about 10 seconds to 1 minute, but if it is set too long, red blood cells, squirrels, and other particles that do not have deformability will cause clogging, giving an error in the measured value.

本発明の第2の方法は、フィルタの孔隙数を1000個
かそれ以下、すなわちフィルタの孔隙の総画積が検出孔
の面積と等しいかそれ以下とする方法である。この方法
はフィルタ自体に検出孔に与えられる吸引圧力とほぼ同
じ圧力が与えられるために、温度による液の粘度変化の
影響を防止する必要がある。したがって、よシ高度の温
度管理下で測定する必要があふ。この方法においては、
所定量の試料(血液希釈液)を何秒かかつて吸引するこ
とが可能かを測定するものであり、検出孔は赤血球が正
常状態にあるか否かを監視するために用いることもでき
るし、フィルタ通過前の単位希釈液当りの粒子数を測定
することにより、フィルタ通過可能な粒子数とともに、
通過割合の重要なパラメータを得ることができ、所定の
液量の通過時間のパラメータとともに、赤血球の変形能
の特性を2次元のヒストグラムで表わすことができる。
A second method of the present invention is a method in which the number of pores in the filter is 1000 or less, that is, the total area of the pores in the filter is equal to or less than the area of the detection hole. In this method, almost the same pressure as the suction pressure applied to the detection hole is applied to the filter itself, so it is necessary to prevent the influence of changes in liquid viscosity due to temperature. Therefore, it is necessary to perform measurements under very high temperature control. In this method,
It measures how many seconds it is possible to aspirate a predetermined amount of sample (blood dilution solution), and the detection hole can also be used to monitor whether red blood cells are in a normal state. By measuring the number of particles per unit diluted liquid before passing through the filter, we can calculate the number of particles that can pass through the filter, as well as the number of particles that can pass through the filter.
The important parameter of the passage rate can be obtained, and together with the parameter of the passage time of a given liquid volume, the characteristics of the deformability of the red blood cells can be expressed in a two-dimensional histogram.

つぎに以上の方法を実施するだめの本発明の装置の一実
施態様を図面に基づいて説明する。第1図は本発明の装
置の全体を示し、@2aは検出孔およびフィルタまわり
を示している。lFi粒子検出装置で、血液希釈液2を
検出器3の下端に設けられた孔径100μ前後の細孔4
(検出孔)に通過させ、赤血球と希釈液との電気的差異
に基づいて赤血球を検出するように構成されている。前
記細孔4を有する検出器3下端に、下部に直径3μ前後
の孔隙を多数有するフィルタ5を設けたアダプタ6を嵌
設している。7は細孔4を有するルビーまたはサファイ
アなどの硬質の材料からなる円板で、この円板7はガラ
スまたは合成樹脂からなる検出器3の先端(下端)に固
定され、細孔4を電路とし、検出器内外に検出電極8.
9が設けられている。10け試料容器、11け検出回路
、12は流体制御装置、13F!計数回路である。
Next, one embodiment of the apparatus of the present invention for carrying out the above method will be described based on the drawings. FIG. 1 shows the entire device of the present invention, and @2a shows the detection hole and the area around the filter. In the lFi particle detection device, the blood diluent 2 is passed through a pore 4 with a pore diameter of approximately 100μ provided at the lower end of the detector 3.
(detection hole), and the red blood cells are detected based on the electrical difference between the red blood cells and the diluent. At the lower end of the detector 3 having the pores 4, an adapter 6 is fitted, which is provided with a filter 5 having a large number of pores with a diameter of about 3 μm at its lower part. Reference numeral 7 denotes a disk made of a hard material such as ruby or sapphire, which has pores 4. This disk 7 is fixed to the tip (lower end) of the detector 3 made of glass or synthetic resin, and uses the pores 4 as an electric path. , detection electrodes 8 inside and outside the detector.
9 is provided. 10 sample containers, 11 detection circuits, 12 fluid control device, 13F! It is a counting circuit.

フィルタ5は多孔性のメンブランフィルタなどを、必要
な孔隙数を除きパラフィン処理し、所定の個数分を有す
るようにしたもので、フィルタ固定用のアダプタ6に固
定される。アダプタ6は底部にフィルタ5を固定した円
筒容器状の形状を有し、内径は検出器3の先端−(下端
)部の外径と嵌合するようになっている。フィルタ5は
孔隙の総面積が細孔4の面積の10倍以上となるか、ま
たは孔隙の総面積が細孔4の面積と等しいかそれ以下で
あるように設けられる。なおフィルタ5の孔隙の総面積
が細孔4の面積に比して十分に大きいときには、アダプ
タ6け軟質の合成樹脂の成形品でも十分であるが、フィ
ルタ5の孔隙の総面積が細孔4に等しいか小さいときに
は、アダプタ6は導電性金属で構成する必要がある。こ
れFiフィルタ5の孔隙の総面積が細孔4に比べて十分
に大きいときには、フィルタ5の孔隙を介し電路が確保
されるが、フィルタ5の孔隙の総面積が小さいときVc
I/i、フィルタ5の孔隙自体で粒子を検出してしまい
ノイズが発生するからである。また流体制御装置12は
1ノメータ、ポンプなどを内蔵し、マノメータ接点によ
シボンプをオン、オフし、所定の吸引力を発生する。さ
らに検出回路11にはタイマが内蔵され、本発明の第1
の方法においては、測定開始および測定終了信号を発し
、本発明の第2の方法においては、流体制御装置で定量
される液の時間測定を行なう。なおフィルタはアダプタ
ごと使い捨てとすることが望ましいが、蒸留水を逆流さ
せ、溶血、洗浄して再使用も可能である。それぞれの測
定に際しては、前回の赤血球の残渣を十分に拭き取如コ
ンタミネーションを防止する必要がある。
The filter 5 is a porous membrane filter or the like that is treated with paraffin to remove the required number of pores so that it has a predetermined number of filters, and is fixed to an adapter 6 for fixing the filter. The adapter 6 has a cylindrical container shape with the filter 5 fixed to the bottom, and its inner diameter is adapted to fit with the outer diameter of the tip (lower end) of the detector 3. The filter 5 is provided so that the total area of the pores is 10 times or more the area of the pores 4, or the total area of the pores is equal to or less than the area of the pores 4. Note that when the total area of the pores in the filter 5 is sufficiently larger than the area of the pores 4, a molded product made of soft synthetic resin with 6 adapters is sufficient. , the adapter 6 must be made of conductive metal. When the total area of the pores of the Fi filter 5 is sufficiently larger than the pores 4, an electric path is secured through the pores of the filter 5, but when the total area of the pores of the filter 5 is small, Vc
This is because particles are detected in the pores of I/i and the filter 5 themselves, causing noise. Further, the fluid control device 12 has a built-in manometer, a pump, etc., and turns the pump on and off using the manometer contacts to generate a predetermined suction force. Furthermore, the detection circuit 11 has a built-in timer.
In the method described above, measurement start and measurement end signals are issued, and in the second method of the present invention, the time of the liquid to be quantified by the fluid control device is measured. Although it is desirable that the filter and the adapter be disposable, it is also possible to reuse it by backflowing distilled water, lysing the filter, and cleaning it. For each measurement, it is necessary to sufficiently wipe off the residual red blood cells from the previous measurement to prevent contamination.

本発明のいずれの方法においても、赤血球を1個宛検出
するために、検出パルスの高さが粒子の大きさに比例す
ることから、検出パルスの大きさを見ることによシ、赤
血球の状態をモニタすることができ、またいずれの方法
も数値が直接測定結果として得られ、かつ測定が容易で
、血液中の赤血球の平均の測定結果を得ることができる
。また従来、赤血球の変形能を直接示すパラメータがな
く、測定法によって種々のパラメータ、たとえば流電(
g//m1n)、フィルタ通過赤血球(%)または流量
X赤血球& (ml−RBC/ min )などで表現
されており、一般に実験室的測定法であったが、汎用の
粒子計数装置にフィルタ機能を付加し、タイマを設ける
ことによシ、容易に変形能の測定を可能とし、また得ら
れる測定パラメータも数値表示として的確なものであり
、一般のルーチン用としても十分に価値が高いという効
果がある。
In any of the methods of the present invention, in order to detect a single red blood cell, the height of the detection pulse is proportional to the particle size. In addition, both methods provide numerical values as direct measurement results, are easy to measure, and can provide average measurement results for red blood cells in the blood. Furthermore, until now, there has been no parameter that directly indicates the deformability of red blood cells, and depending on the measurement method, various parameters such as current (
g//m1n), red blood cells passing through a filter (%), or flow rate x red blood cells & (ml-RBC/min), etc., and was generally a laboratory measurement method, but a filter function was added to a general-purpose particle counter. By adding a timer and adding a timer, it is possible to easily measure the deformability, and the obtained measurement parameters are accurate as numerical displays, making it highly valuable for general routine use. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の一実施態様を示す断面説明図、
第2図は検出器の細孔およびフィルタ部分の拡大断面図
であふ。 1・・・粒子検出装置、2・・・血液希釈液、3・・・
検出器、4・・・細孔、5・・・フィルタ、6・・・ア
ダプタ、7・・・円板、8.9・・・電極、10・・・
試料容器、11・・・検出回路、12・・・流体制御装
置、13・・・計数回路時 許 出 願 人  東亜医
用電子株式会社り 第2図
FIG. 1 is a cross-sectional explanatory diagram showing one embodiment of the device of the present invention,
FIG. 2 is an enlarged cross-sectional view of the pore and filter portion of the detector. 1... Particle detection device, 2... Blood diluent, 3...
Detector, 4... Pore, 5... Filter, 6... Adapter, 7... Disc, 8.9... Electrode, 10...
Sample container, 11...Detection circuit, 12...Fluid control device, 13...Counting circuit Applicant: Toa Medical Electronics Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】 1 血液希釈液を細孔に通過させ赤血球と希釈液との電
気的差異に基づいて赤血球を検出する検出方法において
、血液希釈液を直径3μ前後の孔隙を多数有するフィル
タに通過させた後、前記細孔を通過させて、赤血球の変
形能を測定することを特徴とする赤血球の特性を測定す
る方法。 2 フィルタの孔隙の総面積が細孔の面積の10倍以上
であシ、所定時間に細孔を通過する赤血球数を検出する
特許請求の範囲第1項記載の赤血球の特性を測定する方
法。 3 フィルタの孔隙の総面積が細孔の面積と等しいかそ
れ以下とし、所定体積の血液希釈液の通過時間を測定す
る特許請求の範囲第1項記載の赤血球の特性を測定する
方法。 4 血液希釈液を検出器下端に設けられた細孔に通過さ
せ赤血球と希釈液との電気的差異に基づいて赤血球を検
出する粒子検出装置において、細孔を有する検出器下端
に、下部に直径3μ前後の孔隙を多数有するフィルタを
設けたアダプタを嵌設してなることを特徴とする赤血球
の特性を測定する装置。 5 フィルタの孔隙の総面積が細孔の面積の10倍以上
である特許請求の範囲第4項記載の赤血球の特性を測定
する装置。 6 フィルタの孔隙の総面積が細孔の面積と等しいかそ
れ以下である特許請求の範囲第4項記載の赤血球の特性
を測定する装置。
[Claims] 1. In a detection method in which a blood diluent is passed through pores and red blood cells are detected based on the electrical difference between the red blood cells and the diluent, the blood diluent is passed through a filter having many pores with a diameter of about 3 μm. A method for measuring the characteristics of red blood cells, which comprises passing the red blood cells through the pores and then measuring the deformability of the red blood cells. 2. The method for measuring the characteristics of red blood cells according to claim 1, wherein the total area of the pores of the filter is 10 times or more the area of the pores, and the number of red blood cells passing through the pores in a predetermined time is detected. 3. The method for measuring the characteristics of red blood cells according to claim 1, wherein the total area of the pores of the filter is equal to or less than the area of the pores, and the passage time of a predetermined volume of blood diluent is measured. 4 In a particle detection device that detects red blood cells based on the electrical difference between the red blood cells and the diluent by passing a blood diluent through a pore provided at the lower end of the detector, a diameter A device for measuring the characteristics of red blood cells, characterized in that the adapter is fitted with a filter having a large number of pores of about 3 μm. 5. The device for measuring the characteristics of red blood cells according to claim 4, wherein the total area of the pores of the filter is 10 times or more the area of the pores. 6. The device for measuring the characteristics of red blood cells according to claim 4, wherein the total area of the pores of the filter is equal to or less than the area of the pores.
JP56182563A 1981-11-13 1981-11-13 Method and device for measuring characteristic of red blood cell Granted JPS5883231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56182563A JPS5883231A (en) 1981-11-13 1981-11-13 Method and device for measuring characteristic of red blood cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56182563A JPS5883231A (en) 1981-11-13 1981-11-13 Method and device for measuring characteristic of red blood cell

Publications (2)

Publication Number Publication Date
JPS5883231A true JPS5883231A (en) 1983-05-19
JPH0247692B2 JPH0247692B2 (en) 1990-10-22

Family

ID=16120456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56182563A Granted JPS5883231A (en) 1981-11-13 1981-11-13 Method and device for measuring characteristic of red blood cell

Country Status (1)

Country Link
JP (1) JPS5883231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59961U (en) * 1982-06-25 1984-01-06 東亜医用電子株式会社 Device that measures the characteristics of blood cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59961U (en) * 1982-06-25 1984-01-06 東亜医用電子株式会社 Device that measures the characteristics of blood cells
JPH0140049Y2 (en) * 1982-06-25 1989-12-01

Also Published As

Publication number Publication date
JPH0247692B2 (en) 1990-10-22

Similar Documents

Publication Publication Date Title
US5723795A (en) Fluid handler and method of handling a fluid
US4395676A (en) Focused aperture module
US5576480A (en) System and method for testing the integrity of porous elements
US4449392A (en) Device for testing filters, particularly sterile filters
GB1597081A (en) Apparatus for counting particles in a liquid suspension
JPH06507967A (en) Apparatus for determining the foamability of at least partially soluble materials
JP3294285B2 (en) Instrumentation processing method and apparatus for particles using a filter
JPH08503545A (en) System and method for integrity testing of porous elements
US4157499A (en) Blood cell counter having dual testing heads
US3395344A (en) Particle studying apparatus with selfclearing scanner element
JPS62266438A (en) Method and device for detecting relative dynamic liquid surface activity
US3973194A (en) Particle counter
US4240029A (en) Apparatus for counting particles in a liquid suspension
JPS5883231A (en) Method and device for measuring characteristic of red blood cell
US4375615A (en) Apparatus for counting particles in a liquid suspension
US3271999A (en) Apparatus for determining the silting properties of liquids containing minute suspended particles
JPH0627120A (en) Dispenser with closure detection
Frank et al. An investigation of particle flow through capillary models with the resistive pulse technique
JPH0140049Y2 (en)
US4863868A (en) Apparatus for detecting the presence of micro organism in liquid
JPH0215011B2 (en)
JPH0219893B2 (en)
JPS5924385B2 (en) Platelet adhesion function measuring device
US6200815B1 (en) Method for measuring the volume of liquid and/or solid in a suspension
EP0162607A2 (en) Monitoring particles in liquids