JPS5880531A - Measuring device for noise of gear under load - Google Patents

Measuring device for noise of gear under load

Info

Publication number
JPS5880531A
JPS5880531A JP56180215A JP18021581A JPS5880531A JP S5880531 A JPS5880531 A JP S5880531A JP 56180215 A JP56180215 A JP 56180215A JP 18021581 A JP18021581 A JP 18021581A JP S5880531 A JPS5880531 A JP S5880531A
Authority
JP
Japan
Prior art keywords
gear
noise
rated
dynamo
transient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56180215A
Other languages
Japanese (ja)
Inventor
Toru Abe
亨 阿部
Toshimitsu Tanaka
俊光 田中
Teruo Masuda
増田 輝男
Hiroshi Yoneda
博 米田
Kanji Hattori
服部 寛二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Sumitomo Heavy Industries Gearbox Co Ltd
Original Assignee
Kobe Steel Ltd
Osaka Seisa Zoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Osaka Seisa Zoki Co Ltd filed Critical Kobe Steel Ltd
Priority to JP56180215A priority Critical patent/JPS5880531A/en
Publication of JPS5880531A publication Critical patent/JPS5880531A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To permit prediction of gear noises in the stage of rated running with good accuracy by measuring gear noises in the transient stage corresponding to rated running. CONSTITUTION:A semi-anechoic room 10 enclosed with sound absorbing wedges 11 over the entire part, a dynamo 12 as a driving machine installed in a dynamo chamber 13, a test gear speed reducer 16 of which input side 16a is connected to the extension shaft 14 of the dynamo via a gear coupling 17, a speed-increasing gear 18 connected to the output side 16b via a gear coupling 19, and a regenerative motor 20 as a brake device connected to the gear 18 via a coupling 21 are provided and the entire part is covered with a soundproofing cover 22. A test gear 16 is used in the test gear speed reducer of such testing machine and the gear noises in the transient stage corresponding to rated running are measured with a noise meter, whereby the gear noises in the state of rated running are predicted.

Description

【発明の詳細な説明】 本発明は、減速機や増速機等、歯車系を含む動力伝達系
における定格運転時の歯車系の発生騒音を予測する新規
の計測方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new measurement method for predicting the noise generated by a gear system during rated operation in a power transmission system including a gear system, such as a reduction gear or a speed increaser.

一般に、歯車の騒音は、機械騒音の有力な一因であり、
特に、機械の高速化、高馬力化が要求されている現状に
あっては、騒音対策上大きな問題となっている。
In general, gear noise is a major contributor to machine noise.
Particularly in the current situation where machines are required to be faster and have higher horsepower, this has become a major problem in terms of noise countermeasures.

この種の歯車騒音については、したがって種々の研究が
なされ、歯車騒音の定性的な因果関係についてははy解
明さ九ているが、実際には、歯車の仕上精度や、機械仕
様、機械の据付条件等が、複雑に絡み合うため、定量的
な解明には程遠い現状にある。
Therefore, various studies have been conducted on this type of gear noise, and the qualitative cause-and-effect relationship of gear noise has not been clarified. Since the conditions are intricately intertwined, it is currently far from being quantitatively clarified.

一方、職場環境の保全という面から、騒音に対するユー
ザー仕様は厳しさを増すばかりで、特に定格負荷運転時
の騒音値上限を指定されることが一般的になりつつある
On the other hand, from the perspective of preserving the workplace environment, user specifications regarding noise are becoming increasingly strict, and it is becoming common to specify an upper limit for noise levels during rated load operation.

しかしながら、歯車工場側では、無負荷運転時の騒音は
計測しうるものの、定格負荷運転時の騒音の計測は事実
上不可能に近く、実際には、据付後定格運転を行なって
、騒音が上限値を越えるような場合に個々に対策を施し
ているのが現状である。
However, although it is possible for gear factories to measure noise during no-load operation, it is virtually impossible to measure noise during rated-load operation. Currently, countermeasures are taken individually in cases where the value is exceeded.

本発明は、かかる現状に鑑みてなされたものであって、
製作サイドで定格運転時の歯車騒音を精度よく予測する
ことができる歯車負荷時の騒音計測方法を提供すること
を基本的な目的としている。
The present invention has been made in view of the current situation, and includes:
The basic objective is to provide a method for measuring noise during gear load that allows the production side to accurately predict gear noise during rated operation.

このため、本発明考等は、定格運転時の回転数、定格ト
ルクを減速運転によって過渡回に実現しうろことに着目
し、この過渡段階における歯車騒音が、定格運転時の歯
車騒音によく近似していることを実証することができ、
したがって、定格運転に対応した過渡段階における歯車
騒音を測定することにより、定格運転時の歯車騒嵜を精
度よく予測することができることを発見するに到ったも
のである。
For this reason, the present invention focuses on the fact that the rotational speed and rated torque during rated operation can be achieved during the transient period by decelerating operation, and the gear noise during this transition stage closely approximates the gear noise during rated operation. be able to demonstrate that
Therefore, it has been discovered that gear noise during rated operation can be accurately predicted by measuring gear noise during a transient stage corresponding to rated operation.

以下、添付の図面を一考に、本発明方法をより具体的に
説明する。
Hereinafter, the method of the present invention will be described in more detail with reference to the accompanying drawings.

<i>  測定原理 いま、第1図に示す如き歯車騒音測定用のモデルを考え
る。
<i> Measurement Principle Now, consider a model for measuring gear noise as shown in Fig. 1.

第1図において、Mは門性モーメントT、のモータ、W
は入力軸1の中間に固定した慣性モーメントエラのフラ
イホイール、Pはギヤボックス2内において入力軸1に
固定された慣性モーメント1、のビニオン、Gはギヤボ
ックス2内において出力軸3に固定された慣性モーメン
トIGのギア、Bは出力軸3に対して大切自在に設けた
慣性モーメントIBのブレーキで、ピニオンPとギアG
とによって減速比口の減速系を形成し、ブイーキBで一
定の負荷を投入しうるようにしている。
In Fig. 1, M is a motor with a gate moment T, W
is a flywheel with a moment of inertia error fixed in the middle of the input shaft 1, P is a pinion with a moment of inertia 1 fixed to the input shaft 1 in the gear box 2, and G is a flywheel fixed to the output shaft 3 in the gear box 2. A gear with a moment of inertia IG, B is a brake with a moment of inertia IB provided freely with respect to the output shaft 3, and a pinion P and a gear G are
A reduction system of the reduction ratio opening is formed by the above, and a constant load can be applied to the buiki B.

上記のモデルにおける歯車騒音の測定は、例えば以下の
ようにして行なう。
Measurement of gear noise in the above model is performed, for example, as follows.

゛ ■ ブレーキBをかけず、無負荷でモータMを起動
し、定格運転時の出力軸側の回転数n。
゛ ■ Start motor M with no load without applying brake B, and find the rotation speed n on the output shaft side during rated operation.

(以下、単に定格回転数という。)より充分高い回転数
までモ下りMの回転数を上昇させる。
(Hereinafter, simply referred to as the rated rotation speed.) Increase the rotation speed of the downstream M to a sufficiently higher rotation speed.

■ 次いで、モータMへの給電を停止し、系を自由回転
させ、その状態でブレーキBを投入し、ブレーキトルク
TBで減速運転を開始する。
(2) Next, the power supply to the motor M is stopped, the system is allowed to rotate freely, and in this state, the brake B is applied and deceleration operation is started using the brake torque TB.

■ 回転数が定格回転数01まで低下した時点で、適当
な位置において歯車騒音を測定する。
■ When the rotation speed has decreased to the rated rotation speed 01, measure the gear noise at an appropriate position.

上記の系の減速運転について、入力軸l、出力軸8の慣
性モーメントを無視して、全体系の慣性モーメン)Iを
ブレーキ軸(出力軸3)に集中すると、 I=IB+IG+112(IP+Iw+IM)   −
(1)であり、出力側での角加速度θ、角速度δ−ωは
、夫々次式で与えられる。
Regarding the deceleration operation of the above system, if the moment of inertia of the entire system is concentrated on the brake shaft (output shaft 3), ignoring the moment of inertia of the input shaft 1 and the output shaft 8, then I = IB + IG + 112 (IP + Iw + IM) -
(1), and the angular acceleration θ and angular velocity δ−ω on the output side are given by the following equations, respectively.

■ 但し、ブレーキトルクTBは一定とし、ω0はブレーキ
Bの投入直前の出力軸3の回転角速度、tはブレーキB
の投入時からの時間である。
■ However, the brake torque TB is constant, ω0 is the rotational angular velocity of the output shaft 3 just before applying the brake B, and t is the brake B
It is the time from the time of input.

上記ブレーキトルクTBは、定格条件によって定め、定
格回転数nt、出力軸側における定格負荷KKW とす
ると、 T1974−T(kg−m)  ・(4)で与えられる
The brake torque TB is determined according to the rated conditions, and is given by T1974-T (kg-m) (4), where the rated rotational speed nt and the rated load KKW on the output shaft side are rated.

したがって(4)式で与えられるブレーキトルクTBで
減速すると、回転数n。から定格回転数n、に達するま
での時間tは、(3)式を用いると以下の通りに求めら
れる。
Therefore, when decelerating with the brake torque TB given by equation (4), the rotational speed n. The time t from which the rotation speed reaches the rated rotational speed n can be obtained as follows using equation (3).

t =−x2g(no−11,)  、 −(5)′r
B よって、(5)式で与えられるt秒後における歯車騒音
の測定によって、定格条件に対応した過渡段階における
歯車騒音を測定することができるのである。
t = -x2g(no-11,), -(5)'r
B Therefore, by measuring the gear noise after t seconds given by equation (5), it is possible to measure the gear noise in the transient stage corresponding to the rated conditions.

なお、異なる定格条件に対しては、第2図に示すように
、定格条件に対応して、ブレーキトルクをTB□1TB
21・・・I ”B4の如く、変化させることにエリ、
必要な過渡状態を実現することができる。
In addition, for different rated conditions, as shown in Figure 2, the brake torque can be changed to TB□1TB according to the rated conditions.
21...I ``Like B4, it is a good idea to change it.
The necessary transient state can be achieved.

本計測方法を実現する場合には、小動力の動力源で間に
合うので、工場サイドで比較的簡単に計測できる利点が
ある。
When implementing this measurement method, a small power source is sufficient, so it has the advantage of being relatively easy to measure on the factory side.

<U>  実験装置 上記の如き測定原理に基いて、定格条件に対応した過渡
段階における歯車騒音と、実際の定格運転時における歯
車騒音とを比較対照し、両者の一致性を実証するため、
第3図に示す如き実験装置を用意し実験を行なった。
<U> Experimental equipment Based on the measurement principle as described above, in order to compare and contrast the gear noise in the transient stage corresponding to the rated conditions and the gear noise during actual rated operation, and to demonstrate the consistency of the two,
An experimental apparatus as shown in FIG. 3 was prepared and an experiment was conducted.

第3図において、10は吸音楔11によって全体を囲っ
た半無響室、12は半無響室10とは別に仕切ったダイ
ナモ室13に設置した駆動機としてのダイナモ、14は
ダイナモ軸12aにダイヤフラムカップリング15を介
して連結したダイナモ延長軸、16はダイナモ延長軸1
4にスペーサ形ギアカップリング17を介して入力側1
6aが連結された供試歯車減速機、18は供試歯車減速
機16の出力側16bにスペーサ形ギアカップリング1
9を介して連結された増速機、20はカップリング21
を介して増速機18に連結したブレーキ装置としての回
生モータで、上記増速機18と回生モータ20とは、半
無響室lO内において供試歯車騒音の測定に影響しない
ように防音力・(−22によってカバーしている。
In FIG. 3, 10 is a semi-anechoic chamber completely surrounded by a sound-absorbing wedge 11, 12 is a dynamo as a drive machine installed in a dynamo room 13 separated from the semi-anechoic chamber 10, and 14 is a dynamo shaft 12a. Dynamo extension shaft connected via diaphragm coupling 15, 16 is dynamo extension shaft 1
4 to the input side 1 via the spacer type gear coupling 17.
6a is a connected test gear reducer, and 18 is a spacer type gear coupling 1 on the output side 16b of the test gear reducer 16.
A speed increaser connected via 9, 20 a coupling 21
The speed increaser 18 and the regeneration motor 20 are connected to the speed increaser 18 via a regenerative motor as a brake device.・(Covered by -22.

(イ)供試歯車 供試歯車16としては、以下に示す諸元のものを用いた
(a) Test gear The test gear 16 had the following specifications.

仕上方法 ケーシング ・・・鋳物ケーシング (ロ)測定系 本実験における測定系のブロック線図を第4図に示す。Finishing method Casing...Casting casing (b) Measurement system Figure 4 shows a block diagram of the measurement system in this experiment.

第4図において、同時測定した項目は以下の通りである
。    。
In FIG. 4, the items that were simultaneously measured are as follows. .

ch、l  機側1mの騒音 ch、2  歯車ケーシング内騒音 ch、8  機側3mの騒音 ch、4  歯車ケーシング振動速度(軸方向)ch、
5  //    u    tt”   (上下方向
)ch、6tt     u     tt    (
軸直角水平力向)ch、7  出力軸トルク ch、 3  入力軸回転数 また、80〜82はch、l〜3の騒音計、33〜35
はch、 4〜6のチャージ式振動計、36はch、7
の動歪計、37はch、 8の光式回転パルス計、88
は多チャンネルのデータレコーダで、このデータレコー
ダ38に記録されたデータは、電磁オシロ39、レベル
レコーダ40、フーリエアナライザ41によって分析す
る。
ch, l Noise at 1 m from machine side ch, 2 Noise inside gear casing ch, 8 Noise at 3 m from machine side ch, 4 Gear casing vibration speed (axial direction) ch,
5 // u tt” (vertical direction) ch, 6tt u tt (
Horizontal force direction perpendicular to the axis) ch, 7 Output shaft torque ch, 3 Input shaft rotation speed Also, 80 to 82 are ch, sound level meter for l to 3, 33 to 35
is ch, 4-6 charge type vibrometer, 36 is ch, 7
Dynamic strain meter, 37 is ch, 8 optical rotary pulse meter, 88
is a multi-channel data recorder, and the data recorded in this data recorder 38 is analyzed by an electromagnetic oscilloscope 39, a level recorder 40, and a Fourier analyzer 41.

なお、第4図において、第3図に同一のものには、重複
をさけるため同一の符号を付して説明を省略する。
In FIG. 4, the same parts as those in FIG. 3 are given the same reference numerals to avoid duplication, and the description thereof will be omitted.

<I>  運転方式 %式%) 駆動:ダイナモ12の駆動による。<I> Operation method %formula%) Drive: Driven by the dynamo 12.

負荷:回生モータ20の回生運転による。Load: Due to regenerative operation of the regenerative motor 20.

B、過渡時運転(減速運転) 置体的には次のような操作で過渡運転状態の一例を作り
出した。
B. Transient operation (deceleration operation) An example of a transient operation state was created by the following operations.

系を無負荷(回生モータ電流0)の状態でダイナモ12
により駆動し、所定の回転数になったらダイナモ12の
駆動力をOFFにする。これによって系は自由回転状態
に入る。次に回生モータ20を同年状態にして系にブレ
ーキを掛けるが、やり方としては回生電流を回生制御盤
の電流メータを見ながら所定電流に設定する。
Dynamo 12 with the system under no load (regenerative motor current 0)
When the rotation speed reaches a predetermined number, the driving force of the dynamo 12 is turned off. This causes the system to enter a free rotation state. Next, the regenerative motor 20 is brought into the same state and the brake is applied to the system.The way to do this is to set the regenerative current to a predetermined current while watching the current meter on the regenerative control panel.

この運転方法によると、軸トルクは第5図に示すように
、ブレーキ投入直後を除いて平均トルクは一定に保持さ
れている。
According to this operating method, as shown in FIG. 5, the average shaft torque is kept constant except immediately after applying the brake.

尚、運転時の歯車潤滑は、ギア油2種4号相当品を半無
響室付属の給油装置により循環する方法をとった。
For gear lubrication during operation, a method was adopted in which gear oil equivalent to Class 2 No. 4 was circulated using an oil supply device attached to a semi-anechoic chamber.

<IV>  測定結果 A1周波数分析結果 回転パルスから入力軸回転数を、トルクゲージから入力
軸換算トルクを求めて、はぼ同条件の過渡前と定常音の
周波数分析結果を比較する。
<IV> Measurement Results A1 Frequency Analysis Results The input shaft rotational speed is determined from the rotation pulse, the input shaft conversion torque is determined from the torque gauge, and the frequency analysis results of the before transient and steady sounds under approximately the same conditions are compared.

第6図は、入力軸回転数128 Orpm、入力軸換算
トルク85ky−mの過渡前(オーバーオール77゜0
 、dB (A) )の周波数分布を示し、第7図には
、この過渡前に対応する定常音(オーバーオール78.
5dB(A) ’)の周波数分布を示す(入力軸回転数
120 Orpm、入力軸換算トルク80kP−m)。
Figure 6 shows input shaft rotation speed 128 orpm and input shaft converted torque 85 ky-m before transition (overall 77°0).
, dB (A)), and FIG. 7 shows the corresponding stationary sound (overall 78.
5 dB(A)') (input shaft rotational speed 120 Orpm, input shaft converted torque 80 kP-m).

このように過渡前と定常音の周波数分布の比較対照から
明らかなように、過渡前と定常音とは、分析周波数の全
域にわたってはソよい対応を示しており、特に歯車の噛
合いの1次、2次ピークについてよい対応が見られる。
As is clear from the comparison and contrast of the frequency distributions of the pre-transient and steady sounds, there is a good correspondence between the pre-transient and steady sounds over the entire analysis frequency range, especially in the first order of gear meshing. , a good correspondence can be seen for the secondary peaks.

B、騒音レベル瞬時値についての過渡前と定常音との比
較 第8図及び第9図に、ch、l  の騒音計30により
検出された歯車騒音の過渡前と定常音との比較を示す。
B. Comparison of instantaneous noise level values before transient and steady sound Figures 8 and 9 show a comparison between before transient and steady sound of gear noise detected by the sound level meter 30 of ch, l.

第8図、第9図において、実線で示す過渡前はレベルレ
コーダで分析したもの、また、○印で示す定常音はフー
リエアナライザで分析したものである。また、それぞれ
の図には入力軸回転数も併記している。なお、第8図、
第9図における平均トルクはそれぞれ、127kp −
m、 70kJ! −mである。
In FIGS. 8 and 9, the pre-transient sounds indicated by solid lines are those analyzed using a level recorder, and the steady sounds indicated by ○ marks are those analyzed using a Fourier analyzer. In addition, the input shaft rotation speed is also shown in each figure. Furthermore, Figure 8,
The average torque in Figure 9 is 127 kp -
m, 70kJ! -m.

第8図、第9図かられかるように、過渡前と定常音とは
軸トルク、回転数にかかわらず、基本的にはよく一致し
ている。
As can be seen from FIGS. 8 and 9, the pre-transient sound and the steady sound basically match well regardless of shaft torque and rotation speed.

以上の説明から明らかなように、過渡前と定常音とは、
同一の回転数およびトルクについて比較的よい一致もし
くは対応性を有している。
As is clear from the above explanation, pre-transient and steady sound are:
There is relatively good agreement or correspondence for the same rotational speed and torque.

換言すれば、減速運転によって定格条件に対応した過渡
期を実現し、この過渡期における歯車騒音を測定するこ
とにより、定格運転時の歯車騒音をほぼ知ることができ
、或いはほぼ正確に予想することができる。
In other words, by realizing a transition period corresponding to the rated conditions by decelerating operation and measuring the gear noise during this transition period, it is possible to approximately know or almost accurately predict the gear noise during rated operation. Can be done.

勿論、減速機や増速機等の騒音は、単に歯車騒音だけで
なく、歯車騒音のみを考えてみても、歯車のケーシング
、歯車の入力軸、出力軸のカップリング等4種々の要因
が影響する。したがって、据付後の定格運転時の騒音の
全てが、本発明方法によって完全に杷握できるものでは
ない。
Of course, noise from reducers and speed increasers is not just gear noise, but even if we consider only gear noise, it is affected by four different factors such as the gear casing, gear input shaft, and output shaft coupling. do. Therefore, all the noise during rated operation after installation cannot be completely suppressed by the method of the present invention.

しかしながら、本発明方法は、歯車負荷時の騒音を簡単
に歯車工場側において予測することができる点で画期的
であり、歯車騒音の対策を図るうえでもきわめて有効な
方法を提供するものである。
However, the method of the present invention is revolutionary in that it allows the gear factory to easily predict noise when gears are loaded, and provides an extremely effective method for taking measures against gear noise. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定原理を説明するための測定系のモ
デルを示す図、第2図は横軸を時間t、縦軸を回転数と
したときの系の減速特性を示すグラフ、第8図は本発明
方法の実験に用いた実験装置を示・す側面説明図、第4
図は第3図に示した実験装置を用いた実験に際して使用
した測定系のブロック図、第5図は減速過渡運転におけ
るトルクの時間変化を示すグラフ、第6図は過渡前の周
波数分布の一例を示すグラフ、第7図は第6図に対応す
る定常音の周波数分布を示すグラフ、第8図、および第
9図は夫々過渡前とこれに対応する定常音の騒音レベル
の入力軸回転数に対する変化を示すグラフである。 40・・・半無響室    11・・・吸音楔12・・
・ダイナモ    16・・・供試歯車20・・・SC
モータ   80〜82・・・騒音計88・・・データ
レコーダ 40・・・レベルレコーダ41・・・フーリ
エアナライザ(F F ’I’ )特 許 出 願 人
゛株式会社神戸製鋼所ほか1名代理人弁理士青山 葆ほ
か2名 第4図 第5図 一肉一 斗 特許庁長 官 殿 ■事件の表示 昭和56年特許願第 180215     号2、発
明の名称 歯車負荷時の騒音計測方法 3、補正をする者 事件との関係 特許出願人 (ほか1名) 4、代理人 5、補正命令の日付(自 発) 6、補正の対象二図面(第5図〜第9図)7、補正の内
容:別紙の通シ 第5図 時向→
Fig. 1 is a diagram showing a model of the measurement system for explaining the measurement principle of the present invention, Fig. 2 is a graph showing the deceleration characteristics of the system when the horizontal axis is time t and the vertical axis is the rotation speed. Figure 8 is a side explanatory view showing the experimental apparatus used in the experiment of the method of the present invention.
The figure is a block diagram of the measurement system used in the experiment using the experimental equipment shown in Figure 3, Figure 5 is a graph showing the temporal change in torque during deceleration transient operation, and Figure 6 is an example of the frequency distribution before the transition. Figure 7 is a graph showing the frequency distribution of steady sound corresponding to Figure 6, Figures 8 and 9 are the input shaft rotational speed of the noise level of steady sound before transient and corresponding to this, respectively. FIG. 40... Semi-anechoic chamber 11... Sound absorption wedge 12...
・Dynamo 16...Test gear 20...SC
Motor 80-82...Sound level meter 88...Data recorder 40...Level recorder 41...Fourier analyzer (FF 'I') Patent application: Kobe Steel, Ltd. and one other agent Patent attorney Hoshi Aoyama and two others Figure 4 Figure 5 Kazuto Ikki, Commissioner of the Patent Office ■Indication of the case Patent application No. 180215 of 1980 2, Name of the invention Method for measuring noise when gears are loaded 3, Amendment Patent applicant (one other person) 4. Agent 5. Date of amendment order (initiated) 6. Two drawings subject to amendment (Figures 5 to 9) 7. Contents of amendment: Attached sheet, Figure 5, time direction →

Claims (1)

【特許請求の範囲】[Claims] (1)動力源の回転動力を歯車系を含む伝達系を介して
負荷側に伝達する系を定格運転した際の歯車系の発生騒
音を測定する方法であって、系を定格回転数以上で駆動
したうえで、動力源の発生動力を零にし、負荷側の負荷
を一定にして減速運転に移行し、定格運転時の回転数お
よび負荷トルクに合致する過渡段階において歯車系の発
生騒音を計測し、その測定値に基いて定格運転時の歯車
系の発生騒音を予測するようにしたことを特徴とする歯
車負荷時の騒音計測方法。
(1) A method for measuring the noise generated by a gear system when a system that transmits the rotational power of a power source to a load side via a transmission system including a gear system is operated at its rated speed, and the system is operated at a speed exceeding the rated speed. After the gear is driven, the power generated by the power source is reduced to zero, the load on the load side is kept constant, and the gear system shifts to deceleration operation, and the noise generated by the gear system is measured during the transient stage that matches the rotation speed and load torque during rated operation. A method for measuring noise when a gear is loaded, characterized in that the noise generated by the gear system during rated operation is predicted based on the measured value.
JP56180215A 1981-11-09 1981-11-09 Measuring device for noise of gear under load Pending JPS5880531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180215A JPS5880531A (en) 1981-11-09 1981-11-09 Measuring device for noise of gear under load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180215A JPS5880531A (en) 1981-11-09 1981-11-09 Measuring device for noise of gear under load

Publications (1)

Publication Number Publication Date
JPS5880531A true JPS5880531A (en) 1983-05-14

Family

ID=16079409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180215A Pending JPS5880531A (en) 1981-11-09 1981-11-09 Measuring device for noise of gear under load

Country Status (1)

Country Link
JP (1) JPS5880531A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144840U (en) * 1988-03-30 1989-10-04
JP2001242009A (en) * 2000-02-29 2001-09-07 Japan Science & Technology Corp System and method for evaluating dynamic performance of gear
JP2007225309A (en) * 2006-02-21 2007-09-06 Shinko Electric Co Ltd Gear noise measuring apparatus
JP2007225310A (en) * 2006-02-21 2007-09-06 Shinko Electric Co Ltd Gear noise measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144840U (en) * 1988-03-30 1989-10-04
JP2503420Y2 (en) * 1988-03-30 1996-07-03 株式会社明電舎 Vehicle power transmission test equipment
JP2001242009A (en) * 2000-02-29 2001-09-07 Japan Science & Technology Corp System and method for evaluating dynamic performance of gear
JP2007225309A (en) * 2006-02-21 2007-09-06 Shinko Electric Co Ltd Gear noise measuring apparatus
JP2007225310A (en) * 2006-02-21 2007-09-06 Shinko Electric Co Ltd Gear noise measuring apparatus

Similar Documents

Publication Publication Date Title
US7770440B2 (en) Method to test a dynamic torque-generating device and a device to determine the dynamic behavior of a driving shaft
EP1743157B1 (en) Structurally tuned vibration based component checking method
Xu et al. Dynamic characteristics and experimental study on a wind turbine gearbox
JPS5880531A (en) Measuring device for noise of gear under load
Divandari et al. Tooth profile modification and its effect on spur gear pair vibration in presence of localized tooth defect
Galvagno et al. Experimental analysis and model validation of a dual mass flywheel for passenger cars
US5505078A (en) Method and apparatus for measuring friction torque
Drew et al. Torsional (rotational) vibration: Excitation of small rotating machines
Ghorbel et al. Effect of the gear local damage and profile error of the gear on the drivetrain dynamic response
Bostan et al. Some aspects regarding planetary precessional transmissions dynamics
Magaswaran et al. A new method in the identification of noise and vibration characteristics of automotive disk brakes in the low frequency domain
Abouel-Seoud et al. A Laboratory Apparatus for Investigation of Vibration Performance of Wind Turbine Planetary Gearbox
CN117902422A (en) Elevator traction machine vibration noise ground equivalent testing device and method
RU2001318C1 (en) Method for testing hydrodynamic transmission
Abrate Noise and vibration in power transmission belts
JP2745749B2 (en) Analysis method of engine output characteristics
Baumann Gear Rattling Noises from Vehicle Transmissions
JP7034851B2 (en) Tension measurement system
Ganeriwala Application of Synchronous Averaging for Detecting Defects of a Gearbox
Park et al. Experimental investigation of the effect of lead errors on helical gear and bearing vibration transmission characteristics
Wu et al. Modulation Signal Bispectrum Based Monitoring of Tooth Surface Wear for Modification Spiral Bevel Gear
Wang et al. Analytical and experimental study on gear rattle in supercharger
JPS6040924A (en) Abnormality diagnosing method for rotary machine
JPS6113949Y2 (en)
Bijwe et al. CAE Based Benchmarking of Shaft Deflection for Transmission Gear Rattle Noise