JPS5877338A - Radio transmission system - Google Patents

Radio transmission system

Info

Publication number
JPS5877338A
JPS5877338A JP17445781A JP17445781A JPS5877338A JP S5877338 A JPS5877338 A JP S5877338A JP 17445781 A JP17445781 A JP 17445781A JP 17445781 A JP17445781 A JP 17445781A JP S5877338 A JPS5877338 A JP S5877338A
Authority
JP
Japan
Prior art keywords
signals
transponders
receiver
time
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17445781A
Other languages
Japanese (ja)
Other versions
JPH0142534B2 (en
Inventor
Kazuhiko Nitori
一彦 似鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP17445781A priority Critical patent/JPS5877338A/en
Publication of JPS5877338A publication Critical patent/JPS5877338A/en
Publication of JPH0142534B2 publication Critical patent/JPH0142534B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radio Transmission System (AREA)

Abstract

PURPOSE:To decrease the number of required transmission lines to 1 and to transmit signals on a normal radio line, by using receivers for one reference point only and using transponders for other reference points, and transmitting signals through encoded and multiplexed reception time of sound pulses. CONSTITUTION:An object 1 in water is fitted with a sound source device 2 transmitting sound pulse signals f0, and signals transmitted from the device 2 are received at transponders 31-34 and a receiver 4. The transponders 31-34 respond to the signals from the device 2 to transmit sound pulse signals in frequencies f1, f2-. The receiver 4 receives the signals from the sound source 2 and the transponders 31-34 and transmits the reception signal to a buoy 6 on sea surface via a submarine cable 8. The buoy 6 separates pulse signals with different frequencies for detection, measures the reception time, converts the result into a code series and transmits the code to a ship 7 on water from an antenna.

Description

【発明の詳細な説明】 本発明は水中位置計測システムにおいて必要となるデー
タを狭帯域で伝送することができる無線伝送方式に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wireless transmission method capable of transmitting data required in an underwater position measurement system in a narrow band.

航走体など水中を移動する物体の位置を精度よく計測す
る方法として、海底に設置された3個以上の受波器また
はトランスポンダを基準点とし、物体とこれら基準点の
間の直距離を音響的に計測し、これら直距離と基準点の
座標とから物体の位置を算出する、いわゆるロングベー
スライン方式がある。すなわち、直距離を測るために物
体から音響ノ母ルス信号を送信し、この信号を基準点に
おいて受信し、その伝搬に要した時間を計測し、この時
間に音速を乗じることによシ物体と基準点の間の直距離
を得る。基準点が受波器である場合、受信した信号を個
別にケーブルまたは無線伝送路を通して陸上または船上
へ伝送し、そこで検波などの処理を行うのが従来の方法
であった。
As a method of accurately measuring the position of objects moving underwater, such as navigation vehicles, three or more receivers or transponders installed on the seabed are used as reference points, and the direct distance between the object and these reference points is measured by acoustic measurement. There is a so-called long baseline method in which the position of an object is calculated from these perpendicular distances and the coordinates of a reference point. In other words, in order to measure the direct distance, an acoustic base signal is transmitted from an object, this signal is received at a reference point, the time required for propagation is measured, and this time is multiplied by the speed of sound. Obtain the direct distance between the reference points. When the reference point is a wave receiver, the conventional method is to individually transmit the received signals to land or ship via cables or wireless transmission lines, and perform processing such as detection there.

この従来の方法のうち特に無線伝送を用いる場合の問題
点゛は、受信信号を直接伝送するため広い周波数帯域今
必要とし、特殊な回線を必要とすること、および基準点
の数に等しい伝送チャネル数が必要になるため電波の割
当てが得にくいことである。
Among these conventional methods, problems especially when using wireless transmission are that a wide frequency band is required to directly transmit the received signal, that special lines are required, and that transmission channels are equal to the number of reference points. It is difficult to obtain allocation of radio waves because it requires a large number of radio waves.

本発明はとれらの欠点を除くため、まず1個の基準点の
みを受波器とし、他の基準点をトランスポンダとすると
とによル必要な伝送路の数を1に減らし、さらに受波器
の受信信号をそのまま伝送するのではなく、検波などの
処理を施し、受信時刻データに変換し、通常のデータ回
線にょシ伝送可能としたものでアシ、以下詳細に説明す
る。
In order to eliminate these drawbacks, the present invention first uses only one reference point as a receiver and the other reference points as transponders, thereby reducing the number of necessary transmission lines to one, and further improving the reception. Rather than transmitting the signal received by the device as is, it performs processing such as detection and converts it into reception time data, making it possible to transmit it over a normal data line.This will be explained in detail below.

第1図は本発明の実施例であシ、1は位置計測すべき水
中物体、2は音源装置、31.・・・、34はトランス
ポン、ダ、4は受波器、5は中間ブイ。
FIG. 1 shows an embodiment of the present invention, in which 1 is an underwater object whose position is to be measured, 2 is a sound source device, 31. ..., 34 is a transpon, 4 is a receiver, 5 is an intermediate buoy.

6は海面ブイ、7は水上船である。水中物体1には音響
・ぐルス信号を送信する音源装置2を増付け、これから
送出された信号をトランスポンダ3.。
6 is a sea surface buoy, and 7 is a surface ship. A sound source device 2 for transmitting acoustic/gurus signals is added to the underwater object 1, and the signals sent from this are sent to a transponder 3. .

・・・、34および受波器4で受信する。トランスポン
ダ3..・・・、3.のうち少なくとも2つがこの信号
に応答し、それぞれ異なる周波数の音響iJ?ルス信号
を送信する。これらのトランスポンダから送信された信
号は上記の音源装置2から送信された信号と共に受波器
4で受信され、水中ケーブル8を介して海面ブイ6に送
られる。受波器4は中間ブイ5によシ吊られ、トランス
ポンダ31 、・・・。
..., 34 and the receiver 4. Transponder 3. .. ..., 3. At least two of them respond to this signal, each producing an acoustic iJ? of a different frequency. send a signal. The signals transmitted from these transponders are received by the receiver 4 together with the signals transmitted from the sound source device 2, and are sent to the sea surface buoy 6 via the underwater cable 8. The receiver 4 is suspended from an intermediate buoy 5, and the transponders 31, . . .

34 と同様に海底に対して一定の位置に保持される。34, it is held in a fixed position relative to the seabed.

海面ブイ6では、受波器4で受信された信号の中から周
波数の異なるノ4ルス信号が分離して検出され、それら
の受信時刻が計測される。計測結果は符号系列に変換さ
れ、電波に乗せられアンテナから送信され、水上船7で
受信される。ここで、符号系列が復調され、計測データ
が再生されるので、このデータを船上の位置計算器に入
力し、水中物体1の位置を計算する。
At the sea surface buoy 6, noise signals with different frequencies are detected separately from the signals received by the wave receiver 4, and their reception times are measured. The measurement results are converted into a code sequence, transmitted via radio waves from an antenna, and received by the watercraft 7. Here, since the code sequence is demodulated and the measurement data is reproduced, this data is input to the onboard position calculator to calculate the position of the underwater object 1.

第2図は海面ブイ6のブロック図であl)、1゜は入力
端子、11はパルス検出器群、12はタイマ群、13は
並列直列変換器、14はクロック発生器、15はフレー
ム符号結合器、16は無線送信器、17はアンテナであ
る。第1図の受波器4で受信された信号は入力端子1o
に加えられ、ノ母ルス検出器群11の各パルス検出器に
入力される。
Figure 2 is a block diagram of the sea surface buoy 6 l), 1° is an input terminal, 11 is a pulse detector group, 12 is a timer group, 13 is a parallel to serial converter, 14 is a clock generator, 15 is a frame code A coupler, 16 a radio transmitter, and 17 an antenna. The signal received by the receiver 4 in Fig. 1 is input to the input terminal 1o.
and is input to each pulse detector of the pulse detector group 11.

各・やルス検出器は特定の周波数の・ぐルス信号を検出
するものであシSパルス信号を検出したならトリガ信号
を発生し、タイマ群12のうちの対応するタイマを起動
する。クロック発生器14はタイマ群12の各タイマに
小周期Toのクロック信号を供給すると共に、大周期T
、ごとKこれら各タイマの出力を並列直列変換器13に
出方した後、直ちにこれら各タイマをリセットし、次の
大周期間における動作にそなえる。並列直列変換器13
に貯えられたタイマ群12の出力は、中周網T、の周期
で直列に読み出され、フレーム符号結合器15において
その先頭にフレーム符号を付加され1無線送信器16に
送られる。。無線送信器16では搬送波信号がこの中周
網Ttのレートの符号系列によってFSK(周波数シフ
トキーインク)などの変調を受け、アンテナ17から空
中に送出される。
Each pulse detector detects a pulse signal of a specific frequency, and when it detects a pulse signal, it generates a trigger signal and starts the corresponding timer of the timer group 12. The clock generator 14 supplies each timer of the timer group 12 with a clock signal of a small period To, and also supplies a clock signal with a large period T.
, K After the outputs of these timers are sent to the parallel-to-serial converter 13, these timers are immediately reset to prepare for operation in the next large cycle period. Parallel-serial converter 13
The outputs of the timer group 12 stored in are read out in series at the cycle of the intermediate frequency network T, a frame code is added to the beginning of the output in the frame code combiner 15, and the output is sent to one radio transmitter 16. . In the radio transmitter 16, the carrier wave signal is subjected to modulation such as FSK (Frequency Shift Key Ink) using the code sequence of the rate of the intermediate frequency network Tt, and is sent into the air from the antenna 17.

いま、同時に計測できる水中物体の数を2とし、トラン
スポンダの数を4とする。各水中物体の送出するパルス
信号の周波数を10およびf0′とし、これらに応答し
て各トランスポンダから送出される・ぐルス信号の周波
数をft  −ft  −f−−/4および/ 1’ 
# /、′t /3’ @へ′とする。このときの送信
符号系列は第3図のようになる。ここで、Fはフレーム
コードe10s/l*・・・はそれぞれ周波数foef
1 s・・・のパルス信号の検出の有無と受信時刻を表
わすコードである。フレームコードFの先頭の位置を各
タイマの読出しの時刻とすると、各受信時刻のコードは
この読出し時刻を基準として小周期T0を単位として測
った時間(負値と解釈する)を表わしている。フレーム
コードFの発生時刻は、船上の無線受信器によって海面
ブイ6の送信信号を受信し、標準時計と照合することに
よシ分かるので、このフレームコードFに引き続く受信
時刻コード(負値)をフレームコードの発生時刻に加え
ることによシ、各音響パルスの受信時刻を知ることがで
きる。したがって、水中物体1に取付られた音源装置2
の送信信号の送信タイミングを予め標準時計に同期させ
ておけば、各音響・やルスの伝搬時間を計測できること
になシ、この伝搬時間に水中での音速を・乗することに
よシ伝搬距離が求められ、これとトランス4ンダ31゜
・・・、3.および受波器4の座標とから水中物体1の
位置が算出される。トランス4ンダ31 、・・・。
Assume now that the number of underwater objects that can be measured simultaneously is two, and the number of transponders is four. Let the frequencies of the pulse signals sent by each underwater object be 10 and f0', and the frequencies of the pulse signals sent from each transponder in response to these be ft - ft - f - - /4 and /1'
# /, 't /3'@to'. The transmission code sequence at this time is as shown in FIG. Here, F is the frame code e10s/l*... is the frequency foef, respectively.
This is a code indicating whether or not a pulse signal of 1 s... is detected and the reception time. Assuming that the start position of the frame code F is the readout time of each timer, the code at each reception time represents the time (interpreted as a negative value) measured in units of short cycles T0 with this readout time as a reference. The time of occurrence of frame code F can be determined by receiving the transmission signal from sea buoy 6 using the onboard radio receiver and comparing it with the standard clock. By adding the frame code to the generation time, the reception time of each acoustic pulse can be determined. Therefore, the sound source device 2 attached to the underwater object 1
If the transmission timing of the transmitted signal is synchronized with a standard clock in advance, it is possible to measure the propagation time of each sound or signal.The propagation distance can be calculated by multiplying this propagation time by the speed of sound in water. is obtained, and this and the transformer 4-nder 31°..., 3. The position of the underwater object 1 is calculated from the coordinates of the wave receiver 4 and the coordinates of the wave receiver 4. Transformer 4nd 31,...

34および受波器4の座標は、前もって、通常の音響航
法におけるのと同様のキャリブレーションの操作によシ
定められる。
The coordinates of 34 and receiver 4 are determined in advance by a calibration operation similar to that in normal acoustic navigation.

この方法によれば、大周期T、の間に各周波数について
1個の、p4ルス信号の検出の有無とその検出時刻が伝
送できるから、音源装置2の送信周期Taを大周期Tf
よシ大きくとれば、位置計測に必要なすべての時刻デー
タを1チヤネルの無線伝送路によって目的地まで伝送で
きる。例えば、上記の例においてフレームコード語長を
40ピツト、受信時刻コードを20ピツト、T、=1秒
とすると、伝送レートは(−〇+20x5x’2)=2
40ピット/秒となシ、低速のデータ伝送路によって伝
送可能になるから、通常の無線回線を使用できる。
According to this method, the presence or absence of detection of a p4 pulse signal and the detection time can be transmitted for each frequency during the large period T, so that the transmission period Ta of the sound source device 2 can be changed to the large period Tf.
If it is made larger, all the time data necessary for position measurement can be transmitted to the destination via a single channel of wireless transmission path. For example, in the above example, if the frame code word length is 40 pits, the reception time code is 20 pits, and T = 1 second, the transmission rate is (-〇+20x5x'2) = 2
Since data can be transmitted over a low-speed data transmission path of 40 bits/second, normal wireless lines can be used.

以上の説明では、計測すべき水中物体数を2、トランス
ポンダの数を4、受波器の数を1としたが、標準的使用
法としては6個のトランスポンダを正六角形の頂点付近
に、1個の受波器をその中心付近に配置する。この場合
、35波の音響・ぐルス信号を用いれば5個の水中物体
を同時計測可能になる。しかも、伝送レートは1000
ビット/秒以下でよく、通常の無線回線で楽に伝送でき
る。
In the above explanation, the number of underwater objects to be measured is 2, the number of transponders is 4, and the number of receivers is 1.However, as a standard usage, 6 transponders are placed near the vertices of a regular hexagon, and 1 A number of receivers are placed near the center. In this case, five underwater objects can be measured simultaneously by using 35 waves of acoustic/gust signals. Moreover, the transmission rate is 1000
It requires less than bits per second and can be easily transmitted over normal wireless lines.

水中の計測範囲をよシ広くするには、上記の標準的使用
法で示したトランスポンダ6個、受波器1個の組を1つ
の単位とし、複数の組を用いればよい。ただし、無線の
回線は別にしなければならないので計測範囲を広げると
無線回線数を増さなければならないが、低速データ回線
であるから回線の割当て取得は比較的容易である。
In order to further widen the underwater measurement range, a set of six transponders and one receiver shown in the above standard usage may be used as one unit, and a plurality of sets may be used. However, since the wireless line must be separate, expanding the measurement range requires increasing the number of wireless lines, but since it is a low-speed data line, it is relatively easy to obtain a line assignment.

本発明は多周波の音響・母ルス信号を直接伝送する代シ
に、各周波数の音響パルス信号を分離して検出し、その
受信時刻を符号化し、多重化して、1回線の無線伝送路
で伝送できるようにしたので、移動式の水中位置計測シ
ステムに適用すれば効果が大きい。
Instead of directly transmitting multi-frequency acoustic/bus pulse signals, the present invention separates and detects the acoustic pulse signals of each frequency, encodes the reception time, and multiplexes the signals over a single wireless transmission line. Since we have made it possible to transmit data, it will be very effective if applied to a mobile underwater position measurement system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す説明図、第2図は第1図
における海面ブイ6のブロック図、第3図はその出力信
号のタイムチャートである。 1・・・水中物体、38.・・・、34・・・トランス
ポンダ、4・・・受波器、6・・・海面ブイ、7・・・
水上船。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, FIG. 2 is a block diagram of the sea surface buoy 6 in FIG. 1, and FIG. 3 is a time chart of its output signal. 1...Underwater object, 38. ..., 34... Transponder, 4... Receiver, 6... Sea surface buoy, 7...
water boat.

Claims (1)

【特許請求の範囲】[Claims] 異なる周波数を持つ複数の音響パルスを分離して検出す
る手段と、その検出の時刻とある基準の時刻との間の時
間を計時する手段と、計時結果を直列に読み出す手段と
を有し、上記基準の時刻を表わすコード(フレームコー
ド)と直列に読み出された計時結果とを直列に結合して
伝送することを特徴とする無線伝送方式。
The method includes means for separately detecting a plurality of acoustic pulses having different frequencies, a means for timing the time between the time of detection and a certain reference time, and a means for reading out the timing results in series, A wireless transmission method characterized by serially combining and transmitting a code (frame code) representing a reference time and a time measurement result read out in series.
JP17445781A 1981-11-02 1981-11-02 Radio transmission system Granted JPS5877338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17445781A JPS5877338A (en) 1981-11-02 1981-11-02 Radio transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17445781A JPS5877338A (en) 1981-11-02 1981-11-02 Radio transmission system

Publications (2)

Publication Number Publication Date
JPS5877338A true JPS5877338A (en) 1983-05-10
JPH0142534B2 JPH0142534B2 (en) 1989-09-13

Family

ID=15978819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17445781A Granted JPS5877338A (en) 1981-11-02 1981-11-02 Radio transmission system

Country Status (1)

Country Link
JP (1) JPS5877338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228371A (en) * 1985-04-01 1986-10-11 Unyusho Daiyon Kowan Kensetsu Kyokucho Apparatus for detecting position in water
CN104360314A (en) * 2014-10-16 2015-02-18 浙江省计量科学研究院 Metering and calibrating method and metering and calibrating device for sound source identifying and positioning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485761A (en) * 1977-12-20 1979-07-07 Shin Meiwa Ind Co Ltd Sound signal processor and its method
JPS54136369A (en) * 1978-04-14 1979-10-23 Komatsu Mfg Co Ltd Location detecting system of underwater moving body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485761A (en) * 1977-12-20 1979-07-07 Shin Meiwa Ind Co Ltd Sound signal processor and its method
JPS54136369A (en) * 1978-04-14 1979-10-23 Komatsu Mfg Co Ltd Location detecting system of underwater moving body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228371A (en) * 1985-04-01 1986-10-11 Unyusho Daiyon Kowan Kensetsu Kyokucho Apparatus for detecting position in water
CN104360314A (en) * 2014-10-16 2015-02-18 浙江省计量科学研究院 Metering and calibrating method and metering and calibrating device for sound source identifying and positioning system

Also Published As

Publication number Publication date
JPH0142534B2 (en) 1989-09-13

Similar Documents

Publication Publication Date Title
AU644843B2 (en) Hydroacoustic ranging system
US5136613A (en) Spread Spectrum telemetry
US4559621A (en) Telemetering acoustic method for determining the relative position of a submerged object with respect to a vehicle and device therefor
US5214617A (en) Hydroacoustic ranging system
CN103823205A (en) Underwater locating navigation system and method
CN104272132A (en) Determining position of underwater node
US5121366A (en) Underwater communication system
CN111948685A (en) Buoy-based combined baseline underwater sound positioning method
US3066279A (en) Sonic ship speed indicator
US4924446A (en) Navigation system and method for determining the position of a relatively noisy platform using underwater transponders
US5142507A (en) Hydroacoustic ranging system
JPS5877338A (en) Radio transmission system
Baggeroer et al. DATS-a digital acoustic telemetry system for underwater communications
CN109217967B (en) Synchronous signal system data transmission method applied to underwater sound transmission system
JPH07270519A (en) Positioning method for underwater working machine, etc.
US4042904A (en) Hydroways
US20130343160A1 (en) Acoustic Ranging System for Multi-Line Towed Acoustic Arrays
JP2916362B2 (en) Apparatus and method for correcting sound velocity in position measurement
CN109975763B (en) Underwater asynchronous positioning method and system based on-demand transceiving
JPS6037432B2 (en) Ultrasonic distance measuring device
JPS5876779A (en) System of measuring underwater position
CA2036124C (en) Hydroacoustic ranging system
JPH0230788Y2 (en)
JP2591484B2 (en) Buoy positioning device
RU2062482C1 (en) System for determination of position of submersible vehicle