JPS587653B2 - Method for treating the inner surface of plastic tubes - Google Patents

Method for treating the inner surface of plastic tubes

Info

Publication number
JPS587653B2
JPS587653B2 JP10022578A JP10022578A JPS587653B2 JP S587653 B2 JPS587653 B2 JP S587653B2 JP 10022578 A JP10022578 A JP 10022578A JP 10022578 A JP10022578 A JP 10022578A JP S587653 B2 JPS587653 B2 JP S587653B2
Authority
JP
Japan
Prior art keywords
tube
discharge
electrodes
treating
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10022578A
Other languages
Japanese (ja)
Other versions
JPS5529505A (en
Inventor
安部和彦
小林弘明
須田昌男
浅井道彦
畑田研司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10022578A priority Critical patent/JPS587653B2/en
Publication of JPS5529505A publication Critical patent/JPS5529505A/en
Publication of JPS587653B2 publication Critical patent/JPS587653B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • B29C59/142Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment of profiled articles, e.g. hollow or tubular articles

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は連続的にプラスチックチューブの管内表面を表
面処理する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously surface treating the inner surface of a plastic tube.

さらに詳しく言えば、連続的にプラスチックチューブの
管内表面を低温プラズマ処理する方法に関するものであ
る。
More specifically, the present invention relates to a method of continuously treating the inner surface of a plastic tube with low-temperature plasma.

低温プラズマにてプラスチックを処理するとその表面特
性を大きく変え、親水性、可塑剤の溶出防止など極めて
有用な特性を付与する事が知られている。
It is known that treating plastic with low-temperature plasma significantly changes its surface properties, imparting extremely useful properties such as hydrophilicity and prevention of plasticizer elution.

然しなからこれらはいずれもシートの表面あるいはチュ
ーブの管外表面を処理した事例のみで、細管内にプラズ
マを発生させる困難さもあって、いまだ管内表面をプラ
ズマ処理した事例は見当らない。
However, these are only cases in which the surface of a sheet or the outer surface of a tube has been treated, and due to the difficulty of generating plasma inside a thin tube, no case has yet been found in which the inner surface of a tube has been treated with plasma.

本発明者らの一部は、真空に保持した絶縁管内を該管内
圧力よりより低圧に保持したプラスチックチューブを連
続的に移動させ、絶縁管上に配置した外部電極を用い該
チューブ管内を放電させ、プラスチックチューブ管内表
面を放電(低温プラズマ)処理する方法を既に見出して
いる〔特願昭52−1225291:特開昭54−56
672号公報〕)。
Some of the inventors of the present invention continuously moved a plastic tube maintained at a pressure lower than the pressure inside the tube inside an insulated tube kept in a vacuum, and discharged the inside of the tube using an external electrode placed on the insulated tube. have already discovered a method for treating the inner surface of plastic tubes with electrical discharge (low-temperature plasma) [Patent Application No. 52-1225291: Japanese Unexamined Patent Publication No. 54-56]
672 Publication]).

然しながら該方法ではチューブ管内のみに放電を開始、
持続させるための電源の整合が難しい事、外部放電電極
の位置する部分にあるチューブが極度に加熱される事、
および絶縁管内圧力とプラスチックチューブ内の圧力差
を精度よく連続して調整する難しさがある事など、工業
的規模での連続処理を考えた場合、解決困難な多くの問
題を残している。
However, in this method, the discharge starts only inside the tube,
It is difficult to match the power supply to sustain it, the tube in the area where the external discharge electrode is located is extremely heated,
There remain many problems that are difficult to solve when considering continuous processing on an industrial scale, such as the difficulty of accurately and continuously adjusting the pressure difference in the insulating tube and the pressure difference in the plastic tube.

本発明者らはこれらの問題を解決し、かつ容易にプラス
チック管内表面のみを低温プラズマ処理するための方法
を鋭意研究の結果、本発明に至った。
The present inventors have conducted intensive research into a method for solving these problems and easily subjecting only the inner surface of a plastic pipe to low-temperature plasma treatment, and as a result, they have arrived at the present invention.

本発明は、外部電極により付与された電場あるいは磁場
内を、管外表面は大気にさらされ、管内部は減圧に保持
されたプラスチックチューブを連続的に移動させ、該チ
ューブの管内部のみに低温プラズマを発生させることを
特徴とするプラスチックチューブ管内表面の処理方法で
ある。
In the present invention, a plastic tube whose outer surface is exposed to the atmosphere and whose interior is kept under reduced pressure is continuously moved in an electric or magnetic field applied by an external electrode, and only the inside of the tube is kept at a low temperature. This is a method for treating the inner surface of a plastic tube, which is characterized by generating plasma.

ここでいうプラスチックチューブとは通常の天然および
合成高分子からなるチューブであって、長軸方向にそっ
て1個または1個以上の連続孔を有する中空管でシーム
レスまたはフイルム(シート)を接合したもののいずれ
でもよい。
The plastic tube referred to here is a tube made of normal natural or synthetic polymers, and is a hollow tube with one or more continuous holes along the longitudinal direction, and is seamless or has a film (sheet) joined to it. Any of the above is acceptable.

また低温プラズマについては既に多くの総説、紹介がな
されており、特に説明の必要はないと考える(例えば低
温プラズマ化学(化学の領域増刊111号)穂積啓一郎
編 南江堂)。
Furthermore, there have already been many reviews and introductions about low-temperature plasmas, so I don't think there is any need for any special explanation (for example, Low-Temperature Plasma Chemistry (Chemistry Special Edition No. 111), edited by Keiichiro Hozumi, Nankodo).

一般に細管中での放電では電子、イオン、励起原子、励
起分子の管壁での捕獲の割合いが増加し、これらの粒子
の中性粒子との衝突確率が低下し、放電の開始、維持を
困難にする。
Generally, during a discharge in a capillary, the rate of capture of electrons, ions, excited atoms, and excited molecules on the tube wall increases, and the probability of collision of these particles with neutral particles decreases, making it difficult to start and maintain the discharge. make it difficult

またこのため細管中での放電の長さは短か《、長尺のプ
ラスチックチューブを一度に低温プラズマ処理する事は
困難である。
Furthermore, because of this, the length of the discharge in the tube is short (<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 23 It is difficult to perform low‐temperature plasma treatment on a long plastic tube at once.

放電の長さは放電電極の位置、電源の同調のとり方、管
内圧力、ガス流量により異るが、本発明者らの実験では
いずれの条件をとっても最大長約50〜60cIfLで
あった。
The length of discharge varies depending on the position of the discharge electrode, how the power source is tuned, the pressure inside the tube, and the gas flow rate, but in the experiments conducted by the present inventors, the maximum length was about 50 to 60 cIf under all conditions.

また一般にプラスチックはその軟化点温度が低いため、
チューブのプラズマ処理の場合チューブ内に放電を開始
、持続させるための電場に因り引きおこされるプラスチ
ック自身の誘電損失に起因する発熱、およびプラズマの
熱でチューブが容易に軟化し、チューブ管内外の圧力差
によりチューブが管内へ収縮する現象が見られる。
In addition, plastics generally have a low softening point, so
In the case of plasma treatment of tubes, heat is generated due to the dielectric loss of the plastic itself caused by the electric field that starts and sustains the discharge within the tube, and the tube easily softens due to the heat of the plasma, causing pressure inside and outside the tube. Due to the difference, the tube shrinks into the tube.

特に誘電損失による発熱は電極設置近傍に位置するチュ
ーブ部分が極めて大きく、チューブ管の収縮は通常この
部分で見られる。
In particular, heat generation due to dielectric loss is extremely large in the tube portion located near the electrode installation, and shrinkage of the tube tube is usually observed in this portion.

本発明者らの先の発明(特願昭52− 122529)で用いた方法は、管内外の圧力差を極力
へらし、軟化したチューブの収縮をおさえる事により、
チューブ内をプラズマ処理するものであったがその後の
本発明者らの研究の結果、電源出力回路の同調を取りか
つチューブを連続的に移動させ電極部に位置する時間お
よび電極間で発生するプラズマに照射される時間を短か
《すればチューブの軟化による収縮もなく、かつ期待し
た性能を付与する低温プラズマ処理が可能である事を見
出し本発明に至った。
The method used in the inventors' previous invention (Japanese Patent Application No. 52-122529) minimizes the pressure difference between the inside and outside of the tube and suppresses the contraction of the softened tube.
The inside of the tube was treated with plasma, but as a result of subsequent research by the present inventors, the power output circuit was tuned and the tube was moved continuously to control the time at which the tube was located at the electrodes and the plasma generated between the electrodes. The inventors have discovered that by shortening the irradiation time, it is possible to perform low-temperature plasma treatment that does not cause shrinkage due to softening of the tube and provides the expected performance, leading to the present invention.

次に第1図を用いて、本発明を詳細に説明する。Next, the present invention will be explained in detail using FIG.

処理さるべきプラスチックチューブ1は円筒管金属電極
4および5の中を通り、連続的に移動し電極4および5
0間でチューブ管内に発生する放電(低温プラズマ)に
より連続的にプラズマ処理される。
The plastic tube 1 to be treated passes through the cylindrical tube metal electrodes 4 and 5 and is continuously moved through the metal electrodes 4 and 5.
Plasma treatment is performed continuously by discharge (low-temperature plasma) generated inside the tube between 0 and 0.

プラスチックチューブ管内は目的とした性能を付与する
に適した低温プラズマを発生させるガスが2より導入さ
れ、かつ排気系に接続された3より排出され放電を開始
、維持するに適した圧力に保持されている。
A gas that generates a low-temperature plasma suitable for imparting the desired performance is introduced into the plastic tube from 2, and is discharged from 3 connected to the exhaust system to maintain a pressure suitable for starting and maintaining the discharge. ing.

管径が細く、かつ管長が長い場合、管のコンダクタンス
が小さくなるため管内の残存空気Ω排出が困難で、低温
プラズマ処理の際この残存空気が処理に悪影響を及ぼす
事がある。
When the pipe diameter is small and the pipe length is long, the conductance of the pipe becomes small, making it difficult to discharge the remaining air inside the pipe, and during low-temperature plasma processing, this residual air may have an adverse effect on the processing.

この場合は管内を目的とする圧力に保持する前に管内を
処理ガスで置換する事が好ましい。
In this case, it is preferable to replace the inside of the tube with the processing gas before maintaining the pressure inside the tube at the desired pressure.

また管のコンダクタンスが小さ《なると管長方向に圧力
差が生じ、チューブの連続的な移動と共に電極間に位置
するチューブの部分の管内圧力が変化するので、排気量
およびガス導入量を調節し、プラズマ処理域の管内圧力
を所定の圧力に設定する事が好ましい。
In addition, if the conductance of the tube is small, a pressure difference will occur in the length direction of the tube, and as the tube continues to move, the pressure within the tube in the portion of the tube located between the electrodes will change. It is preferable to set the pressure inside the pipe in the treatment zone to a predetermined pressure.

プラズマ処理域の管内圧力は0. I Torr〜30
Torrが好ましい。
The pressure inside the tube in the plasma processing area is 0. I Torr~30
Torr is preferred.

0.ITorr以下ではガス粒子の平均自由行程が長く
なるため管壁での捕獲確率が高くなり、放電が開始しに
くい、また30 Torr以上では放電の長さが極めて
短かくなると共に発熱が大きくなりチューブが軟化収縮
しやすい。
0. Below I Torr, the mean free path of the gas particles becomes longer, which increases the probability of capture on the tube wall, making it difficult to start a discharge, and above 30 Torr, the length of the discharge becomes extremely short and heat generation increases, causing the tube to collapse. Easy to soften and shrink.

より好ましいガス圧力は管径によって異なるが、I T
orr 〜5 Torrである。
The more preferable gas pressure varies depending on the pipe diameter, but I T
orr ~5 Torr.

管内を流れるガス流量は多いほど放電の長さも長く、か
つ処理効果も大きいが、管径が細くかつ管長が長くなる
と管のコンダクタンスが小さくなるため、目的とする圧
力維持が困難になる。
The larger the flow rate of gas flowing through the tube, the longer the discharge length and the greater the treatment effect. However, as the tube diameter becomes smaller and the tube length becomes longer, the conductance of the tube decreases, making it difficult to maintain the desired pressure.

よって処理すべきチューブに応じガス導入量は決定され
るのが好ましい。
Therefore, it is preferable that the amount of gas introduced be determined depending on the tube to be treated.

放電電極へ供給される電力は電源10より出力トランス
9を介し出力側回路へ供給され放電電極4,5へ供給さ
れる。
The power supplied to the discharge electrodes is supplied from the power supply 10 to the output side circuit via the output transformer 9 and then to the discharge electrodes 4 and 5.

6,7および8は出力側回路の同調および整合をとるた
めの可変コンデンサおよび出力トランスの二次側コイル
であり、通常は二次側コイル8のタップを切り換えるの
みで整合はとれるが、より効率よく同調および整合をと
ろうとすれば可変コンデンサ6,7で調節するのが好ま
しい。
6, 7, and 8 are variable capacitors and secondary coils of the output transformer for tuning and matching the output circuit.Normally, matching can be achieved by simply switching the taps of the secondary coil 8, but it is more efficient. In order to achieve good tuning and matching, it is preferable to use variable capacitors 6 and 7 for adjustment.

電源周波数は特に限定されないが、放電を効率的に誘導
開始、持続させるためにはI KHZ以上の高周波がよ
い。
Although the power supply frequency is not particularly limited, a high frequency of IKHZ or higher is preferable in order to efficiently initiate and sustain discharge.

第1図においては4,5電極を使用し、両電極間に電場
を与える場合について説明したが、磁場を与える場合に
は第1図の4,5に代え、両者を一体とした形のコイル
状の誘導形電極が使用される。
In Figure 1, we have explained the case where 4 and 5 electrodes are used and an electric field is applied between the two electrodes, but when applying a magnetic field, instead of 4 and 5 in Figure 1, a coil that integrates both electrodes is used. An inductive type electrode is used.

また、放電電極4,5は必らずしも円筒型である必要は
なく平板等でもよ《、本発明でいうチューブの電極中の
移動とは、チューブが電極近傍を移動することを意味し
ている。
Further, the discharge electrodes 4 and 5 do not necessarily have to be cylindrical, but may be flat plates, etc. (The movement of the tube in the electrode in the present invention means that the tube moves near the electrode.) ing.

なおチューブはできる限り電極に密接していることが好
ましい。
Note that it is preferable that the tube be as close to the electrode as possible.

長時間の連続処理を行うと電極およびチューブが加熱さ
れる場合もあり該電極およびチューブは空冷または水冷
等の強制冷却設備を設けてもよい。
If continuous treatment is performed for a long time, the electrodes and tubes may be heated, so forced cooling equipment such as air cooling or water cooling may be provided for the electrodes and tubes.

以下実施例にて本発明をより詳細に説明する。The present invention will be explained in more detail in the following examples.

実施例 1 第1図の装置を用い市販塩化ビニルチュブ(内径4mm
、外径6mm、可塑剤:ジオフチルフタレート30部含
有)10mをCOガスを用い連続的に処理した。
Example 1 A commercially available vinyl chloride tube (inner diameter 4 mm) was prepared using the apparatus shown in Figure 1.
, outer diameter 6 mm, plasticizer: diophthyl phthalate (containing 30 parts)) was continuously treated using CO gas.

電源はIIOKHZの自励発振型高電圧電源を用い出力
400W、電極間距離50CrrL、チューブの移動速
度2m/mt、CO流量5 cc/’trim ( 1
kg/cvta)、チューブ管内圧力I Torrの条
件で処理した このようにして処理したチューブをテトラヒド口フラン
で溶解したところ、管内表面に不溶解な膜が形成されて
いる事が観測できた。
The power supply is a self-excited oscillation type high-voltage power supply from IIOKHZ, with an output of 400 W, a distance between electrodes of 50 CrrL, a tube moving speed of 2 m/mt, and a CO flow rate of 5 cc/'trim (1
When the thus treated tube, which had been treated under the conditions of (kg/cvta) and an internal pressure of I Torr, was dissolved in tetrahydrofuran, it was observed that an insoluble film was formed on the inner surface of the tube.

また肉眼で判定した限りでは、この膜の形態は管長方向
に!めて均一であった。
Also, as far as I can tell with the naked eye, the shape of this membrane is in the longitudinal direction of the tube! It was very uniform.

このチューブ内にn−ヘキサン1rrLlを入れ40℃
で2時間抽出し、n−へキサン内へ移行したジオクチル
フタレートの定量をガ,スクロを用い行い、表1の結果
を得た。
Put 1rrLl of n-hexane into this tube and keep it at 40°C.
After extraction for 2 hours, the amount of dioctyl phthalate that had migrated into n-hexane was determined using a gas filter, and the results shown in Table 1 were obtained.

本発明者らの一部はポリ塩化ビニルシ一トをプラズマ処
理すると、表層に架橋膜が形成され、可塑剤の溶出を防
止する事を見出している(特願昭52−29934(特
開昭53−114875号,公報〕)。
Some of the inventors have discovered that when polyvinyl chloride sheets are treated with plasma, a cross-linked film is formed on the surface layer, which prevents the elution of plasticizers (Japanese Patent Application No. 52-29934 -114875, Publication]).

表1の結果から判定して本発明の方法によって作られた
チューブ管内表面も低温プラズマ処理シートの表面と同
じ性能が付与されている事がわかる。
Judging from the results in Table 1, it can be seen that the inner surface of the tube made by the method of the present invention has the same performance as the surface of the low temperature plasma treated sheet.

比較例 1 実施例1と同じ装置を用い実施例lと同じチューブを移
動させずに静止した状態で低温プラズマ処理した。
Comparative Example 1 Using the same apparatus as in Example 1, the same tube as in Example 1 was subjected to low-temperature plasma treatment in a stationary state without moving.

処理条件は実施例lと同じで処理は連続処理でチューブ
低温プラズマに接している同一の時間15秒間行った
The treatment conditions were the same as in Example 1, and the treatment was continuous, with the tube being in contact with the low-temperature plasma for 15 seconds.

この場合チューブは処理を始めて10秒後に高電圧電極
4の位置する部分において、管中央部が収縮をはじめ融
着し、ガスの流れを停止させた。
In this case, 10 seconds after the start of the treatment, the center of the tube began to shrink and fused at the portion where the high voltage electrode 4 was located, stopping the flow of gas.

この処理チューブはほぼ実施例1で作ったチューブと同
等の性能を有していたが、テトラヒドロフランで溶解し
てみたところ電極間の間で形成された架橋膜の形態にち
がいが見られた。
This treated tube had almost the same performance as the tube made in Example 1, but when it was dissolved in tetrahydrofuran, a difference was found in the form of the crosslinked film formed between the electrodes.

この不均一性は電極間で低温プラズマの強度が変化して
いる事に起因するものと思われる。
This non-uniformity is thought to be due to the change in the intensity of the low temperature plasma between the electrodes.

実施例 2 第1図の装置において可変コンデンサー6,7を取りは
ずし、出力トランスのみを用いた処理装置を用い、医用
塩化ビニルチューブ(内径5mm、外径7mm、可塑剤
:ジオクチルフタレート43部)3mをCOガスを用い
連続的に処理した。
Example 2 The variable capacitors 6 and 7 were removed from the apparatus shown in Fig. 1, and 3 m of medical vinyl chloride tube (inner diameter 5 mm, outer diameter 7 mm, plasticizer: 43 parts of dioctyl phthalate) was processed using a processing apparatus using only an output transformer. Continuous treatment was performed using CO gas.

電源は110KHz の自励発振型高電圧電源を用い出
力100W、電極間距離20crIL、チューブの移動
速度4 m lmin,CO流量1 0cc/m( 1
kg/ca−G )、チューブ管内圧力3Torrの条
件で処理した。
The power source is a 110KHz self-oscillation type high voltage power supply with an output of 100W, a distance between electrodes of 20crIL, a tube movement speed of 4mlmin, and a CO flow rate of 10cc/m (1
kg/ca-G), and the tube internal pressure was 3 Torr.

このようにして処理したチューブからn−ヘキサン内へ
移行したジオクチルフタレートの量は未処理チューブか
らの移行量の0.2%であった。
The amount of dioctyl phthalate that migrated into n-hexane from the tube treated in this way was 0.2% of the amount that migrated from the untreated tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を遂行するための一装置例の略図である
FIG. 1 is a schematic diagram of one example of apparatus for carrying out the invention.

Claims (1)

【特許請求の範囲】[Claims] 1 外部電極により付与された電場あるいは磁場内を、
管外表面は大気にさらされ、管内部は減圧に保持された
プラスチックチューブを連続的に移動させ、該チューブ
の管内部のみに低温プラズマを発生させることを特徴と
するプラスチックチューブ管内表面の処理方法。
1 Inside the electric or magnetic field applied by the external electrode,
A method for treating the inner surface of a plastic tube, characterized by continuously moving a plastic tube whose outer surface is exposed to the atmosphere and whose interior is kept under reduced pressure, and generating low-temperature plasma only inside the tube. .
JP10022578A 1978-08-17 1978-08-17 Method for treating the inner surface of plastic tubes Expired JPS587653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10022578A JPS587653B2 (en) 1978-08-17 1978-08-17 Method for treating the inner surface of plastic tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10022578A JPS587653B2 (en) 1978-08-17 1978-08-17 Method for treating the inner surface of plastic tubes

Publications (2)

Publication Number Publication Date
JPS5529505A JPS5529505A (en) 1980-03-01
JPS587653B2 true JPS587653B2 (en) 1983-02-10

Family

ID=14268336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10022578A Expired JPS587653B2 (en) 1978-08-17 1978-08-17 Method for treating the inner surface of plastic tubes

Country Status (1)

Country Link
JP (1) JPS587653B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445884Y2 (en) * 1983-02-14 1992-10-28
JP2014095575A (en) * 2012-11-08 2014-05-22 Asahi Organic Chemicals Industry Co Ltd Ultrasonic flowmeter manufacturing method, ultrasonic flowmeter, and fluid control device with ultrasonic flowmeter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157829A (en) * 1982-03-12 1983-09-20 Toray Ind Inc Treatment for electrical discharge of inner face of plastic tube
JPS5973043A (en) * 1982-10-19 1984-04-25 House Food Ind Co Ltd Method for modifying quality of hardly soluble gelling agent
US4752426A (en) * 1985-06-27 1988-06-21 Yoshito Ikada Process for manufacture of plastic resinous tubes
KR100649772B1 (en) 2005-02-23 2006-11-27 주식회사 젠트로 A Plasma Apparatus for Treating Surface of Cylindrical Material and A Method for Manufacturing Resin Coated Steel Pipe using Plasma Treatment
JP6392049B2 (en) * 2014-09-19 2018-09-19 株式会社オーク製作所 Inner surface treatment method and inner surface treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445884Y2 (en) * 1983-02-14 1992-10-28
JP2014095575A (en) * 2012-11-08 2014-05-22 Asahi Organic Chemicals Industry Co Ltd Ultrasonic flowmeter manufacturing method, ultrasonic flowmeter, and fluid control device with ultrasonic flowmeter

Also Published As

Publication number Publication date
JPS5529505A (en) 1980-03-01

Similar Documents

Publication Publication Date Title
US5221427A (en) Plasma generating device and method of plasma processing
JP3642809B2 (en) Low pressure inductively coupled plasma ignition device
EP1096837A2 (en) Plasma treatment apparatus and plasma generation method using the apparatus
EP0089124B1 (en) Method of treating inner surface of plastic tube with plasma
JPS587653B2 (en) Method for treating the inner surface of plastic tubes
JP2002110397A (en) Generating method of normal pressure pulse plasma
JPH05275191A (en) Atmospheric pressure discharge method
US6909237B1 (en) Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon
JPS61197638A (en) Method and apparatus for carrying out plasma treatment
JPH07307199A (en) Induced plasma generating method and apparatus
JP3175891B2 (en) Plasma generator and etching method using the same
JP2003049276A (en) Discharge plasma treatment device and treatment method using the same
JPS6039088B2 (en) Discharge treatment method for polymer resin
JP3093072B2 (en) Surface modification method
JP3333110B2 (en) Surface treatment method using discharge plasma
JPS5710629A (en) Plasma treatment of hollow body
JP3222037B2 (en) Surface treatment method by remote plasma
JP3353585B2 (en) Plasma processing method and apparatus
JPS6330347A (en) Surface treatment of glass
JPH07252663A (en) Production and apparatus for production of tubular body formed with film on inner peripheral surface
JPH06140196A (en) Pulse drawing type electron cyclotron resonance ion source
JPH0254929A (en) Plasma processor
JPH0582257A (en) Vacuum arc device and vacuum arc ignition method
JPS6214937B2 (en)
JPH07102090A (en) Modifying method for surface of fluororesin tube