JPS587714A - Method of producing insulated conductor - Google Patents

Method of producing insulated conductor

Info

Publication number
JPS587714A
JPS587714A JP56104428A JP10442881A JPS587714A JP S587714 A JPS587714 A JP S587714A JP 56104428 A JP56104428 A JP 56104428A JP 10442881 A JP10442881 A JP 10442881A JP S587714 A JPS587714 A JP S587714A
Authority
JP
Japan
Prior art keywords
insulating layer
sheet
insulated conductor
silicone
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56104428A
Other languages
Japanese (ja)
Inventor
俊明 猪原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56104428A priority Critical patent/JPS587714A/en
Publication of JPS587714A publication Critical patent/JPS587714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は原子力機器に用いられる大形線輪のように、複
数個の導体を長手方向に接合し、絶縁テープ又株シート
を巻付けて絶縁層を形成する絶縁導体の製造方法に係り
、特に耐熱性、耐放射線性、耐コロナ性および柔軟性を
請求される絶縁層を備えた絶縁導体の製造方法に関する
Detailed Description of the Invention The present invention relates to an insulated conductor such as a large coil used in nuclear power equipment, in which a plurality of conductors are joined in the longitudinal direction and an insulating tape or stock sheet is wrapped to form an insulating layer. In particular, the present invention relates to a method for manufacturing an insulated conductor having an insulating layer that is required to have heat resistance, radiation resistance, corona resistance, and flexibility.

近年新エネルギー開発の一環として、原子力関連機器の
研究が進んでいる。これに伴ない使用する絶縁材料も直
接9間接に放射線にさらされる機会が多くなってき1お
シ、絶縁材料は耐熱性、耐放射線性、耐コロナ性等特別
検討され九本のでなければならない。
In recent years, research into nuclear power-related equipment has been progressing as part of new energy development. Along with this, the insulating materials used are also exposed to radiation more frequently, both directly and indirectly, and therefore the insulating materials must have special properties such as heat resistance, radiation resistance, and corona resistance.

形状の小形な機器の線輪などの導体のiII!i電圧絶
縁鳩は、従来から使用されている耐熱性絶縁層、即ち、
ガラス基材とマイカ材料からなる複合シートまたはテー
プを導体に主絶縁用として巻回し、エポキシ樹脂、ポリ
エステル樹脂等の耐熱性熱硬化性樹脂を含浸するか、又
は予め複合テープに浸み込ませプリプレグ状態にして導
体に巻回し、加熱硬化する製造方法で本質的に対応でき
る。一般的エポキシ樹脂、ポリエステル樹脂等の耐熱性
熱硬化性樹脂の耐放射線性は良好であり、特に芳香族系
の硬化剤を使用した場合は更に良好になる。
III of conductors such as coils of small-sized equipment! The i-voltage insulation layer is made of a conventionally used heat-resistant insulation layer, i.e.
A composite sheet or tape made of a glass base material and a mica material is wound around a conductor for main insulation, and it is impregnated with a heat-resistant thermosetting resin such as epoxy resin or polyester resin, or prepreg is made by pre-impregnating the composite tape with a heat-resistant thermosetting resin such as epoxy resin or polyester resin. Essentially, it can be handled by a manufacturing method that involves heating and curing the conductor and winding it around the conductor. The radiation resistance of general heat-resistant thermosetting resins such as epoxy resins and polyester resins is good, and even better when an aromatic curing agent is used.

ところで大形の機器の線輪では、導体の寸法自体が大き
くなるので、機能面および製造技術面から、分割して製
造されることが多く、この場合は接合部を組立後に絶縁
しなければならない。この接合部は発生する熱の周期的
変動、即ちヒートサイクルによる変形や、機械的応力に
よる変形を吸収する機能か望まれ、このような伸縮変形
によって絶縁耐力の低下しない絶縁層を形成する必要が
ある。
By the way, in the case of wire rings for large equipment, the dimensions of the conductors themselves are large, so due to functional and manufacturing technology reasons, they are often manufactured in separate parts, and in this case, the joints must be insulated after assembly. . It is desired that this joint has a function of absorbing deformation due to periodic fluctuations in heat generated, that is, deformation due to heat cycles and deformation due to mechanical stress, and it is necessary to form an insulating layer that does not reduce dielectric strength due to such expansion and contraction deformation. be.

一般に接合部は韻ろう付けで接合されるが、スプリング
状部材、又は軟らかい部材を介して接合することもめる
。銀ろう付けの場合は高温にするため導体の接合部付近
が軟化する。接合部の数が多ければその数だけ変形を分
散できるが、いずれにしても、変形はこの接合部に集中
するので、この接合部に前記した小形機器の場合の強固
な絶縁を施すと、絶縁層社導体の変形に追従できず、亀
裂等の重大な損傷か絶縁層に発生する。従って接合部は
柔軟性に富む絶縁層を設は−る必要がめる。
Generally, the joints are joined by soldering, but they may also be joined using a spring-like member or a soft member. In the case of silver brazing, the high temperature causes the area around the conductor joint to soften. The more joints there are, the more deformation can be dispersed, but in any case, the deformation will be concentrated at these joints, so if you apply strong insulation to these joints as in the case of small devices, the insulation will be reduced. Unable to follow the deformation of the conductor, serious damage such as cracks may occur in the insulation layer. Therefore, it is necessary to provide a highly flexible insulating layer at the joint.

本発明は耐熱性、耐放射線性、耐コロナ性および柔軟性
の優れた絶縁導体の製造方法を提供することを目的とす
る。
An object of the present invention is to provide a method for manufacturing an insulated conductor having excellent heat resistance, radiation resistance, corona resistance, and flexibility.

以下本発明の一実施例について、第1図および第2図を
参照して説明する。これは1ターンについて、4個の導
体(l+) 、、 (xt) 、 (1m) 、 (1
4)を長平方向に銀ろう付けで接合し、これをターン間
絶縁(2)を介して複数ターン巻回し九墳状の線輪でめ
る。第1図は第1番目の導体(1,)を途中で切断し、
第5番目の導体(is)の一部分が見えている状態を示
す。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. This means that for one turn, there are four conductors (l+),, (xt), (1m), (1
4) are joined by silver brazing in the longitudinal direction, and this is wound in a plurality of turns with inter-turn insulation (2) interposed therebetween, and is wrapped in a nine-shaped wire ring. Figure 1 shows the first conductor (1,) cut in the middle,
A state in which a portion of the fifth conductor (is) is visible is shown.

しかして接合部(3)を除いた部分に社ガラス基材と集
成マイカに接着剤としてエポキシ樹脂を用いたブリプゾ
グ状の絶縁テープを集成マイカ面を内側に向けて巻付け
、加熱硬化して第1の絶縁層(4)を形成する。接合部
(3)に杖ボリイばド系フィルムと集成マイカに接着剤
としてシリコーン変成アルキッド樹脂を用いたプリプレ
グ状の絶縁テープを集成マイカ面を内側に向けて巻付け
、加熱硬化して第2の絶縁層(5)を形成する。崗この
第1.第2の絶縁層(4) 、 (51iiv加熱を据
付場所で行なう場合扛、各未硬化の絶縁層の上に離形用
テフロンテープを巻(ロ)し、さらにその上に熱収縮性
テトロンテープを巻1後、リボンヒータで両絶縁層を同
時に加熱し、硬化させる。
Then, a blipzog-shaped insulating tape using epoxy resin as an adhesive is wrapped around the glass base material and the laminated mica around the part excluding the joint (3), with the laminated mica side facing inward, and heated and cured. 1 insulating layer (4) is formed. A prepreg-like insulating tape using a silicone-modified alkyd resin as an adhesive is wrapped around the joint (3) around the cane bolywood film and the laminated mica, with the laminated mica side facing inward, and heated and cured to form the second layer. An insulating layer (5) is formed. No. 1 of this. Second insulating layer (4) (If heating is performed at the installation site, wrap Teflon tape for mold release on each uncured insulating layer (B), and then wrap heat-shrinkable Tetron tape on top of that.) After winding the first layer, both insulating layers are simultaneously heated and cured using a ribbon heater.

次に作用について説明する。Next, the effect will be explained.

接合部(3)を除いた部分の第1の絶縁層(4)は従来
小形の機器に用いられていた、ガラス基材と集成マイカ
とエポキシ樹脂とから成る絶縁層でろって、前記した通
り耐熱性、耐放射線性、耐コロナ性に優れており、又、
硬度も大でろるから、鉄心等の一定部分に装着すること
も問題かない。次に接合部(3)の第2の絶縁層(5)
はポリイミド系フィルムと集成マイカとシリコーン変成
アルキッド樹脂とから成る絶縁層にしている。この補強
材であるポリイミド系フィルムの耐熱性は良く知ら扛て
いるように良好で、耐放射線性も第3図に示すように非
常に優れた材料でるる。例えは第3図曲線aのように引
張強さの初期値は約20ψ−であり、照射源・’Coに
より10”rads照射後でも10〜20%低下するだ
けである。そして破断時の伸びも第3図曲線すのように
lo”rada近辺まで初期値と同じ値を示し、実質的
低下は見られない。耐熱性でポリイミド系フィルムと対
比されるアラミツド系材料では初期引張強さと破断時の
伸びはそれぞれ8〜9に9/ioi 、 l O〜12
チでめシ、ポリイミド系フィルムの強度と柔軟性(伸縮
性)は優れていることが分った。しかし、ポリイミド系
フィルム等の有機材料の耐コロナ性は劣っているので、
マイカ材料の使用は不可避である。マイカの耐コロナ性
、耐放射線性に優れ千いることは前記し九か、同じマイ
カ材料でも集成マイカの方がフレークマイカよりiに耐
放射性が良好な傾向かめることか実験によシ分つ九 接着用とし1使用する憫脂の選択は、補強材と同機贋に
絶縁層(5)の柔軟性を左右する重要なものである。通
常接着材として使用されているエポキシ樹脂、ポリエス
テル樹脂は変形に対する順応性が少なく、小さい変形量
で亀裂が入シ易い。逆にエラストマ系(弾性体)の材料
は、耐熱性や耐放射線性に劣る傾向がろる0例えはスチ
レンブタジェンゴムやシリコーンゴム、アクリロニトリ
ルゴムは初期に良好な弾性を示すが、1o・rad−の
放射11M熱射によって、その特性を失う。柚々検討の
結果、本実施例に使用したシリコーン変成アルキッド拘
脂の他、シリコーン変成フェノール樹脂、シアノクリコ
 −ンゴム、ポリウレタンゴムのエラストマ系樹脂、フ
ェニル基含有率が50〜80重量%のシリコーンエラス
トマ等が耐熱性、柔軟性、耐放射線性のvI4オ[Jか
とれた接宥剤であることが分った。ここで、シリコーン
エラストマの7エエル基自街率f:50〜8oIkii
[チと限定したのは、80に量%を超すと硬くなって柔
軟性が減り、50’jiiiチ以下では耐放射線性が急
くなるためである。さらにこれらの樹脂を率独で使用す
る場合は、シリカ等の充填材を添加すると、さらに幾分
か耐放射−性が向上することも剛次的に分った。それと
同様の理由で、個々の構成材料を組合せた絶縁システム
とした場合、本実施例によるポリイミド系フィルムと集
成マイカとシリコーン変成アルキッド樹脂との併用は、
耐放射線性が優れていることが解った。第4図の曲線は
その実施例の耐放射線性を示した本ので、2 X 10
’rads程度の照射量でも、実質的な絶縁破壊電圧の
低下がないことが分る。そして、第1の絶縁層(4)等
、通常の絶縁層の場合、その弾性係数は1000〜30
00ψ−であるが、本実施例の纂2の絶縁層(5)にお
いては約200 kg/+++シ でめり、柔軟性に冨
んでおり、変#に対する順応性が非常に大きくなり織製
の人ねにくい構成となった。また上記構成材料の組合せ
により、耐熱性、耐コロナ性も優れているので、原子力
桟器の線輪やリード線等の導体の接続部分の絶縁として
優れたものとなる。従って固定部分に装着する部分の第
10絶縁層は硬くし、変形を生ずる接続部分の第2の絶
縁層は柔軟性を大にし、両絶縁層ともに耐熱性、耐コロ
ナ性、耐放射線性を良好にしたので、原子力機器に使用
するのに適した絶縁導体を得ることが出来る。
The first insulating layer (4) excluding the joint part (3) is an insulating layer made of a glass base material, laminated mica, and epoxy resin, which has been conventionally used in small devices, as described above. It has excellent heat resistance, radiation resistance, and corona resistance, and
Since it has a high degree of hardness, there is no problem in attaching it to certain parts such as iron cores. Next, the second insulating layer (5) of the joint (3)
The insulating layer is made of polyimide film, laminated mica, and silicone modified alkyd resin. As is well known, the heat resistance of the polyimide film used as the reinforcing material is good, and the material also has excellent radiation resistance, as shown in FIG. For example, as shown in curve a in Figure 3, the initial value of the tensile strength is about 20ψ-, and it decreases by only 10 to 20% even after 10" rads irradiation due to the irradiation source 'Co. As shown by the curve in Fig. 3, the value remains the same as the initial value up to the vicinity of lo'rada, and no substantial decrease is observed. In aramid materials, which are heat resistant and contrasted with polyimide films, the initial tensile strength and elongation at break are 8 to 9, respectively, 9/ioi and lO to 12.
It was found that the strength and flexibility (stretchability) of polyimide film are excellent. However, organic materials such as polyimide films have poor corona resistance, so
The use of mica materials is inevitable. It has been mentioned above that mica has excellent corona resistance and radiation resistance, and experiments have shown that even though the same mica material is used, composite mica tends to have better radiation resistance than flake mica. The selection of the resin used for adhesion is important as it affects the flexibility of the reinforcing material and the insulating layer (5). Epoxy resins and polyester resins, which are commonly used as adhesives, have little flexibility against deformation and are easily cracked by small amounts of deformation. Conversely, elastomer-based (elastic) materials tend to have poor heat resistance and radiation resistance.For example, styrene-butadiene rubber, silicone rubber, and acrylonitrile rubber exhibit good elasticity initially, but - It loses its characteristics due to radiation 11M heat radiation. As a result of extensive investigation, in addition to the silicone-modified alkyd resin used in this example, silicone-modified phenol resin, cyanocricone rubber, elastomer resin of polyurethane rubber, silicone elastomer with a phenyl group content of 50 to 80% by weight, etc. was found to be a heat-resistant, flexible, and radiation-resistant soothing agent. Here, the self-destruction rate f of the silicone elastomer is 50 to 8oIkii.
[The reason why it is limited to H is that if the amount exceeds 80%, it becomes hard and the flexibility decreases, and if it is less than 50'jiii, the radiation resistance becomes abrupt. Furthermore, it has been found that when these resins are used independently, the radiation resistance can be improved to some extent by adding fillers such as silica. For the same reason, when creating an insulation system that combines individual constituent materials, the combination of the polyimide film, laminated mica, and silicone modified alkyd resin according to this example is
It was found to have excellent radiation resistance. The curve in Figure 4 shows the radiation resistance of that example, so 2 x 10
It can be seen that there is no substantial drop in dielectric breakdown voltage even with an irradiation dose of about 'rads. In the case of a normal insulating layer such as the first insulating layer (4), its elastic modulus is 1000 to 30.
00ψ-, but the insulating layer (5) of sheath 2 of this example has a weight of about 200 kg/+++, has a lot of flexibility, and has a very high adaptability to changes in woven material. The structure was difficult to attract. Furthermore, the combination of the above-mentioned constituent materials provides excellent heat resistance and corona resistance, making it an excellent insulator for connecting parts of conductors such as coils and lead wires of nuclear power equipment. Therefore, the 10th insulating layer in the part that is attached to the fixed part is made hard, and the second insulating layer in the connecting part that causes deformation is made to be flexible, and both insulating layers have good heat resistance, corona resistance, and radiation resistance. As a result, an insulated conductor suitable for use in nuclear equipment can be obtained.

湖、本発明4上記し、かつ図面に示した!施例のみに限
定されるものではなく、例えに絶縁テープはゲートにし
てもよいし、集成マイカは一般のマイカ材料でもよいし
、その接着剤に*bながら導体に1回してもよいし、タ
ーンのない導体ならば第1の絶縁層は導体接合前に予め
形成しておき、導体接合後第2の絶縁層を形成してもよ
いし、第1の絶縁層に用いる接着剤はエポキシ樹脂でな
くポリエステル樹脂にしてもよいし、第2の絶縁層に用
いる後着mはシリコーン変成アルΦツド@脂ですく、シ
リコーン変成フェノール樹脂又はシアノシリコーンゴム
、ポリウレタンゴムのエラストマ系樹脂、フェニル基含
有率が50〜80重量−のシリコーンエラストマを用い
てもよいし、リボンヒータはシート状ヒータに変えても
よい等、その−賛旨を変稟しない範囲で、種々変形して
実施できることは勿論である。
Lake, invention 4 described above and shown in the drawings! It is not limited to the examples, for example, the insulating tape may be used as a gate, the laminated mica may be a general mica material, the adhesive may be applied once to the conductor, If the conductor has no turns, the first insulating layer may be formed in advance before the conductors are bonded, and the second insulating layer may be formed after the conductors are bonded.The adhesive used for the first insulating layer may be epoxy resin. Alternatively, the second insulating layer may be made of polyester resin, or the second insulating layer may be made of silicone-modified alkaline resin, silicone-modified phenol resin, cyano silicone rubber, elastomer resin of polyurethane rubber, or phenyl group-containing elastomeric resin. Of course, various modifications can be made without changing the purpose, such as using a silicone elastomer with a weight ratio of 50 to 80%, or replacing the ribbon heater with a sheet heater. be.

以上説明したように、本発明によれば、固定部分に装着
する部分の第1O絶縁漸は硬くし、変形を生ずる接合部
の第2の絶縁層に柔軟性を大にし、かつ両絶縁層と亀に
耐熱性、耐コロナ性、耐放射線性を良好になるようにし
たので、原子力機器の大形の線輪やリード線等の絶縁導
体を高信頼性を有するように製造することか出・来る。
As explained above, according to the present invention, the first insulation layer of the part attached to the fixed part is made hard, the second insulation layer of the joint part where deformation occurs is made flexible, and both insulation layers are made hard. Since we have improved heat resistance, corona resistance, and radiation resistance, it is now possible to manufacture insulated conductors such as large wire rings and lead wires for nuclear equipment with high reliability. come.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例にて製造した絶縁導体
を第2図0I−111に沿う矢視で示す断面図、第2図
は第1111On−n線に沿う矢視で示す断面図、第3
図は前記実施例に使用するポリイミド系フィルムの耐放
射線性特性−線図、第4図は第1図の絶縁導体の放射線
照射下での絶縁破壊電圧の変化を示す一一図である。 l、〜11・・導体     2・・・ターン関絶縁3
・・・接合部      4・・・11の絶縁層5−・
第2の絶縁層
FIG. 1 is a cross-sectional view of an insulated conductor manufactured by an embodiment of the method of the present invention taken along the line 0I-111 in FIG. 2, and FIG. 2 is a cross-sectional view taken along the line 1111On-n. Figure, 3rd
The figure is a radiation resistance characteristic diagram of the polyimide film used in the above embodiment, and FIG. 4 is a diagram showing changes in dielectric breakdown voltage of the insulated conductor of FIG. 1 under radiation irradiation. l, ~11...Conductor 2...Turn insulation 3
...Insulating layer 5-- of joint portion 4...11
second insulating layer

Claims (2)

【特許請求の範囲】[Claims] (1)  複数個の導体を長手方向に接合し、絶縁テー
プ又社シートを巻付けて絶縁層を形成する絶縁導体の製
造方法において、接合部を除いた固定部への装着部分は
ガラス基材とマイカ材料に接着剤としてエポキシ桐脂又
鉱ポリエステル樹脂を用いた絶縁テープ又はシートを巻
付け、加熱硬化して第1の絶縁層を形成し、接合部はボ
リイイド系フィルム基材とマイカ材料に接着剤としてシ
リコーン変成アルキッド樹脂、又はシリコーン変性フェ
ノール樹脂、シアノシリコーンゴム、ポリウレタンゴム
のエラストマ系樹脂、フェニル基含有率が50〜80重
量−のシリコーンエラストマ等を用い九絶縁テープ又は
シートを巻付け、加熱硬化して第2の絶縁層を形成する
ことを特徴とする絶縁導体の製造方法。
(1) In a method of manufacturing an insulated conductor in which multiple conductors are joined in the longitudinal direction and an insulating tape or sheet is wrapped to form an insulating layer, the part to be attached to the fixed part other than the joint part is made of a glass base material. An insulating tape or sheet using epoxy tung ore polyester resin as an adhesive is wrapped around the and mica material, and the first insulating layer is formed by heating and curing, and the joint is formed between the bolioid film base material and the mica material. Using a silicone-modified alkyd resin, silicone-modified phenol resin, cyano silicone rubber, polyurethane rubber elastomer resin, silicone elastomer with a phenyl group content of 50 to 80% by weight as an adhesive, wrap an insulating tape or sheet, A method for manufacturing an insulated conductor, comprising forming a second insulating layer by heating and curing.
(2)  絶縁層は絶縁テープ又はシート巻付は後、そ
の上に離形用テープ又はシートを巻回し、さらにその上
に熱収縮性テープ又はシートを巻回後、リボンヒータ又
はシート状ヒータで加熱し硬化させることを特徴とする
特許請求の範囲第1項記載の絶縁導体の製造方法。
(2) After wrapping the insulating layer with an insulating tape or sheet, wrap a release tape or sheet on top of it, then wrap a heat-shrinkable tape or sheet on top of that, and then use a ribbon heater or sheet heater to wrap the insulating layer. 2. A method for producing an insulated conductor according to claim 1, wherein the insulated conductor is cured by heating.
JP56104428A 1981-07-06 1981-07-06 Method of producing insulated conductor Pending JPS587714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56104428A JPS587714A (en) 1981-07-06 1981-07-06 Method of producing insulated conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56104428A JPS587714A (en) 1981-07-06 1981-07-06 Method of producing insulated conductor

Publications (1)

Publication Number Publication Date
JPS587714A true JPS587714A (en) 1983-01-17

Family

ID=14380403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56104428A Pending JPS587714A (en) 1981-07-06 1981-07-06 Method of producing insulated conductor

Country Status (1)

Country Link
JP (1) JPS587714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776085A (en) * 1985-11-08 1988-10-11 Honda Giken Kogyo Kabushiki Kaisha Apparatus for use in automobile assembling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776085A (en) * 1985-11-08 1988-10-11 Honda Giken Kogyo Kabushiki Kaisha Apparatus for use in automobile assembling

Similar Documents

Publication Publication Date Title
US4173747A (en) Insulation structures for electrical inductive apparatus
US6521873B1 (en) Heating substrate
BRPI1004701A2 (en) transformer winding and method of reinforcing a transformer winding
Evans Turn, layer and ground insulation for superconducting magnets
JP7123828B2 (en) Superconducting coil conductor and method for manufacturing superconducting coil conductor
CN110277229A (en) Coil component
JPS587714A (en) Method of producing insulated conductor
JP2007282410A (en) Rotating electric machine, stator coil thereof, its manufacturing method, and semiconductive sheet, semiconductive tape
US7037392B2 (en) Method for producing a bar-type conductor
JPS59122332A (en) Fixing method of winding
JPS6231103A (en) Resin seal type coil
JP2930273B2 (en) Manufacturing method for windings of electromagnetic induction equipment
JPH1097919A (en) Superconducting coil
CN113035416B (en) Low-voltage flexible cable
JP4187293B2 (en) Manufacturing method of oxide superconducting coil
EP3866307B1 (en) Stator coil, method for manufacturing same, and rotary electrical machine
CN205810435U (en) A kind of anti-ant water-proof cable with copper sheath
JPS5811909A (en) Nonmetallic optical cable unit
CN205810434U (en) A kind of anti-ant water-proof cable with nylon sheath wire
KR100571151B1 (en) Multi-layered insulation layer structure of superconducting cable
JPS593845B2 (en) Jyuushihou My Coil
JPS6015305Y2 (en) dry transformer winding
JP3961111B2 (en) Refractory wire
JPS5811908A (en) Nonmetallic optical cable unit
JPS58190246A (en) Stator coil for rotary electric machine