JPS5877515A - Controlling method for temperature of blown up steel bath in oxygen top blown converter - Google Patents

Controlling method for temperature of blown up steel bath in oxygen top blown converter

Info

Publication number
JPS5877515A
JPS5877515A JP17760481A JP17760481A JPS5877515A JP S5877515 A JPS5877515 A JP S5877515A JP 17760481 A JP17760481 A JP 17760481A JP 17760481 A JP17760481 A JP 17760481A JP S5877515 A JPS5877515 A JP S5877515A
Authority
JP
Japan
Prior art keywords
converter
temp
temperature
steel bath
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17760481A
Other languages
Japanese (ja)
Other versions
JPS6155565B2 (en
Inventor
Kiichi Narita
成田 貴一
Takehisa Makino
牧野 武久
Nozomi Katagiri
望 片桐
Tetsuo Sato
哲郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17760481A priority Critical patent/JPS5877515A/en
Publication of JPS5877515A publication Critical patent/JPS5877515A/en
Publication of JPS6155565B2 publication Critical patent/JPS6155565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To control the temp. of molten steel in the stage of blowing out precisely to a target temp. by the use of change in the temp. of molten steel with time in the stage of refining steel with an oxygen top blown converter by analyzing waste gases and determining the rates of oxidation of C and others, the heating rate of molten steel, etc. CONSTITUTION:In the stage of refining molten iron to molten steel by oxidation decarburization in an oxygen top blown converter, the waste gases of the converter are sampled, and CO, CO2, O2 and N2 are quickly analyzed, and the flow rate of the waste gases is measured simultaneously. From these values, the concns. of CO and CO2 in the gaseous compsn. in the vapor phase in the converter are determined and the rates of oxidiation of C, CO and Fe in the converter are calculated. From the rates of oxidation, the heating rate of the molten steel is determined and the temp. of the steel bath at the present point is calculated. These measurements and operations are performed momentarily and the operatios of the converter are so controlled as to stop blowing according to the varying degrees of the temp. of that time and to charge cold materials if such charging is required on account of the relation with the content of C in the steel bath, whereby the temp. of the steel bath in the stage of blowing out is controlled exactly to the target temp.

Description

【発明の詳細な説明】 本発明は、酸素上吹転炉内へ吹きこまれる酸素は、鋼浴
中のCとFe及び炉内ガス中のCOを酸化する為にほぼ
金賞消費されるという前提の下に、転炉吹止時の鋼浴温
度を高精度に推定し、これを制御する方法に関するもの
である。尚本明細書における酸素上吹転炉とは、従来汎
用されている純酸素上吹転炉のみならず、酸素や冷却乃
至混合用ガスを底部から吹込む上下吹転炉を含めた広い
概念で用いられる。
Detailed Description of the Invention The present invention is based on the premise that the oxygen blown into the oxygen top-blowing converter is almost consumed to oxidize C and Fe in the steel bath and CO in the furnace gas. The following section relates to a method for accurately estimating and controlling the steel bath temperature at the time of converter blow-off. The oxygen top-blowing converter in this specification is a broad concept that includes not only the pure oxygen top-blowing converter that has been widely used in the past, but also the top-bottom blowing converter in which oxygen and cooling or mixing gas are blown in from the bottom. used.

転炉における酸素吹錬は、溶銑の脱炭・脱燐を主目的と
するものであるが、特に炭素の酸化反応がその中心を占
め、脱炭反応によって鋼浴温度の保持並びに上昇がもた
らされる。しかるに吹止温度を目標値通りに制御するこ
とは、製品々質の向上、諸原単位の低減、出鋼歩留の向
上、製鋼時間の短縮等を達成する上で極めて重要な要素
であり、従来より色々の方策が提案されている。ところ
が吹錬末期における鋼浴温度は1600〜1700°C
もの高温に達し、且つ鋼浴表面は厚いスラグで覆われて
いる為、熱電対等を鋼浴中に浸漬して連続測温する様な
ことは、保護用耐火物の選定という而で問題が多く実用
化されていない。又転炉内界囲気中には大量のダストや
ヒユームが浮遊しているので光高温計等の高精度非接触
型センサーで測温することも極めて困難である。そこで
当初は、特公昭48−25857号公報に記載せられた
様なヌタティック制御法が試みられたが、この方法は吹
錬開始前既に判明している情報のみに基づいて推定する
ものであるから、吹錬中のアクシデントや外乱に対して
は全く無力であり、50〜70%程度の的中率が得られ
ているに過ぎない0次いでサブランスによる温度制御法
が開発された。この方式は、吹錬末期の任怠の一点にお
いて、鋼浴温度全一度だけ且つ5〜10秒間だけ測定し
、この測定値を、予め統計的に得られている式に導入し
て昇温率を計算し、これによって吹止鋼浴温度全制御す
るものである。これによって的中率は一挙に80〜90
%迄向上(的中許容範囲ニー10〜+15°C)したが
、サブランスによる測温は、吹止直前の一点でおるから
、プロセスの乱れ、例えばスラグ蓋の変化等による外温
条件の変動が十分に吸収できず、的中率の向上には限界
があった。一方製鉄産業分野においては、連鉤鋼種の増
大や一層のコストダウンが強く要請され、□吹止温度の
的中率を更に向上することが望まれている。
The main purpose of oxygen blowing in a converter is to decarburize and dephosphorize hot metal, but the oxidation reaction of carbon is the main focus, and the decarburization reaction maintains and raises the temperature of the steel bath. . However, controlling the blow-off temperature to the target value is an extremely important element in achieving improvements in product quality, reduction in various basic units, improvement in tapping yield, and reduction in steelmaking time. Various measures have been proposed so far. However, the steel bath temperature at the final stage of blowing is 1600 to 1700°C.
Since the steel bath surface reaches very high temperatures and is covered with thick slag, it is difficult to continuously measure the temperature by immersing a thermocouple in the steel bath, which poses many problems when it comes to selecting protective refractories. Not put into practical use. Furthermore, since a large amount of dust and fume are floating in the ambient air inside the converter, it is extremely difficult to measure the temperature with a high-precision non-contact sensor such as an optical pyrometer. Initially, a nutatic control method such as that described in Japanese Patent Publication No. 48-25857 was attempted, but this method estimates the temperature based only on information known before the start of blowing. A temperature control method using zero-order sublance has been developed, which is completely powerless against accidents and disturbances during blowing and has an accuracy rate of only about 50 to 70%. This method measures the temperature of the steel bath only once and for 5 to 10 seconds at one point in the final stage of blowing, and then introduces this measured value into a formula that has been statistically obtained in advance to calculate the heating rate. is calculated, and the entire temperature of the blow-fitting steel bath is controlled accordingly. This increases the accuracy rate to 80-90 at once.
% (accurate tolerance range: knee 10 to +15°C), but since the sublance temperature measurement is performed at a single point just before blow-off, there is a possibility that fluctuations in external temperature conditions due to process disturbances, such as changes in the slag lid, will occur. It could not be absorbed sufficiently, and there was a limit to the improvement of the accuracy rate. On the other hand, in the steel industry, there is a strong demand for an increase in the types of continuous hook steel and further cost reductions, and it is desired to further improve the accuracy of the blow-off temperature.

この様な中で最近特公昭56−1866号が提案され、
吹止鋼浴温度及び吹止灰素濃度の推定精度が著しく向上
する様になっている。しかるにこの方法は、転炉内ガス
をCO2,C01H2の3成分系と考えると共に、OG
内へ巻込まれた空気中の酸素は一部が炉内のCOと反応
し、残部はその!まで排出されるとの仮定を置いて成立
するものであるから、OGガスの組成を、co2.co
Under these circumstances, Special Publication No. 56-1866 was recently proposed,
The accuracy of estimating the blowdown steel bath temperature and blowdown ash concentration has been significantly improved. However, this method considers the gas in the converter as a three-component system of CO2 and C01H2, and also
Part of the oxygen in the air drawn in reacts with the CO in the furnace, and the rest is... This is based on the assumption that CO2. co
.

H、O及びN2の5成分系と見る必要があり、2   
 2 又転炉内気相中のCOによる酸素の消費という面が十分
に考慮されておらないという欠点があった。
It needs to be seen as a five-component system of H, O and N2.
2. Another drawback was that sufficient consideration was not given to the consumption of oxygen by CO in the gas phase within the converter.

これは上述の方法が、鋼浴温度と鋼浴中炭素を合浴 わせて推定し、予め求めておいた鋼浴温度−鋼中I・材
素関係式に導入して該関係式の係数を決定し、しかる後
吹止時の炭素及び温度を予測する為であると考えられる
。そこで本発明者等は鋼浴温度の測定に主眼を置き、又
煙道内に巻込まれた酸素は、実質的に全部が転炉内ガス
中のCOと反応するであろうという、より現実的な仮定
全党てることによって、鋼浴温度の予測精度を向上させ
るという目的を設定し、種々検討を重ねた。
This is because the method described above estimates the steel bath temperature and the carbon in the steel bath together, and then introduces it into the predetermined steel bath temperature-steel I/material relational expression to calculate the coefficients of the relational expression. It is thought that this is to predict the carbon and temperature at the time of blow-off. Therefore, the present inventors focused on measuring the temperature of the steel bath, and also determined that substantially all of the oxygen entrained in the flue would react with the CO in the gas in the converter. We set the objective of improving the prediction accuracy of steel bath temperature by making all assumptions, and conducted various studies.

本発明はこの様な検討の結果なされたもので、転炉排ガ
ス中の少なくともco、co2.o2゜N2の各分析値
と、前記排ガス流量測定値から、炉内ガス中の少なくと
もCO及びCO2の濃度を求め、これより炉内における
C 、CO及びFeの酸化速度を算出し、この酸化速度
より吹錬末期の昇温率を時々刻々に求め、この外温率に
よって鋼浴温度の経時変化を推定し、吹止鋼浴温度を制
御する点に要旨を有するものである。
The present invention has been made as a result of such studies, and is aimed at reducing at least co, co2. The concentrations of at least CO and CO2 in the gas in the furnace are determined from each analysis value of o2°N2 and the measured value of the exhaust gas flow rate, and the oxidation rate of C, CO, and Fe in the furnace is calculated from this, and this oxidation rate is calculated. The gist of this method is to obtain the temperature increase rate at the final stage of blowing from time to time, estimate the change in steel bath temperature over time based on this external temperature rate, and control the blowing steel bath temperature.

即ち本発明者等は、鋼浴温度の検知に対して最も重要な
情報となるのは転炉内気相中に存在する気体成分の組成
であると考えたが、存在し得る成分の中でも存在比率の
高いものが特に重要であると考えられるので、転炉排ガ
スの用途に応じてOGガス及びボイラーガスに分類し、
夫々のガス組成全考察してみると、前者ではGO、CO
2,N2が大部分を占め、後者ではC02,N 2及び
02が大部分を占める。そこで転炉排ガス中の成分組成
測定対象としてはCO、Co2.N2,02の4°成分
と定め、これに排ガス流量測定値全方えれば必要且つ十
分な排ガス情報が得られると考えた。
In other words, the present inventors believed that the most important information for detecting the steel bath temperature is the composition of the gas components present in the gas phase in the converter, but the abundance ratio of the components that may exist is Since those with a high
When considering all the gas compositions of each gas, in the former case GO, CO
2, N2 account for the majority, and in the latter, C02, N 2 and 02 account for the majority. Therefore, CO, Co2. It was determined that the 4° component of N2 and 02 was used, and that necessary and sufficient exhaust gas information could be obtained by adding all measured exhaust gas flow rates to this.

そして上記4成分の測定に基づいて転炉内気相中のガス
組成のうちCO及びCO2の濃度を求め、更に炉内にお
けるC、CO及びFe酸化速度を算出するが、ボイラー
型排ガス処理装置における排ガス収支を例にとって説明
すれば下記の通りである。即ちボイラー型の場合は、転
炉内で発生したco’l主成分とする炉内ガス(QLD
=QLD、oo+QLD、002:但しLDは転炉、C
01C02は各ガ成分)は炉口よりまき込まれた空気(
Qar”但しaは空気、rは反応〕によって燃焼するが
、更に大量の空気(Qa、m”但しmlは混合を示す)
がまき込まれ、前述の如くN2,02.C02を主成分
とする排ガスを生成する。この様な考え方を整理すると
、 (排ガス流量)=(炉内流星)+ (空気との反応による増減 )+ (混合空気による増量) ・・・・・・・・・・・・(1) と整理することができる。尚ここでは、炉口より巻き込
−まれた空気は00反応用と希釈用の空気のみを考慮し
ている。COの他にH2との反応も考慮すれば、さらに
一般的になる。これについては鉄と鋼(1981年vo
167隘818869)に発表した。しかしながらH2
の墓は少ないので、この反応を無視しても実用上なんら
問題とはならない。
Then, based on the measurements of the above four components, the concentrations of CO and CO2 in the gas composition in the gas phase inside the converter are determined, and the oxidation rates of C, CO, and Fe in the furnace are calculated. Taking income and expenditure as an example, the explanation is as follows. In other words, in the case of a boiler type, the furnace gas (QLD
=QLD, oo+QLD, 002: However, LD is converter, C
01C02 is each moth component) is the air drawn in from the furnace mouth (
Qar'', where a is air and r is reaction], but a large amount of air (Qa, m'', where ml indicates mixing) is burned.
As mentioned above, N2.02. Generates exhaust gas whose main component is C02. To organize this way of thinking, (exhaust gas flow rate) = (meteor in the furnace) + (increase/decrease due to reaction with air) + (increase due to mixed air) ・・・・・・・・・・・・(1) Can be organized. Here, only air drawn in from the furnace mouth is considered for 00 reaction and dilution. If the reaction with H2 in addition to CO is also taken into account, it becomes even more general. Regarding this, see Tetsu to Hagane (1981 vo.
Published on 167th 818869). However, H2
Since there are only a few graves, there is no practical problem even if this reaction is ignored.

従って排ガス分析値と排ガス流址値を用い、によってC
OとCO2の炉内ガス流i?z求め、これより(3)式
によってC、CO、F eの酸化速度を計算する。
Therefore, using the exhaust gas analysis value and the exhaust gas flow rate value, C
Gas flow in the furnace of O and CO2 i? z is determined, and from this, the oxidation rate of C, CO, and Fe is calculated using equation (3).

こうして得られた酸化速度から、(4)又は(5)式に
よって昇温率0を求め θ−” 1 ”I o +a2 ηo o+a371F
、 +! 4(但しa工〜a4は重回帰糸数) ・・・
・・・・・・(4)他方サブランスによって別途測定し
ておいた”SL(サブフンス測定温度)を用い、(6)
式によって現在の鋼浴温度を求める。
From the oxidation rate obtained in this way, calculate the temperature increase rate 0 using equation (4) or (5).
, +! 4 (However, A-A4 is the number of multiple regression threads)...
......(4) On the other hand, using the SL (Sub-Funsu measurement temperature) that was separately measured by the Sub-Lance, (6)
Find the current steel bath temperature using the formula.

Ti=T8L+f8Lθd(CO2)  ・・・・・・
・・・(6)(但しG Op、は送酸証ン この様な測定及び演算を時々刻々に行ない、当該時点に
おける鋼浴温IWを求めるが、求めた時点における銅浴
温度が高すぎるときには吹錬を中止し、低すぎるときに
は更に吹錬全続ける。尚鋼浴中の伏素斌は別途伏素用制
一式ケ用いて制隣するので、測定時の鋼浴伏累・l晶r
tの両者の推定1直を勘案し、+>iw度が高く炭素も
arい場合は冷却剤を投入しつつ吹錬する。またii)
温度が低く炭素もすでに低い場合は目標温度になるまで
吹錬全継続し、吹止後加択剤を添加して調整する。1;
i)温度が低く、炭素の旨い場合は、吹錬を継続し目標
値で吹止める。
Ti=T8L+f8Lθd(CO2) ・・・・・・
...(6) (However, G Op is an oxygen supply indicator.Such measurements and calculations are carried out from time to time to find the steel bath temperature IW at the time of finding.If the copper bath temperature at the time of finding is too high, Stop the blowing, and if the temperature is too low, continue the blowing process.In addition, the melting in the steel bath is controlled using a separate set of melting devices, so the steel bath melting and l crystal r at the time of measurement.
Taking into consideration the estimated first shift of both t, if +>Iw degree is high and carbon is too high, blowing is performed while adding coolant. Also ii)
If the temperature is low and the carbon is already low, blowing is continued until the target temperature is reached, and after the blowing is stopped, an additive is added to adjust. 1;
i) If the temperature is low and the carbon tastes good, continue blowing and stop blowing at the target value.

次に具体例を掲げて鋼浴温度の演算手順を説明する。尚
以下の具体例は、吹錬末期のサブフンス測定以降の演算
例であるが、吹錬中の全期間に亘っても同様のdi論が
成立する。
Next, the procedure for calculating the steel bath temperature will be explained using a specific example. Although the following specific example is an example of calculations after the sub-funnel measurement at the end of blowing, the same di theory holds true throughout the entire period of blowing.

90トン転炉に第1表に示す組成の溶銑を装入した。Hot metal having the composition shown in Table 1 was charged into a 90-ton converter.

(% ) if、スタティック制御の予測酸素所要基−80Nm迄
はスタティック制御によって吹錬を行ない、サブランス
を挿入して鋼浴中の炭素及び鋼浴温度を測定したところ
、0.22 %及び1645°Cという結果が得られた
(%) If, static control predicted oxygen requirement - Blowing was performed by static control up to 80 Nm, and when a sublance was inserted and the carbon in the steel bath and the steel bath temperature were measured, it was found to be 0.22% and 1645°. A result of C was obtained.

他方当チャージで読み込んだ排ガス分析値及び流賦は第
2表に示す通りであった。
On the other hand, the exhaust gas analysis values and flow rates read in this charge were as shown in Table 2.

この読み込み値を用い、上記<27 、 (31、(5
) 、 (6)の演算を行ない鋼浴温度を推定表示した
Using this read value, the above <27, (31, (5
) and (6) were performed to estimate and display the steel bath temperature.

第1回目の[ヶ月いた計算例全(2’)、(3’)、(
5’)及び(6′)として示す。
The first [monthly calculation examples (2'), (3'), (
5') and (6').

・・・・・・・・・・・・(2′) ・・・・・・・・・(3′) ・・・・・・・・・(5′) T=1645+0.2112X24=1650   ・
・・・・・・・・(6′)上述の如き計算を6秒毎に繰
り返した結果、第5回目で目標値に一致したので吹錬を
中止した。
・・・・・・・・・・・・(2′) ・・・・・・・・・(3′) ・・・・・・・・・(5′) T=1645+0.2112X24=1650 ・
(6') As a result of repeating the calculation as described above every 6 seconds, the blowing was stopped because it matched the target value at the fifth time.

このときの鋼浴温度は1673°C1吹止炭素は0.1
0チであった。
The steel bath temperature at this time was 1673°C, and the blow-off carbon was 0.1
It was 0chi.

尚参考布に、従来のサブランス法による昇温率を用いた
予測演算を並行して実施したところ、次式の様であった
In addition, when a prediction calculation using the temperature increase rate by the conventional sublance method was performed on the reference fabric in parallel, the following equation was obtained.

十0.1255X10   (ヲンス■S汝−200)
−0,1250X10  (たや吉−4110)−7、
4 十0.4B29X10  (フノス高さ−110)+0
.6202XIO(FO2−250)−2−2 +0B957X10   (HRIR−90)+0.3
888XIU  (CaO−1f+)−2−3 十〇、2899X10  (SiHM−0,5)+〇、
6518X10  (T  −1800)■M +0.7993XIO’ =0.275                 ・・
・・・・・・・(7)第1図は、本発明実施例による予
測経過と上記比較法による予測を対比したものであるが
、本発明法では目標温度に対して高精度に吹止めること
ができているのに対し、比較法では、目標温度よりもか
なり麓めとなっていた。
10.1255X10 (Wons ■S you -200)
-0,1250X10 (Tayayoshi-4110) -7,
4 10.4B29X10 (Fnos height - 110) +0
.. 6202XIO (FO2-250)-2-2 +0B957X10 (HRIR-90)+0.3
888XIU (CaO-1f+)-2-3 10, 2899X10 (SiHM-0,5)+0,
6518X10 (T -1800) ■M +0.7993XIO' =0.275 ・・
(7) Figure 1 compares the predicted progress according to the example of the present invention with the prediction according to the above comparative method. However, with the comparative method, the temperature was much lower than the target temperature.

同様VCシて全350回のチャージにおいて吹止め鋼浴
温度並びに鋼浴中炭素の適中率、更にこれら両方共の適
中率を求めたところ、第8表に示す通りであった。
Similarly, the temperature of the blowstop steel bath, the accuracy rate of carbon in the steel bath, and the accuracy rate of both were determined in a total of 350 charges using VC, and the results are as shown in Table 8.

[ (−) 本発明は上記の様に構成されているので、上吹転炉にお
ける吹止め温度を極めて高精度に適中することが可能に
なった。
[(-) Since the present invention is configured as described above, it has become possible to determine the blow-off temperature in a top-blowing converter with extremely high accuracy.

なお、不法によって炭素連中率も向上しているのは、最
近開発された成分収支式を中心とするスタティック制(
lllによって正しい吹錬軌導で吹錬が進むようになっ
たため、温度を正しく吹止めた結果炭素濃度もより適中
するようになったためである。
It should be noted that the reason why the carbon concentration rate has increased due to illegal activities is due to the recently developed static system (centered on the component balance formula).
This is because blowing now proceeds with the correct blowing trajectory, and as a result of stopping the blowing temperature correctly, the carbon concentration also becomes more accurate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼浴温度の予測経過を示すグラフである。 FIG. 1 is a graph showing the predicted course of steel bath temperature.

Claims (1)

【特許請求の範囲】[Claims] (1)酸素上吹転炉排ガス中に含まれる、少なくともC
01CO2,02及びN2の各分析値と、排ガス流量測
定値から、炉内ガス中の少なくともCO及びC02の濃
度を求め、これより炉内におけるC、CO及びFeの酸
化速度を算出し、この酸化速度より吹錬末期の昇温率を
時々刻々に求めこの昇温率によって鋼浴温度の経時変化
を推定し、吹止鋼浴温度を制御することを特徴とする酸
素上吹転炉における吹止鋼浴温度の制御法。
(1) At least C contained in oxygen top-blowing converter exhaust gas
From each analysis value of 01CO2, 02 and N2 and the measured value of the exhaust gas flow rate, the concentration of at least CO and CO2 in the furnace gas is calculated, and from this the oxidation rate of C, CO and Fe in the furnace is calculated. A blow-off method for an oxygen top-blowing converter characterized in that the temperature increase rate at the final stage of blowing is determined from the speed, and the change in steel bath temperature over time is estimated based on this temperature increase rate, and the blow-off steel bath temperature is controlled. Method of controlling steel bath temperature.
JP17760481A 1981-11-04 1981-11-04 Controlling method for temperature of blown up steel bath in oxygen top blown converter Granted JPS5877515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17760481A JPS5877515A (en) 1981-11-04 1981-11-04 Controlling method for temperature of blown up steel bath in oxygen top blown converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17760481A JPS5877515A (en) 1981-11-04 1981-11-04 Controlling method for temperature of blown up steel bath in oxygen top blown converter

Publications (2)

Publication Number Publication Date
JPS5877515A true JPS5877515A (en) 1983-05-10
JPS6155565B2 JPS6155565B2 (en) 1986-11-28

Family

ID=16033898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17760481A Granted JPS5877515A (en) 1981-11-04 1981-11-04 Controlling method for temperature of blown up steel bath in oxygen top blown converter

Country Status (1)

Country Link
JP (1) JPS5877515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224623A (en) * 1986-03-27 1987-10-02 Kobe Steel Ltd Method for controlling converter blowing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103072U (en) * 1986-12-24 1988-07-04

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522320U (en) * 1975-05-02 1977-01-08
JPS557450U (en) * 1978-06-28 1980-01-18

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144995A (en) * 1977-05-24 1978-12-16 Furukawa Electric Co Ltd:The Preparation of silane-crosslinked polyolefin resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522320U (en) * 1975-05-02 1977-01-08
JPS557450U (en) * 1978-06-28 1980-01-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224623A (en) * 1986-03-27 1987-10-02 Kobe Steel Ltd Method for controlling converter blowing

Also Published As

Publication number Publication date
JPS6155565B2 (en) 1986-11-28

Similar Documents

Publication Publication Date Title
JP2017025379A (en) Molten iron pretreating method, and molten iron pretreatment control device
JP2010133030A (en) Method for decarbonization refining of chromium-containing molten steel under reduced pressure
JPS5877515A (en) Controlling method for temperature of blown up steel bath in oxygen top blown converter
Khadhraoui et al. A new approach for modelling and control of dephosphorization in BOF converter
CA1118212A (en) Method for converter blow control
JPH05263120A (en) Method for controlling blowing in converter
US3314781A (en) Method for the control of blast refining of carbon-containing metal melts
JP4816513B2 (en) Molten steel component estimation method
JPS59568B2 (en) Oxygen converter blowing control method
JPH036312A (en) Method for controlling blowing in converter
US4619694A (en) Method of refining steel and apparatus
JPS5856002B2 (en) End point control method for oxygen converter
JP2621613B2 (en) Control method of end-point carbon concentration in upper-bottom blowing converter
JPS6246606B2 (en)
JPS6389610A (en) Blowing method for converter
JPH0219416A (en) Converter blow-refining method
JPH0533029A (en) Method for deciding charging quantity of main raw material in converter operation
JPS5836644B2 (en) Method for controlling molten steel phosphorus content in converter
JPS6035409B2 (en) Method for measuring properties of molten slag in converter
JPS5858405B2 (en) Static control method for oxygen converter
JPS627812A (en) Refining method by blowing in top and bottom blowing converter
JP2000336422A (en) Method for estimating component element concentration at the heat-up time of molten steel
JPS61139610A (en) Method for carrying out low silicon operation of blast furnace
JPS62238312A (en) Converter blowing control method
JPH01195217A (en) Operation of melting and reducing furnace