JPS5873784A - Supply cathode device for fused salt bath electrolytic cell - Google Patents

Supply cathode device for fused salt bath electrolytic cell

Info

Publication number
JPS5873784A
JPS5873784A JP57171064A JP17106482A JPS5873784A JP S5873784 A JPS5873784 A JP S5873784A JP 57171064 A JP57171064 A JP 57171064A JP 17106482 A JP17106482 A JP 17106482A JP S5873784 A JPS5873784 A JP S5873784A
Authority
JP
Japan
Prior art keywords
diaphragm
cathode
titanium
supply
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57171064A
Other languages
Japanese (ja)
Inventor
チヤ−レス・コルトライト・ボン
デビツド・リチヤ−ド・ジヨンソン
ポ−ル・ロマン・ジヤツクニ−ズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEII ETSUCHI TEITANIUMU CO ZA
Original Assignee
DEII ETSUCHI TEITANIUMU CO ZA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to GB15530/78A priority Critical patent/GB1602664A/en
Priority to CA301,957A priority patent/CA1112605A/en
Priority to AU75002/81A priority patent/AU7500281A/en
Priority to NO813249A priority patent/NO813249L/en
Priority to NO813250A priority patent/NO813250L/en
Application filed by DEII ETSUCHI TEITANIUMU CO ZA filed Critical DEII ETSUCHI TEITANIUMU CO ZA
Priority to JP57171065A priority patent/JPS5873855A/en
Priority to JP57171064A priority patent/JPS5873784A/en
Publication of JPS5873784A publication Critical patent/JPS5873784A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/04Diaphragms; Spacing elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は多価金槁類の製造めための浴融塩浴を入れた電
解槽中で使用するのに好適な供給陰極装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a feed cathode arrangement suitable for use in an electrolytic cell containing a molten salt bath for the production of polyvalent metals.

チタンの様な多価金属は従来その化合物、例えば4塩化
チタンから米国特許第2,789,945号、2.94
八〇32号および4082,159号に記載の11解法
によって製造されている。一般に4塩化チタンを適当な
方法によって溶融アルカリ又はアルカリ土類金属塩浴に
入れ電解解離して陰極上に金属チタンを電着し陽極で塩
素元素を放出するOチタン含有電解槽中で陰極から陽極
を分離するには糧々の方法が用いられている。
Polyvalent metals such as titanium have traditionally been synthesized from their compounds, such as titanium tetrachloride, in U.S. Pat. No. 2,789,945, 2.94.
8032 and No. 4082,159. In general, titanium tetrachloride is electrolytically dissociated by placing it in a molten alkali or alkaline earth metal salt bath by an appropriate method to electrodeposit metallic titanium on the cathode, and releasing elemental chlorine at the anode. Various methods are used to separate the .

、11(、J)。, 11 (, J).

陽極室と陰極室の間にある隔膜め様な物理的障l!はチ
タンイオンか陰極室から陽極室に過度流動するのを防ぐ
に必要である。もし過度のイオン流動が起ったならばチ
タンイオンii4塩化チタンに酸化されそれによってt
m槽効率が低下する。隔膜はまた陽極室と陰極室の間に
塩素イオンおよび溶融塩浴をとおす必要がある。
A physical barrier like a diaphragm between the anode and cathode chambers! is necessary to prevent excessive flow of titanium ions from the cathode chamber to the anode chamber. If excessive ion flux occurs, titanium ions ii4 oxidize to titanium chloride, thereby t
m-tank efficiency decreases. The diaphragm is also required to pass the chloride ion and molten salt bath between the anode and cathode compartments.

米国特許第2,789,945号の隔膜はM孔電導性金
属構造のもので使用の際陽極又は陰極に交互に使う。隔
膜を陰極とじ全域チタンをその孔に沈着させ隔膜の多孔
性は減少する。隔膜か甚しく通らなくなり電解槽効率が
低下するとその電気極性奮進にして隔膜を陽極としてそ
れからチタンを除去する。変動多孔性隔膜社便利である
力ζ絶えず監視し時々金Jff電着させまたそれからと
ることの必要のない隔膜が史に望ましい。
The diaphragm of U.S. Pat. No. 2,789,945 is of an M-hole electrically conductive metal construction and is used alternately as an anode or a cathode. The porosity of the membrane is reduced by cathodically binding the membrane and depositing titanium in its pores. When the diaphragm is severely blocked and the efficiency of the electrolytic cell is reduced, the electrical polarity is increased and the diaphragm is used as an anode to remove titanium from it. A diaphragm with variable porosity that does not require constant monitoring and occasional gold electrodeposition and removal is desirable since it is convenient for variable porosity diaphragms.

、ニー 従来の寛解槽は使用出来る〃ζ陽極室陰極室間の隔膜は
、、、着 ・・J・ 工業用tm装置に必要な強度に対し一般に不充分なもの
であるム又は槽操業中絶えず注意して多孔性調整を必要
とするものである。適当な物理的強度をもち操業中調整
不要の一定多孔性をもつ隔膜を使う金属電解製造用の改
良電解槽およびその電解槽操業方法が望まれている。
Conventional remission tanks can be used; however, the diaphragm between the anode chamber and the cathode chamber is generally insufficient for the strength required for industrial TM equipment, or the membrane between the anode chamber and the cathode chamber must be constantly maintained during tank operation. Careful porosity adjustment is required. What is desired is an improved electrolytic cell for the electrolytic production of metals that utilizes a membrane of adequate physical strength and constant porosity that does not require adjustment during operation, and a method of operating the cell.

チタンの様な金属は従来例えは4塩化チタンから陽極、
陰極および電解浴に金属イオンを供給する装置をもつ寛
解槽中で塩化カリウムと塩化リチウムの様な混合物の溶
融塩浴中で電解生成しているのモめる。一般にこの様な
方法は例えばレオンらの14塩化チタンから電解生成し
た高純度チタン”(J、 of  M@ta1g  1
8. 1967. 3万人しオンらの1チタン電解生成
における合成隔膜の使用”(Bureau  of m
1nes RIport  RI  764B、197
2)および米国特許第2,789,943号、2,94
5,052号、および4082.159号に記載されて
いるOこれらの方法は例えば嬉融塩化リチウムー塩化カ
リウム陰極液中にi接り塩化チタンガス會吹込んでチタ
ンイオンを還元し陰極上に金属チタンを沈着させ、陽極
で塩素ガスを放出して一般にチタンを満足に生成出来る
。しかし多価金属を電NWiの溶融塩浴中に導入又は供
給する改良法は必要なのである。
Traditionally, metals like titanium are used as an anode, for example, titanium tetrachloride.
The electrolytic formation in a molten salt bath of a mixture such as potassium chloride and lithium chloride is investigated in a remission bath with a cathode and a device for supplying metal ions to the electrolytic bath. In general, such a method is used, for example, to produce high-purity titanium electrolytically produced from titanium 14 chloride by Leon et al.
8. 1967. ``Use of Synthetic Diaphragms in Titanium Electrolysis Production'' (Bureau of M.
1nes RIport RI 764B, 197
2) and U.S. Patent No. 2,789,943, 2,94
5,052 and 4082.159. These methods include, for example, injecting a titanium chloride gas atmosphere into a fused lithium chloride-potassium chloride catholyte to reduce titanium ions and deposit metallic titanium on the cathode. Titanium can generally be produced satisfactorily by depositing chlorine gas and releasing chlorine gas at the anode. However, improved methods of introducing or supplying polyvalent metals into the molten salt bath of electrical NWis are needed.

電解槽の11h:′IP#液中にイオン化金属化合物を
導入する新規改良法が発見された。イオン化しうる金属
類は少なくとも2価の金属でめる゛。イオン化性全域化
合物導入設備又は供給陰極は入口少なくも1および出口
少なくも1をもち金属化合*mから′#i、解液中に金
属化合物を送るに適した供給管より 戎る^供給陰極は
管の少なくも出口を取まき実質的に完全な包囲部品をも
つ。この包囲部品は少なくも一部は電解液および多価金
属化合物イオンがとおるに適した電i性有孔体より成る
A new and improved method of introducing ionized metal compounds into the 11h:'IP# liquid of the electrolytic cell has been discovered. Ionizable metals include at least divalent metals. The ionizable wide area compound introduction equipment or feed cathode has at least one inlet and at least one outlet and has a metal compound*m to '#i, which is connected to a feed tube suitable for conveying the metal compound into the solution. Having a substantially complete enclosure surrounding at least the outlet of the tube. This enclosure component consists at least in part of an electrically conductive porous body suitable for passage of electrolyte and polyvalent metal compound ions.

操業中イオン化性多価金属化合物は管をとおり電解液中
に入る。1、層液中に入る又はl昆合すると全域化合物
は金属化合物のイオンに解離すると思われる。包囲部品
はガス状金栖化合物および(又は)不活性分散性ガスに
よって起つた攪拌を供給陰極内にうまく限定する。電源
が少なくも有孔部品に電気的に接続されており金属イオ
ンを高原子価状態から俸原子価状態に下げる様有孔部品
に充分の負荷電を供給する。金属化合物からの溶解イオ
ンを含む電解液は有孔部品鵞とおって沈着陰極室に゛入
り陰極に達し固体金属が沈着する。一般に金属イオンは
供給陰極内で又扛供給陰極の実質的近くで高原子価状態
から低原子価状態に低下すると思われる。
During operation, the ionizable polyvalent metal compound passes through the tube and enters the electrolyte. 1. It is believed that the whole compound dissociates into metal compound ions when it enters or merges into the layer liquid. The enclosure element advantageously confines the agitation caused by the gaseous Kanasu compound and/or the inert dispersing gas within the feed cathode. A power source is electrically connected to at least the perforated component to provide a sufficient negative charge to the perforated component to reduce the metal ions from a high valence state to a low valence state. The electrolyte containing dissolved ions from the metal compound passes through the perforated part into the deposition cathode chamber and reaches the cathode where the solid metal is deposited. Generally, the metal ions will decrease from a high valence state to a low valence state within the feed cathode and substantially proximate to the feed cathode.

本発明は溶融塩浴をもつ電解槽中の使用に適した供給陰
極装置に関する。この装置は、(1)金鳥化合物源泉か
ら電解槽中の溶融塩浴に上記金属化合物を送るに適した
少なくも1つの出口をもつ、電解槽に多勢金属化合物を
供給するた1・。
The present invention relates to a feed cathode device suitable for use in an electrolytic cell with a molten salt bath. The apparatus includes: (1) supplying a multi-metal compound to an electrolytic cell having at least one outlet suitable for conveying said metal compound from a golden bird compound source to a molten salt bath in the electrolytic cell;

めの供給管および、(b)この供給管め少なくも出口を
取かこみ実質的に完全に包囲している部品より成る0た
だし上記包囲部品は多勢金属化合物イオンおよび電解液
がとおりうる電導性有孔物体で少なくも一部が形成され
ているものとする。
(b) a part surrounding and substantially completely surrounding the outlet of said supply pipe; provided that said surrounding part is electrically conductive through which the multi-metal compound ions and the electrolyte can pass; It is assumed that at least a portion of the object is formed of a hole.

本発明の供給陽極装置を使用する対象としての’FIL
M槽は基本的に浴融塩浴を入九また浴を大気から隔離す
るに適した組合せ本体より、成る0陽極案と陰極室は互
に分離して本体内にある。陽極室と陰極室はそれらの外
の電源から電気的に゛絶縁されておりまた電解槽操業中
少なくも一部が浴融塩中に浸漬されている少なくも1M
孔金金属性隔膜より分嘔されている0この隔膜の流雪係
数(Cf)が[11乃至25の軛曲内の場合隔膜係数(
Cd)が0エリ大きく約(L5迄の転回であることが好
適である0ここでCdは2.54菌を一′$a′!″L
′″C*8tL7.貌11”00″“1791リットル
当り2.54 am’M位の平方根で示される。隔膜係
数は下記の方法で測定出来、次式で示される;Vd+s
/ Id+m−Vm/ l5 Cd=                 Xα75V
s/Is− 但しVd+易は銀−塩化銀の2.54cI11離れた一
次電極間1.9国離れておりまた操業中の一次電極間に
ある隔膜からそれ丈は離れているオリアイスをもつ塩ブ
リッジにより試験セル中の溶液と連絡しているカロメル
測定電極によって測定した時試験セルの1モル塩化ナト
リウム水浴液中の電圧(ポルk)とする。
'FIL as a target for using the supply anode device of the present invention
The M tank basically consists of a combined body suitable for containing a molten salt bath and isolating the bath from the atmosphere, with an anode chamber and a cathode chamber separated from each other in the body. The anode chamber and the cathode chamber are electrically insulated from their external power supply and are at least partially immersed in the bath molten salt during operation of the electrolytic cell.
If the snow flow coefficient (Cf) of this diaphragm is within the range of 11 to 25, the diaphragm coefficient (
It is preferable that Cd) is 0 ellipse and the turn is approximately (L5).
It is expressed as the square root of 2.54 am'M per 1791 liters. The diaphragm coefficient can be measured by the following method and is expressed by the following formula: Vd+s
/Id+m-Vm/l5Cd=Xα75V
s/Is- However, Vd+I is a salt bridge with an oriice separated by 1.9 countries between the primary electrodes of silver-silver chloride 2.54cI11 apart, and which is a length away from the diaphragm between the primary electrodes during operation. is the voltage (Pol k) in the 1 molar sodium chloride water bath solution of the test cell when measured by a calomel measuring electrode in communication with the solution in the test cell.

Id+sは隔膜がVd+−に対する位置にある溶液中の
一次電極間に保たれた(LO02アンペアの電流とする
OVsは隔膜なしに■+Sのとおり測定した電圧(ボル
ト)とする0 11は隔膜なしにld+sのとおり測定した際のfB液
液中一次電極間に保九れたα002アンペアの11流と
する0流量係数は次式で表わされる; 但しhは隔膜をとおる水流量測定が得られる隔膜部分の
1向上194cd面積をもつ円形隔膜部分の中心線から
上方に測った場合約24℃における水25.4onの圧
力水頭とする0FFi隔膜部分をとおる約24℃の水流
毎分当りの容量(リットル)とする。
Id+s was maintained between the primary electrodes in solution with the diaphragm in position relative to Vd+- (LO02 amperes of current; OVs is the voltage (volts) measured as ■+S without the diaphragm; 0 11 without the diaphragm; When measured as ld + s, the zero flow coefficient assuming 11 flows of α002 amperes held between the primary electrodes in fB liquid is expressed by the following formula; where h is the part of the diaphragm where the water flow rate measurement through the diaphragm is obtained. 1 improvement in volume (liters) of water flow per minute at approximately 24°C through a 0FFi diaphragm section with a pressure head of 25.4 on of water at approximately 24°C when measured upward from the center line of a circular diaphragm section having an area of 194 cd. shall be.

隔膜の形態および大きさにより上す己194−より小さ
い又は大きい隔膜も水量測定に使用出来る。小さい又は
大きい隔Bj4を1史また場合Fは上記194−曲槓七
とおる水流量を表わす様計算する必要がある。
Depending on the configuration and size of the diaphragm, diaphragms smaller or larger than 194 mm can also be used for water measurement. In the case of a small or large distance Bj4, it is necessary to calculate F to represent the water flow rate through the above-mentioned 194-channel.

少し異なったいい方をすれは隔膜係数決定の上式は根本
的に隔膜と試験セルの浴液の会計抵抗から溶液の抵抗を
引いて溶液の抵抗で割ったものでめる0この計算から得
られる数値は塩ブリッジが1.9百離れているので浴液
1.9αの電気抵抗によって隔膜の電気抵抗を表わして
い60計算値t−g液の国に変換するには計X値に1,
9を乗ずればよい0隔躾係数は試験セル中の隔膜の電気
抵抗を表わしている0隔膜係数はまた隔膜の孔中にある
溶液の抵抗の尺度であるとも思われる。
In a slightly different way, the above formula for determining the diaphragm coefficient is basically calculated by subtracting the resistance of the solution from the resistance of the bath liquid in the diaphragm and the test cell, divided by the resistance of the solution. Since the salt bridge is 1.900, the electrical resistance of the diaphragm is expressed by the electrical resistance of the bath liquid 1.9α.To convert the calculated value t-g to the country of the liquid, add 1 to the total X value.
The zero diaphragm factor, which can be multiplied by 9, represents the electrical resistance of the diaphragm in the test cell.The 0 diaphragm factor is also believed to be a measure of the resistance of the solution in the pores of the diaphragm.

上述の電解槽は更に陽極室内にあり少なくも一部が浴中
に浸漬されている少なくも1陽極をもつ。少なくも一部
が浴中に浸漬されている少なくも1沈着陰極が同様に陰
極室内にあφ0陽極で生成したガスを除去する適当設備
が陽極室に組合わせられる。イオン化性金属化合物の様
な金属含有供給物質を浴に送るに適した少なくも1供給
設備および陰極に沈着した金属を除去するに適した設備
が隘&富に組合わせられる°0史に金属イオンを高原子
価状態から低原子価状態に還元し金属を沈着陰極に沈着
させるに充分な電気エネルギーを供給するに適した設置
1tl−陽極および陰極に接続する〇 本発明の供給陰極装置を使用する電解槽拡チタンおよび
他の多価金属類の溶融ハロゲン化物浴中の電解製造に適
している。イオン化した場合少なくも2原子価程度をも
つ多他」金属の例にはTi、 V、CrXMnXFe、
 Co、 Ni、 Y。
The electrolytic cell described above further has at least one anode within the anode chamber and at least partially immersed in the bath. At least one deposited cathode, at least partially immersed in the bath, is likewise located in the cathode chamber, and suitable equipment for removing the gas produced by the φ0 anode is associated with the anode chamber. At least one feed facility suitable for delivering a metal-containing feed material, such as an ionizable metal compound, to the bath and a facility suitable for removing metal deposited on the cathode are combined in combination with metal ions. using a supply cathode apparatus of the present invention connected to a 1 TL anode and a cathode suitable for supplying sufficient electrical energy to reduce the metal from a high valence state to a low valence state and deposit the metal at the deposition cathode. Electrolytic cell expansion Suitable for electrolytic production of titanium and other polyvalent metals in molten halide baths. Examples of metals that have at least a divalent valence when ionized include Ti, V, CrXMnXFe,
Co, Ni, Y.

Zr、 Nb、 MelRu、 Rh、 Pd、 Te
、 Os、Ir  およびptがある。一般に化合物は
ぶつ化物、臭化物、よう化物の様なハロゲン化物が好I
L<、最もよいのは塩化物である。以後好ましいチタン
について記述する2にそれは一般に多価金属について応
用出来る。
Zr, Nb, MelRu, Rh, Pd, Te
, Os, Ir and pt. Generally, compounds are preferably halides such as halides, bromides, and iodides.
L<, the best is chloride. The preferred titanium will now be described in Section 2, which is generally applicable to polyvalent metals.

好ましい装置および方法はチタン製造について述べる。Preferred apparatus and methods are described for titanium production.

陰極室に供給されるチタン化合物は少なくも一部、好ま
しくは実質的に児全に溶融塩浴中でイオン化する特依が
める0チタンイオンは陰極−計いて尚原子価状態から低
原子価状態に還元される。堪率1・!7:1様な・・ロ
ゲンガスは陽極で放出さ畳、。
The titanium compound supplied to the cathode chamber is at least partially, preferably substantially entirely, ionized in the molten salt bath. will be returned. Perseverance rate 1! 7:1...Rogen gas is emitted at the anode.

れる。カスおよび金属ヂ1タンは適当な設備でt解槽か
ら除去される。
It will be done. Scraps and metal particles are removed from the cracking tank with suitable equipment.

付図に本発明を更に例証するものでめる0図1は本発明
に関連のある固体多価金属製造用電解槽の断面図である
The present invention is further illustrated in the accompanying drawings. Figure 1 is a sectional view of an electrolytic cell for producing solid polyvalent metals to which the present invention relates.

図2は本発明に関連のある他の実施態様の断面図である
FIG. 2 is a cross-sectional view of another embodiment related to the present invention.

図3鉱本発明に関連のある、隔膜をとおる水流速度測定
設備の概略図である。
FIG. 3 is a schematic diagram of a water velocity measurement facility through a diaphragm, which is relevant to the present invention.

−4は本発明に関連のある、隔膜係数測定に適した設備
の概略図である。
-4 is a schematic diagram of equipment suitable for measuring a diaphragm coefficient, which is related to the present invention.

図5は本発明の供給陰極装置の実施態様を示している。FIG. 5 shows an embodiment of the feed cathode device of the invention.

′図6は電解隔膜槽と組合せた本発明の実施態様を示し
ている。
'FIG. 6 shows an embodiment of the invention in combination with an electrolytic diaphragm cell.

各図中の接尾字をつけ九同一番号は異なる実施態様内の
同一機能をする部品を示している。
Identical numbers with a suffix in each figure indicate parts that perform the same function in different embodiments.

図1は多価金属、例えばチタンを溶融塩浴中でその化合
物から電解生成する11111iI槽10管示している
。以後の記述はチタンの電解生成に関する。しかしこれ
は一般に多価金属にも適用される。
FIG. 1 shows ten 11111iI vessels in which polyvalent metals, such as titanium, are electrolytically produced from their compounds in a molten salt bath. The following description relates to the electrolytic production of titanium. However, this also generally applies to polyvalent metals.

溶融又は融′ps塩はチタン化合物の溶媒としての特性
をもつ。この塩類又はそれらの混合物は例えばNaC1
,LiC1−KCl、 LiC1−KCI−NaC1,
およびLiC1−KCI−CaCl2 である。“チタ
ンを4塩化チタンから回収する場合浴融塩−浴はアルカ
リ又はアルカリ土金楓ハロゲン化物、出来れはリチウム
とカリウムの塩化物を含むものがよい。浴に使う塩類の
共融混合vlJはそれが低融点をもつので便利である。
The molten or molten ps salt has properties as a solvent for the titanium compound. These salts or mixtures thereof are, for example, NaCl
, LiC1-KCl, LiC1-KCI-NaC1,
and LiCl-KCI-CaCl2. “When recovering titanium from titanium tetrachloride, the molten salt bath should contain an alkali or alkaline earth metal halide, preferably one containing chlorides of lithium and potassium.The eutectic mixture of salts used in the bath is It is convenient because it has a low melting point.

電解槽10社容器120f質に実質的に悪影替なく溶融
ハロゲン化物塩浴と4塩化チタンを入れるに適した本体
又は容器12を含む。容器12には種々多数材質が適当
しているが一般に金属、例えば鋼又はニッケルで出来て
いる。
Electrolyzer 10 Container 120f includes a body or container 12 suitable for containing a molten halide salt bath and titanium tetrachloride substantially without adverse effects. Container 12 is generally made of metal, such as steel or nickel, although many different materials are suitable.

容器12の内部は少なくも陽極室14と沈着llI!極
室16に別かれている。wI極室14と陰極室16は互
にM孔金属隔膜17で区分されている。隔膜支持物15
t1電解檜1G操業中の隔膜強度を補強する為任意に隔
膜17と組合わせられる。
The interior of the container 12 contains at least the anode chamber 14 and the deposit II! It is divided into 16 polar rooms. The wI electrode chamber 14 and the cathode chamber 16 are separated from each other by an M-hole metal diaphragm 17. Diaphragm support 15
It can be optionally combined with the diaphragm 17 to reinforce the diaphragm strength during operation of the t1 electrolytic cypress 1G.

隔膜基質は全体にわたり多数の孔又は穴をもつ金属網、
板又は薄膜が好ましい。この孔は例えば旋孔、打抜、−
織、焼結に↓りそ形成出来る〇一般に基質中の孔は実質
的に均−太き盲がよい。隔膜17は望む隔膜係数(Cd
)とaiIk係数(Cf)となる様電解法又は非電気的
方法で充分なニッケル又はνバルトを着けである米国標
準ふるiメツシュ50(297ミクロン)乃至250(
63ミクロン)、好ましくは100(149ミクロン)
乃至200(74ミクロン)をもつ織った金網が好まし
い0看叶た金属は本質的にニッケル又はコバルトのいず
れかより晟゛るものが好ましい0適幽する沈着法はメッ
キ液に光沢剤量を少なくして克てにぷい又は粗い表面と
するに適したこの分野で既知の方法がよい。表■に隔膜
17のメッキに用いるに適した非電気的コバルトおよび
ニッケルメッキ+111の例を示している。
The diaphragm matrix is a metal mesh with numerous pores or holes throughout;
A plate or a thin film is preferred. This hole can be, for example, a turned hole, a punched hole, a -
↓Resistance can be formed by weaving and sintering.In general, the pores in the substrate should be substantially uniform and wide. The diaphragm 17 has a desired diaphragm coefficient (Cd
) and aiIk coefficient (Cf).
63 microns), preferably 100 (149 microns)
A woven wire mesh with a thickness of between 200 and 200 (74 microns) is preferred, and the metal used is preferably one that is essentially the same as either nickel or cobalt. Any method known in the art suitable for producing a smooth or rough surface is suitable. Table (2) shows examples of non-electrical cobalt and nickel plating +111 suitable for use in plating the diaphragm 17.

隔膜基質は例えば鋼又はスティンレス鋼の様な鉄でよい
〃ζ容器10内の腐蝕性環境に耐えまた隔膜ムして働ら
く規定温度において充分な強度を保つコバルト、ニッケ
ル又は少なくも約50重f−のコバルト又はニッケルを
含むそれらの合金の様々金属が好ましい。特に隔膜基質
は工業的に糾ニッケルが好ましい。
The diaphragm substrate may be ferrous, such as steel or stainless steel, cobalt, nickel, or at least about 50% ferrous to withstand the corrosive environment within the vessel 10 and to maintain sufficient strength at specified temperatures to work as a diaphragm. Various metals of f-cobalt or their alloys containing nickel are preferred. Particularly, as the membrane substrate, it is industrially preferable to use pure nickel.

表1 メッキ組成物 塩基性炭酸ニッケル(4Ni Cog @3Ni(OH
)1 ・4H10)  1 (L Oくえん酸(C,]
ムOr )               Fh、 2
5重ぶつ化アンモニウム(NH4HF、)      
   1重0次亜りん酸ナトリウム(NaHlP(%・
馬0)      2(L、0ふり化水#27A容量係
HF溶液        611#′を水酸化τンモニ
ウム50容量%N!140H11[5α0婦を非電気的
コバルト(pH約 乃至9) 塩化コバルト(CoC12・6H雪o)       
  sα0くえん酸ナトリウム(NalC@H401・
2H10)  55 50塩化アンモニウA (NH4
C1)           50次亜りん酸ナトリウ
ム(NaH1PO1@H10)      20陽極1
8は陽極室14中にあり電解槽10操業中溶融ハロゲン
化物塩浴中に少なくも一部浸漬されている0陽極18の
材質は浴融ハロゲン化物塩浴の腐蝕作用に耐えるもので
ありまた権操業中に正荷電陽極で生成される塩素元素に
耐えるものである。適当な陽極材料は炭素又はグラファ
イトである。陰極2Dは陰極室16内にめり電解槽10
操業中溶融ハロゲン化物塩浴中に少なくも一部浸漬され
ている。沈lit隘極20は金網チタンがその上に沈着
した後回収される株な、例えば普通の炭素鋼又はチタン
の様な金属又は炭素のごとき材質である。
Table 1 Plating composition Basic nickel carbonate (4Ni Cog @3Ni (OH
)1 ・4H10) 1 (L O citric acid (C,]
Or ) Fh, 2
Pentavalent ammonium (NH4HF)
Sodium hypophosphite (NaHlP (%・
0) 2 (L, 0 fluorinated water #27A volume ratio HF solution 611#' to tau ammonium hydroxide 50% by volume N! 6H snow o)
sα0 sodium citrate (NalC@H401・
2H10) 55 50 Ammonium chloride A (NH4
C1) 50 Sodium hypophosphite (NaH1PO1@H10) 20 Anode 1
8 is located in the anode chamber 14 and is at least partially immersed in the molten halide salt bath during operation of the electrolytic cell 10. The material of the anode 18 is one that is resistant to the corrosive effects of the molten halide salt bath and is It is resistant to elemental chlorine, which is generated at the positively charged anode during operation. Suitable anode materials are carbon or graphite. The cathode 2D is placed in the cathode chamber 16 and the electrolytic cell 10
At least partially immersed in a molten halide salt bath during operation. The deposited pole 20 is a material such as carbon or a metal such as ordinary carbon steel or titanium, which is recovered after the titanium wire mesh is deposited thereon.

陰極室14はまた槽10の内容物を加熱冷却して望む温
度に保つ加熱設備(、図示されていない)および権10
の操業中溶融ハロゲン化物塩浴にチタン含有供給物質を
送るに適した供給設備22をもつ。操業中4塩化チタン
は原料設備24から輸送管26をとおり供給設備22に
送られそこで4塩化チタンは供給設備22の多数の孔2
8から陰極室16内の浴融ハロゲン化物浴中に出る。
The cathode chamber 14 also includes heating equipment (not shown) and a housing 10 for heating and cooling the contents of the bath 10 to a desired temperature.
has a feed facility 22 suitable for delivering a titanium-containing feed material to the molten halide salt bath during operation. During operation, titanium tetrachloride is sent from the raw material equipment 24 through a transport pipe 26 to the supply equipment 22, where the titanium tetrachloride is passed through a number of holes 2 in the supply equipment 22.
8 into the molten halide bath in the cathode chamber 16.

容器12には陽極18、陰極20および供給設備22へ
の入口に蓋30.50mおよび50bがつけである。1
30.30mおよび30bFi容器12内の調整雰囲気
を保ちまた実質的に操作効率を低下するに充分な量の大
気、特に窒素、酸素、2#I!化炭素および水蒸気が操
業中容器12内に入らぬ様容器12に取はずし得る様つ
けである。蓋30.50mおよび3obは室14と16
がらat木木実実質的完全に排除出来るとよい0飯50
 aijまた固体金網チタンが陰極20上に沈着した後
に金属チタン管陰極室16から取出す設備となる。
The vessel 12 is fitted with lids 30.50m and 50b at the entrances to the anode 18, cathode 20 and supply equipment 22. 1
30.30m and 30bFi in an amount sufficient to maintain a controlled atmosphere within the vessel 12 and to substantially reduce operating efficiency, especially nitrogen, oxygen, 2#I! It is removably attached to the container 12 to prevent carbon dioxide and water vapor from entering the container 12 during operation. Lid 30.50m and 3ob are chambers 14 and 16
It would be nice to be able to virtually eliminate Garaat wood nuts 0 rice 50
aij also serves as a facility for removing the solid wire mesh titanium from the metal titanium tube cathode chamber 16 after being deposited on the cathode 20.

操業中電解槽10内の雰囲気は調整し雰囲気ガスを低い
規定量に限定する◇酸素の実質的量、特に空気中に通常
ある量に近い量の存在は槽動率、檜の操業寿命およびチ
タン製品の品位を低下するので好筐しくない。したがっ
て室″:。
During operation, the atmosphere inside the electrolytic cell 10 is adjusted and the atmospheric gas is limited to a low specified amount ◇ The presence of a substantial amount of oxygen, especially an amount close to the amount normally found in the air, is due to the cell operating rate, the operating life of the cypress, and the titanium This is not good because it reduces the quality of the product. Therefore chamber ″:.

14と16から酸素および他の反応性ガスを実質的に完
全に排除することが好ましい。蓋30aは酸素を排除し
かつ同体元素チタンが沈潜陽極20に看いた後陰極室1
6がら金属チタンを取出す設備となるに適している。
Preferably, oxygen and other reactive gases are substantially completely excluded from 14 and 16. The lid 30a excludes oxygen and allows the isotropic element titanium to enter the submerged anode 20, and then closes the cathode chamber 1.
It is suitable for use as equipment for extracting titanium metal from 6 pieces.

陽極18で生成した塩素ガスは陽極室14がら塩素除去
設備又はパイプ32をとおって凝縮器又は塩素貯槽(図
示されていないンに送られる。
The chlorine gas produced at the anode 18 is sent from the anode chamber 14 through a chlorine removal facility or pipe 32 to a condenser or chlorine storage tank (not shown).

発電器又は整流器54の様な電気供給設備がチタンイオ
ンを+4原子価から低原子価状態に下げ貧荷電沈着陰極
20上に金棒≠タンを着けまた正荷電陽極18で塩素元
素を放出するに光分な電気エネルギーを電解槽1oに供
給するに通している。陽極18、沈潜陽極20、供給設
備22および隔膜17は容器12か°ら絶縁物35にエ
リ電気的に絶縁されている。更に隔膜17は陽極18と
陰極2oに接続する電気回路の様な1111極室14と
陰極室16の外部電源1′。
Electrical supply equipment, such as a generator or rectifier 54, lowers the titanium ions from a +4 valence state to a lower valence state, placing a gold bar on the poorly charged deposited cathode 20 and releasing the elemental chlorine at the positively charged anode 18. The electrical energy is supplied to the electrolytic cell 1o. The anode 18, the submerged anode 20, the supply equipment 22 and the diaphragm 17 are electrically insulated from the container 12 by an insulator 35. Furthermore, the diaphragm 17 is connected to an anode 18 and a cathode 2o, such as an electric circuit 1111, and an external power source 1' for the electrode chamber 14 and the cathode chamber 16.

から電気的に絶縁され:ンいる・換言すれば隔膜17は
容器12内にあって隔膜に電気的負荷を与える接続なく
電解槽10中ではたらく。
In other words, the diaphragm 17 is located within the vessel 12 and operates in the electrolytic cell 10 without any connections providing an electrical load to the diaphragm.

容器12は任意に通路又は置場となる適当にはなれた7
ランジ(複数)36の様な隔膜取つけ設備管もち隔膜1
7をそれにとりつける。図1の実施態様操業中隔膜17
の交換が必要となったならば隔膜17t−除去する前第
2隔膜(図示していない)を使っていない7ランジ56
中に隔膜17と並置する。任意に7ランジS6の使用に
より2又はそれ以上の隔膜を同時に使用出来る。また7
ランジ36は少なくも陰極室16内でま九任意に陽極室
14においても陰極液又は陽極液中にある固体物賞によ
る隔膜17の機械的破損又は物理的閉塞を防ぐ為の少な
くも1rJ設備(図示されていない)をつけるに使用出
来る。
The container 12 is optionally placed in a suitable location 7 that serves as a passageway or storage area.
Diaphragm mounting equipment such as lunges (plurality) 36 Pipe holding diaphragm 1
Attach 7 to it. Embodiment of FIG. 1 Operating septum membrane 17
If it becomes necessary to replace the diaphragm 17t - 7 langes 56 that are not using the second diaphragm (not shown) before removing it.
It is juxtaposed with the septum 17 inside. Optionally, two or more diaphragms can be used simultaneously through the use of the seven-lunge S6. Also 7
The lunge 36 is provided at least in the cathode chamber 16 and optionally in the anolyte chamber 14 at least 1 rJ facility ( (not shown) can be used to attach.

図2Ifi電解槽総合設備10mの好ましi実施11様
を示すものでその外部加熱および(又は)冷却容器12
aは1IJ1極室161中に塩化カリクムー塩化すチク
ムー2塩化チタン−3塩化チタンを含む陰極液を入れか
つ陽極室14畠中に塩化リチウム−塩化カリウム電解i
を入れるに適している。
Figure 2 shows the preferred embodiment 11 of Ifi electrolytic cell comprehensive equipment 10 m, and its external heating and/or cooling vessel 12
a contains a catholyte containing potassium chloride, titanium chloride, and titanium trichloride in the electrode chamber 161, and lithium chloride-potassium chloride electrolysis i in the anode chamber 14.
suitable for putting.

陽極室14mは陰極室16aから陽極18aの周りを少
しはなれて取り巻いている多孔性織網隔膜17によって
区分されている。隔膜の使用寿命を延ばす為隔膜と陽極
の距離祉陽極りk袂の少なくも一倍、好ましくは−乃至
1−f倍とし4 直性と実質的に等しいのが最もよいら2沈着陰極20m
およびチタンイオン供給設備又は供給陰極22mは互に
また隔膜17mと離れて陰極室16a中にある。容器1
2aはまた隔膜17aおよび憎10mの積々の電気負荷
設備から電気的に絶縁されている。
The anode chamber 14m is separated from the cathode chamber 16a by a porous woven mesh diaphragm 17 surrounding the anode 18a at a distance. To extend the service life of the diaphragm, the distance between the diaphragm and the anode should be at least one time, preferably - to 1-f times the length of the anode, and preferably substantially equal to the straightness of the deposited cathode, preferably 20 m.
and the titanium ion supply equipment or supply cathode 22m are located in the cathode chamber 16a separated from each other and the diaphragm 17m. container 1
2a is also electrically isolated from the diaphragm 17a and from the 10 m long electrical load equipment.

容器12[は#lJ極室14mおよび(父は)陰極室1
6mに大気ガスが入るのを防ぐ様実貴的に気密とするに
適している0′?@解+4110af調整した実質的に
不活性喜囲気中で操業出来る様保峡カス導入設備37か
ら密閉容器121内に保護ガスを入れる。チタンに対し
ての調!1雰囲気は通常操業温度で電解液およびチタン
に対し実質的に不活性なアルゴン又はヘリウムの様なガ
スである。4塩化チタンと共に塩化リチウム−塩化カリ
ウム電解液を使う場合操業温度は通常塩混合物の共融点
(約348℃)から約650℃、好ましくは475℃乃
至575℃である。当然操業温度は使用する特定電MW
の融点又は軸回によって変るだろう。
Container 12 [is #lJ electrode chamber 14m and (father) cathode chamber 1
0' which is practically suitable for airtightness to prevent atmospheric gases from entering 6m? @Solution +4110af Protective gas is introduced into the closed container 121 from the hokyo scum introduction equipment 37 so that the operation can be carried out in the adjusted substantially inert atmosphere. Key against titanium! One atmosphere is a gas, such as argon or helium, that is substantially inert to the electrolyte and titanium at normal operating temperatures. When using a lithium chloride-potassium chloride electrolyte with titanium tetrachloride, the operating temperature is usually about 650°C, preferably from 475°C to 575°C, from the eutectic point of the salt mixture (about 348°C). Of course, the operating temperature depends on the specific electric power MW used.
It will vary depending on the melting point or axial rotation.

陽極18a1沈着陰極201又は供給陰極22mの交換
又は検査の為取出せる様に陽極室14k又は陰極glA
a内の雰囲気を反応性大気ガスで汚染せずに陰極および
(又は)陽極を最出す為の空気ロック38.38&およ
び38bの様な気密室をつけることが好ましい。容器1
2a内に反応性ガスが入りその4囲気を汚染す葛のを防
ぐ為陽極室14mおよび1極室16atIIS、部犬“
−・ら遮断するに適したパルプ40の様な設備を設ける
oti!極、陰極又は隔膜を容器12mから取り出し又
は容器内に入れる際にパルプ40は閉じて空気ロック3
8.58mおよびSBbを遮断するに適する。このパル
プお工ひ空気ロックの操作はこの分野の知識ある名には
よく知られている。
Anode chamber 14k or cathode glA so that the anode 18a1 deposited cathode 201 or supply cathode 22m can be removed for replacement or inspection.
It is preferred to provide an airtight chamber such as air lock 38, 38& and 38b to vent the cathode and/or anode without contaminating the atmosphere within a with reactive atmospheric gases. container 1
In order to prevent reactive gases from entering 2a and contaminating the surrounding atmosphere, the anode room 14m and the 1st electrode room 16atIIS are installed.
- Provide equipment such as pulp 40 suitable for blocking from oti! When removing the electrode, cathode or diaphragm from the container 12m or putting it into the container, the pulp 40 is closed and the air lock 3
Suitable for blocking 8.58m and SBb. The operation of this pulp engineered air lock is well known to knowledgeable names in this field.

生成された塩素ガスを除去する4管3’2mは少なくも
一部がlI!惨空気ロック58b内にある。沈着陰極空
気ロック38mは陰極室から金塊チタンを取出すのに使
用出来る。
At least a portion of the 4 pipes 3'2m that remove the generated chlorine gas are lI! It is inside the savage air lock 58b. The deposition cathode air lock 38m can be used to remove the titanium gold bullion from the cathode chamber.

原子価電電42は電解槽10mの扮業中電解液内のチタ
ンイオンの平均原子価測定の為少なくも一部t−n融ハ
ロゲン化物電解液中に浸漬しておく。原子価電極42は
陰極室16a内のチタンイオン績度およびしたがって平
均チタンイオン原子価t−調節又は調整する為4塩化チ
タン供給源24mおよびポンプ44の゛様な4塩化チタ
ン計量設備と連/″:・””1.il:。
The valence electrolyte 42 is at least partially immersed in a tn fused halide electrolyte in order to measure the average valence of titanium ions in the electrolyte during operation of the electrolytic cell 10 m. The valence electrode 42 is in communication with titanium tetrachloride metering equipment, such as a titanium tetrachloride source 24m and a pump 44, to adjust the titanium ion performance and therefore the average titanium ion valence t in the cathode chamber 16a. :・””1.il:.

絡させうる。1普ポンプ44は導管又はパイプ46をと
おし供給陰&221に対する4塩化チタン供給誉調整し
それによってチタンイオン濃度を規定値に調節するに適
しているO 陽極庫14mおよび陰極室1.6 a内の電解液を規定
温度に保つ為電解液温度調整設備47を設けるとよい0
温度崗整設備+7は必要に応じ例えば空気、電気的、ガ
ス又は油の様な単知手段を選んで電解液を冷却又社加熱
してvI4節出来る。
It can be involved. A pump 44 is suitable for adjusting the titanium tetrachloride supply to the supply cathode &221 through a conduit or pipe 46 and thereby adjusting the titanium ion concentration to a specified value in the anode chamber 14m and the cathode chamber 1.6a. It is recommended to install electrolyte temperature adjustment equipment 47 to maintain the electrolyte at a specified temperature.
Temperature adjustment equipment +7 can cool or heat the electrolyte by selecting a single means such as air, electricity, gas or oil as required.

電解11110a操業中好ましくない酸化物、窒化物お
よび一般に滓としてこの分野で知られている汚物の様な
他の固体物質が容器12a内に累積する0電解檜、10
aから電解液を余り損美せずに人力で又は機械的に滓を
除去出来る様パルプ七パイプの組合せ滓除去設備48を
設けることが出来る。
During electrolytic 11110a operation undesirable oxides, nitrides and other solid materials such as filth, commonly known in the art as slag, accumulate within vessel 12a.
A combination sludge removal equipment 48 of seven pulp pipes can be provided so that sludge can be removed manually or mechanically from a without damaging the electrolyte.

隔膜17mの形態は記載装置中一番重喪なものであるO
隔膜1.7 a中の孔又扛開口は例えば実質的量の金属
チタン粒子、酸化チタン又は滓による閉塞を防ぐに充分
大きいことが必要である。更に孔はチタンイオンを含む
溶融塩浴の実質的量が陽極室14mから陰極室16mに
とおり抜けるのを防ぐに充分小さい面積である必要があ
る0同時にまた陽極室14a中の望む浴組成を貴2為塩
化リチウムー塩化カリウム1[M液の充分の量が陰極室
16aから陽極室14mに入り得る充分の大きさのもの
であることが好ましい。ニッケル基質上に例えばtjW
的に又は非電気的に着けたコノ(ルト層をもつ金塊隔膜
が上記j&詩に適合することか発見されている。メッキ
した隔膜[Cfが0.1乃至25の場合、α1乃至(L
5、好ましくは11乃至α4のcdをもつoしかし例え
ばα005の様な低いCd金もつ隔膜もチタン製造に充
分使用出来るとわかっておりこれも本発明の軸回内であ
る。Cfは11乃至8が好ましくα2乃至1が更によい
ら 上記装置、特に規定したCdお工びCftもつM孔隔換
の使用によってチタンの様な多価金ll4t−電解中隔
膜孔大きさを調節する必要なく製造出来ることを発見し
たのである。
The shape of the diaphragm 17m is the most important among the devices described.
The pores or openings in the diaphragm 1.7a need to be sufficiently large to prevent blockage by, for example, substantial amounts of titanium metal particles, titanium oxide or slag. Additionally, the holes must be of a sufficiently small area to prevent a substantial amount of the molten salt bath containing titanium ions from passing from the anode chamber 14m into the cathode chamber 16m. It is preferable that the size of the lithium chloride-potassium chloride 1[M solution is large enough to allow a sufficient amount of the solution to enter the anode chamber 14m from the cathode chamber 16a. For example tjW on a nickel substrate
It has been discovered that a gold bullion diaphragm with a conductive or non-electrolytically applied layer is compatible with the above conditions.
5, preferably with a cd of 11 to α4. However, membranes with lower Cd gold, such as α005, have also been found to be satisfactory for use in titanium production and are also within the scope of the present invention. If Cf is preferably 11 to 8, and α2 to 1 is even better, the pore size of the polyvalent gold such as titanium ll4t-electrolytic septum can be adjusted by using the above-mentioned device, especially an M pore exchanger with a specified Cd Cft. They discovered that they could be manufactured without the need for

更に隔膜はその上に金塊膜をもつ網状金属基質であるの
で、それは使用前容易に貯蔵出来また陶器質隔膜よりも
機械的損傷に耐える。
Additionally, because the diaphragm is a reticulated metal matrix with a gold nugget membrane thereon, it can be easily stored before use and is more resistant to mechanical damage than porcelain diaphragms.

図3は隔膜をとおる水量麺皮測定用設備の概略図を示し
yいる。温度約75℃に保った水は水槽50から導管5
4をとおして隔膜52に供給される。水流速度は上方に
伸びている管56申導管54のム軸から[56内の水表
面迄25.4cmの高さの水準又はヘッドとするに充分
なものとする。管56の上趨は大気中に開いている。管
56内のヘッドをかく保てば試験する隔膜巨2上の平均
ヘッドを本釣24a4cnrK7つ。、!−;JEカえ
、ゴ:1194cj。エヶおお、よ量は容器58に受け
てIIJることか出来る9測定流速t/分は流量係数C
f決定に使用出来る。
FIG. 3 shows a schematic diagram of the equipment for measuring the amount of water passing through the diaphragm. Water kept at a temperature of approximately 75°C is passed from the water tank 50 to the conduit 5.
4 to the diaphragm 52. The water flow velocity shall be sufficient to provide a level or head of 25.4 cm from the axis of the conduit 54 to the surface of the water in the upwardly extending tube 56. The upper end of the tube 56 is open to the atmosphere. If the heads in the tube 56 are kept this way, the average head on the diaphragm giant 2 to be tested is 24a4cnrK7. ,! -; JE Kae, Go: 1194cj. 9. The measured flow rate t/min is the flow coefficient C.
It can be used to determine f.

さて図4の試験装置又はセルについては従来特定隔膜が
電解槽使用に適しているかどうか予め決定することは困
難であったし時には不可能であった。隔膜構成材質が実
質的に非反応性、即ち電解槽内の電解液と物理的にも化
学的にも不活性でなければならないことは仰られている
oしかし特定M孔隔膜の構造および表面特性の槽動率に
及ぼす影響を正確に子側する手段は一般に知られていな
い。したかって隔膜を勤解装隨に挿入する以前に隔膜が
檜に有効であるかどうか決定する手段があることは非常
に望筐しいOt屑憤便用における隔膜の適応性測定方法
が開発されている。七の方法は電解液を入れた試験セル
中に屓けた一次1□1 陽極と一次隙一、、門に分′″[1″る直流起電力を印
加する0:艷、、、。
Now, with respect to the test apparatus or cell of FIG. 4, it has heretofore been difficult, and sometimes impossible, to determine in advance whether a particular diaphragm is suitable for use in an electrolytic cell. It has been stated that the membrane constituent materials must be substantially non-reactive, i.e., physically and chemically inert with the electrolyte in the electrolytic cell; however, the structure and surface characteristics of the specific M-pore membrane Generally speaking, there is no known means to accurately measure the influence of the oscillation rate on the tank motion rate. Therefore, it would be highly desirable to have a means of determining whether or not a diaphragm is effective for use on cypress before inserting the diaphragm into a toilet. There is. The seventh method is to apply a direct current electromotive force of 1' to the primary anode and the primary gap 1, which is placed in the test cell containing the electrolyte.

とエリ成る0電所液の規定部分をとおる電気特性は二次
陽極と@極の間にあり規定距離離れた第1塩ブリツジと
第2塩ブリツジによって電解液の規定部分と連絡してい
る2測定電極を使って測定する。測定しようとする隔膜
を測定電極間に挿入し電解液の規定部分をとおる電気特
性を沖」定する。隔膜挿入によって起る電解液をとおる
特性変化か測定出来る〇 上記測定でいう隔膜とは電解槽中の陽極と陰極の間にあ
る多孔性障壁と定義される。この隔膜は例えばアスベス
ト、体尋性多孔質板又紘網、焼結多孔性材料等である。
The electrical characteristics of the electrolyte flowing through a specified part of the electrolytic solution, which consists of 2 Measure using a measuring electrode. Insert the diaphragm to be measured between the measurement electrodes and determine the electrical characteristics of the electrolyte passing through the specified portion. Changes in properties of the electrolyte caused by insertion of a diaphragm can be measured. The diaphragm in the above measurement is defined as a porous barrier between the anode and cathode in the electrolytic cell. This diaphragm is, for example, asbestos, a porous board or gauze, a sintered porous material, or the like.

隔膜の効率は少なくも一部はその多孔性および粗さの様
な表面特性に依るので、多孔性會検べる流量試験(一定
時間に隔−〇既知面積をとおる液量測定)のみが一般的
に電解槽操業時におけるこれからのIIM膜効率の正確
な測定ではない0例えば隔膜中の孔をとおる電流の本測
定法は隔膜の物理的多孔性と表面特性の双方に依るとわ
かっているO上記方法により得られた電圧、抵抗および
(又はン電流測定は驚く程正確に隔膜効率t−表わすこ
とが発見されている。
Since the efficiency of a diaphragm depends, at least in part, on its surface properties such as porosity and roughness, only flow tests (measuring the amount of liquid through a known area at intervals of 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 type form type shape shape form to detect) than porosity tests (measuring the amount of liquid through a known area at regular intervals) are generally available. For example, this method of measuring current through the pores in a membrane is known to depend on both the physical porosity and surface properties of the membrane. It has been discovered that the voltage, resistance and/or current measurements obtained by the above method are surprisingly accurate indicative of the membrane efficiency, t.

上、1ピ方法は例えば電解用隔膜の適応性試験用又はこ
の隔膜の製造又は操業における品質管理の定期的又は連
続的監視用に使用出来る。
Above, the 1P method can be used, for example, for suitability testing of electrolytic membranes or for periodic or continuous monitoring of quality control in the manufacture or operation of such membranes.

図4における一次陽極60および一次陰極61の様な一
次電極は′#IL4M液占2中に浸漬され電源64に接
続される0適当するttm液が一次1に極60と61お
よび隔膜66と適合し隔膜661i@i屑液62中に押
入の電気的影響を正確に測定しうるに充分な電気伝導度
をもつ。−次電極60と61お工び1[M液量2は可逆
電解反応をなしうる電池を形成する様選ぶ。更に金属性
隔膜を試験する場合電解液62の電4贋は隔膜66の電
解液62への挿入が金属性隔膜が申間電惨となるに不充
分な一次電極60と61間の電圧変化を生ずる様なもの
でなければならない。一般に適当する!層液の例と”し
ては金員の塩素@塩、塩化物、硝酸塩および硫酸塩の様
な無機塩水浴液又は酸電解溶液がめる0適当する金g1
4F!例えばアルカリ金属、アルカリ土金槁および遷移
金属であり、LilNa%に、 Rb、 Cm、Bs、
Mg、Ca。
The primary electrodes, such as primary anode 60 and primary cathode 61 in FIG. The diaphragm 661i@i has sufficient electrical conductivity to accurately measure the electrical effects of intrusion into the waste liquid 62. -Next electrodes 60 and 61 The amount of liquid 2 is selected to form a battery capable of carrying out a reversible electrolytic reaction. Furthermore, when testing a metallic diaphragm, the voltage change in the electrolyte 62 is such that insertion of the diaphragm 66 into the electrolyte 62 causes an insufficient voltage change between the primary electrodes 60 and 61 to cause the metallic diaphragm to fail. It must be something like that. Generally appropriate! Examples of liquids include chlorine salts, inorganic salts such as chlorides, nitrates, and sulfates, or acid electrolyte solutions containing suitable gold.
4F! For example, alkali metals, alkaline earth metals, and transition metals, including LilNa%, Rb, Cm, Bs,
Mg, Ca.

SrおよびBa  の様なアルカリおよびアルカリ土金
塊が好ましい。−大電極材料として使う物質は一般にこ
の分野で電極用と知られたもの、例えにグラファイト、
Ru、 Rh。
Alkali and alkaline earth gold ingots such as Sr and Ba are preferred. - The materials used as large electrode materials are generally those known in this field for electrodes, such as graphite,
Ru, Rh.

Pd、 Ag% Os、Ir、PtおよびAu である
◎銀−塩化輯電極は一次電極として使用に特に適してい
るとわかっており好オしい。
Silver-chloride electrodes are preferred as they have been found to be particularly suitable for use as the primary electrode.

一次電極60と61は実質的に非電導性支持物68と6
9内にあり電極60の表面65は規定距離、例えij2
.54個電極61の表面67から離れている。支持物6
8と69扛例えdメチルアクリレート可塑物質でできて
おり、隔膜を支持物に接触して取付は次場合実質的にす
べての電at隔膜661i−とおして電&60と61の
間に通じさせるに適している。
Primary electrodes 60 and 61 are substantially non-conductive supports 68 and 6
9 and the surface 65 of the electrode 60 is at a specified distance, for example ij2
.. 54 are separated from the surface 67 of the electrode 61. Support 6
8 and 69 are made of methyl acrylate plastic material and are suitable for mounting the diaphragm in contact with a support to allow communication between the diaphragm 661i and 60 and 61 in virtually any case. ing.

付にカロメル測定用2電極70と72は第1塩ブリツジ
および第2塩ブリツジにより11L解液62に接続して
いる。
Additionally, two electrodes 70 and 72 for measuring calomel are connected to the 11L solution 62 through a first salt bridge and a second salt bridge.

オリフィス78と80および塩ブリッジ74と76はそ
れぞれ一次電極60と61の間の定めた位置において支
持物68と69を抜けて11iN液62と連絡している
。オリフィスysト’5ora11i1.′ps液6液
中2中オI、1フ#)中心@BとCで表わしてオリフィ
スの中心間定めた1喘、例えば1.96nはなれた位置
にある。
Orifices 78 and 80 and salt bridges 74 and 76 communicate with 11iN liquid 62 through supports 68 and 69 at defined locations between primary electrodes 60 and 61, respectively. Orifice yst'5ora11i1. 'PS liquid 6 liquids, 2 in 2 in 1, 1 in 2) Centers @ B and C are defined by 1 distance between the centers of the orifices, for example, 1.96n, which are located at separate positions.

本発明に用いるに過した測定用又は補助電極70および
72はよく知られたものである。例えばカロメル、カド
ミウム、水素、水銀電極等が測定用電極として使用出来
る。
The measuring or auxiliary electrodes 70 and 72 used in the present invention are well known. For example, calomel, cadmium, hydrogen, mercury electrodes, etc. can be used as measurement electrodes.

く 本発明の実施に当り直fIt−電力を一次電極間に一定
電流・□狸 を流す為−次陽極60と一次陰極61.1間に印加する
In carrying out the present invention, direct electric power is applied between the secondary anode 60 and the primary cathode 61.1 in order to cause a constant current to flow between the primary electrodes.

−天竜極間60と61に印加する起電力は′wi解液層
液を分解するに要する電位より小さな電圧を1kL解液
tとおし生ずる必要がある。例えばNa C1水溶液が
電解液である場合電解液をとおしての電圧社少なくも水
の分解電位より小さくなけれはならない。
- Tenryu The electromotive force applied between the poles 60 and 61 must generate a voltage smaller than the potential required to decompose the solution layer liquid through 1 kL of solution solution t. For example, when an aqueous NaCl solution is an electrolyte, the voltage through the electrolyte must be at least lower than the decomposition potential of water.

電気特性、塩ブリッジオリフィス78と80間の定めた
距j1をとおしての電圧Fi測定電極70と72によっ
て飼足する。電解液62の抵抗は測定電極70と72間
の測定電圧!既知電流で除して決定される。
The electrical characteristics are measured by the electrodes 70 and 72, which measure the voltage Fi through a defined distance j1 between the salt bridge orifices 78 and 80. The resistance of the electrolyte 62 is the measured voltage between the measuring electrodes 70 and 72! Determined by dividing by the known current.

隔膜66Fi、電解液62中−天竜極60と61および
塩プIJツジオリフイス78と80間におきそれに1っ
て塩ブリッジオリフィス78と80間の定めた距離をと
おしての#j定電極間の電気抵抗が変る。前述のとおり
隔膜66扛文持物68によって定められた隔膜面積tと
おして電流が最大に流れる禄かつ支持物68の表向およ
び隔膜66又は隔膜66の周囲端の間の界面におけるす
き間を流れる電流を最小とする様な方法で支持物68と
接触させておく。
Diaphragm 66Fi, electrolyte 62 - Tenryu poles 60 and 61 and salt bridge orifices 78 and 80, and electricity between #j constant electrodes through a defined distance between salt bridge orifices 78 and 80. Resistance changes. As described above, when the current flows maximum through the diaphragm area t defined by the diaphragm 66 and the diaphragm 68, the current flows through the gap at the interface between the surface of the support 68 and the diaphragm 66 or the peripheral edge of the diaphragm 66. Contact with support 68 is maintained in such a manner as to minimize contact.

隔膜66は電解液62中−天竜極60と61および測定
電極70と72に通ずる塩ブリッジオリフィス78と8
2の間に位置しそれによって測定電極間の電気抵抗が変
る。
The diaphragm 66 has salt bridge orifices 78 and 8 that communicate with the electrolyte 62 - the Tenryu poles 60 and 61 and the measuring electrodes 70 and 72.
2, thereby changing the electrical resistance between the measuring electrodes.

既知一定電流において、11解液62の規定部分におけ
る測定電極によって飼った電圧変化は電解隔膜槽中の隔
膜の多孔性の電的特定および表面特性又は幼果性である
。この隔m*Fi塩化ナトリウム塩水からの塩素又は4
塩化チタンからのチタンの様な金属の′v11.解製造
用に通している。
At a known constant current, the voltage change observed by the measuring electrode in a defined portion of the 11 solution 62 is an electrical characteristic of the porosity and surface properties of the membrane in the electrolytic membrane bath or its juvenile nature. This interval m * Fi chlorine from sodium chloride brine or 4
'v11. of titanium-like metals from titanium chloride. It is used for solution manufacturing.

この方法は隔膜の間に生じたIjf流が隔膜の既知面積
のみをとおる様な大きさと形をもつ一次を極を使って隔
膜の均質性を検査するのに使用出来る◇−一次電極間電
気特性、電圧、抵抗又は電流は一次電極間に隔膜を入れ
る前後に電極間の規定部分tとおし測定出来る。各測定
後天の測定が隔膜の異なる部分について竹なわれる様隔
膜を一次電極に対して移動する。・2又II′i、3以
上の測定結果を比較すれば隔膜の透過性および表面特性
における均質性又は欠陥がわかる。この試験はどんな温
度又は圧力においてもそれらが一定に保たれる限り行な
うことが出来る。
This method can be used to test the homogeneity of a diaphragm using a primary pole of such size and shape that the Ijf flow generated between the diaphragms passes only over a known area of the diaphragm. , voltage, resistance or current can be measured through the defined portion t between the electrodes before and after inserting the diaphragm between the primary electrodes. After each measurement, move the diaphragm relative to the primary electrode so that each measurement is repeated on a different part of the diaphragm. Comparing the results of 2 or II'i, 3 or more measurements reveals homogeneity or defects in the permeability and surface properties of the diaphragm. This test can be performed at any temperature or pressure as long as they are kept constant.

前記の方法は多孔性金属性網、板又はグリッド隔膜、特
に金属メッキした多孔性金属織網に使用出来るとわかっ
ている。
It has been found that the above method can be used for porous metal mesh, plate or grid membranes, especially metal-plated porous woven metal mesh.

次に夾す実施例は本発明を例証するものである〇実施例
 1 実質的に図1に示した装置を用いてα1モル塩化ナトリ
ウム水性電解液(純度99.5重量漫の試薬級塩化ナト
リウムを蒸留水に溶解)、2.54m間隔の2個の42
amX1.55I×厚さα163角形鉄−塩(E銀−天
竜極および塩化ナト!J’)A t 9m1i1i11
1!(DI、、1F)11fE・↓−i’ffit6m
@fI)7−)、より一次電極間に物理的に接続された
2個の標準カロメル電極を使って電Mm隔膜として使用
する直径51国長さ2翫4傷円筒形ニッケルメッキした
ニッケル織網の適応性を検べた。嫁−塩化嵌電極は電極
間に網隔膜を挿入出来るメチルアクリレート可塑物枠内
に入れた。
The following examples are illustrative of the present invention. EXAMPLE 1 An α1 molar sodium chloride aqueous electrolyte (99.5 wt. (dissolved in distilled water), two 42
am
1! (DI,, 1F) 11fE・↓-i'ffit6m
@fI) 7-) Diameter 51 mm length 2 rods 4 scratches cylindrical nickel-plated nickel woven mesh for use as an electrical Mm diaphragm using two standard calomel electrodes physically connected between the primary electrodes We tested the adaptability of The bride-chloride fitting electrode was placed within a methyl acrylate plastic frame that allowed the insertion of the retinal diaphragm between the electrodes.

充分な電圧の直流起電力を一次電極間に2ミリアンペア
(ma)1!に流の流れる株−天竜極に印加した。電極
間に網隔膜を入れる前後の測定電極間の電圧および直流
電流を測定した。試験は一定室温(約20℃)1気圧に
おいて行なった0 塩化ナトリウム電Mg1t圧は68ミリポル)(mv)
と測定されまた隔膜挿入前の電流は2maと実鉦された
。隔膜を試験セルに押入後の測定ik憔間の電圧は93
mvに増加し電流はL定2m”−に保たれた。
A sufficient voltage of DC electromotive force is applied between the primary electrodes at 2 milliamperes (ma)1! It was applied to the current flowing stock - Tenryu Kiwami. The voltage and direct current between the measurement electrodes were measured before and after inserting the retinal diaphragm between the electrodes. The test was conducted at a constant room temperature (approximately 20°C) at 1 atm pressure.
It was measured that the current before inserting the diaphragm was 2 ma. The measured voltage after pushing the diaphragm into the test cell is 93
mv and the current was kept at L constant 2 m''-.

25mvの電圧増加は試験セル抵抗12.5オームの増
加又は電極間の塩化ナトリウム11解欣α7鐸に相当す
ると規準方法によって6を算された。
A voltage increase of 25 mv was calculated by the standard method to correspond to an increase in test cell resistance of 12.5 ohms or 11 ohms of sodium chloride between the electrodes.

同じ材料の穐々の隔膜を上記のとおり試験しまた4塩化
チタンからチタy製造電解槽に使用した。隔膜係数(C
d)〜又は隔膜電解液当量(インチ)を次式によって計
算し満足なおよび不満足な隔膜について比較した。それ
により満足な隔膜係数(Cd) ヲ決定した。
A diaphragm of the same material was tested as described above and used in a titanium y production electrolyser from titanium tetrachloride. Diaphragm coefficient (C
d) or membrane electrolyte equivalent weight (inches) was calculated and compared for satisfactory and unsatisfactory membranes by the following formula: Thereby, a satisfactory diaphragm coefficient (Cd) was determined.

隔膜係数は次式により表わされる: 上式中Vd+sは規定間隔り丈けはなれたオリアイスを
もつ塩ブリッジにより電解液と連絡している測定電極に
よって測定し隔膜が操作中上記壇プリ、ラジオリフイス
間に入っている場合の電解液の規定部分をとおして測定
した電圧(mv)とする。
The diaphragm coefficient is expressed by the following formula: where Vd+s is measured by a measuring electrode that is in communication with the electrolyte by a salt bridge with orifices spaced apart by a specified distance, and the diaphragm is measured between the podium and the radio rift during operation. The voltage (mv) measured across a defined portion of the electrolyte when it is contained in a

I d + s FiV4+1  におけるとおり隔膜
が入っている電解液中の一次電極間の測定電流(ml)
である。
I d + s Measured current (ml) between the primary electrodes in the electrolyte containing the diaphragm as in FiV4+1
It is.

■、はvd+a  と四−条件であるが隔膜のない場合
の測定電圧(mv)である。
(2) is the measured voltage (mv) under the four-conditions of vd+a but without a diaphragm.

1、は”dam を測定した条件であるが隔膜のない場
合の電解液中の一次電極間の測定電流(ml)である。
1 is the measured current (ml) between the primary electrodes in the electrolytic solution under the conditions under which "dam" was measured but without a diaphragm.

Dはブリッジ19フ12間の規定間隔である。D is the prescribed spacing between the bridges 19 and 12.

″実施例 2〜4 実施例1に記載の方法により他の金属線隔膜の係数(C
d)を測定した。試験条件および結果を表■に示してい
る。
``Examples 2 to 4 The coefficients (C
d) was measured. Test conditions and results are shown in Table ■.

(&)電解液α01モルn、so、および一次電極にグ
ラファイト、およlb)電解液にα01モルNaC1お
よび−天竜極に銀−塩化銀をそれぞれ用いて本方法によ
り更に金網網隔膜を試験した処満足な結果が得られた。
A wire mesh diaphragm was further tested by this method using (&) electrolytes α01 mol n, so, and graphite for the primary electrode, and lb) α01 mol NaCl for the electrolyte, and silver-silver chloride for the Tenryu pole, respectively. Satisfactory results were obtained.

表■ 隔膜係数測定 1   2   2   68    95   α2
762   2   2   60    75a18
85   5    S   10’a5  114 
  α0594   4   4  135   14
6   α061*・・・2.54cInt−一単位と
して表示付図2に示したと同じ電解様中で4塩化チタン
(TiC14)から純度99.9重量−の金属チタン含
生成し良。電解装置は外径4五6csX高さ561の実
質的に円筒形低炭素鋼容器に入っていた。直径4.8 
cm、長さ1&53の実質的に円1□。
Table ■ Diaphragm coefficient measurement 1 2 2 68 95 α2
762 2 2 60 75a18
85 5 S 10'a5 114
α0594 4 4 135 14
6 α061*...2.54 cInt - Contains metallic titanium with a purity of 99.9 weight - produced from titanium tetrachloride (TiC14) in the same electrolytic manner as shown in Figure 2 with indication as one unit. The electrolyzer was housed in a substantially cylindrical low carbon steel vessel with an outside diameter of 456 cs and a height of 561 cm. Diameter 4.8
cm, substantially a circle 1□ of length 1&53.

筒形で下端の閉じた隔膜を直径L 9 cm、長さ約4
S61の固体グラファイト陽極を中心として周囲におい
九〇約55重量−のLiC1と約45重量−のKCIよ
#)Iiするほば共融点組成をもつ浴融塩化リチウム−
塩化カリウム浴中に陽極の長さ1!L2a++が浸漬し
ていた。隔膜は望むCdとCfになるに充分な癒のコバ
ルト又はニッケルを電解的に又は非電気的にメッキした
工菓用純二Jツケル網であった。(表出お工び■参照)
゛メッキは相伝にぷい又は光反射の小さい面となる様な
メッキ液中で行なった。隔膜の使用寿命をのばす為隔膜
と、陽極の間隔は陽−直径の1乃至1−倍の範囲2 の寸法に選んだ。
A cylindrical diaphragm with a closed bottom end has a diameter of L 9 cm and a length of approximately 4 cm.
Surrounding the S61 solid graphite anode are about 55% of LiCl and about 45% of KCI.
Anode length 1 in potassium chloride bath! L2a++ was immersed. The diaphragm was a pure 2J mesh for confectionery use electrolytically or non-electrolytically plated with sufficient cobalt or nickel to form the desired Cd and Cf. (Refer to Expression ■)
゛Plating was carried out in a plating solution that produced a surface that was transparent or had low light reflection. In order to extend the service life of the diaphragm, the distance between the diaphragm and the anode was chosen to be in the range of 1 to 1 times the anode diameter.

沈着陰極は直径2.54tx、長さ19αの工業用軟鋼
棒であった。供給設備又は供給陰極tI′i、浴融亀肩
液甲にTiCl4カスt′送るものとした0供紺晶極は
スティンレス鋼管でその周囲にはなれて環状に円w形コ
バルト、妖又はニッケル・1し・ km電解的又は非電気的−メッキした100メツシユの
鉄又はニッケル網があるものであった0網の下端は閉じ
ていた。メッキした供給陰極網のCdFiα1乃至α6
でCfは(L2乃孝50であった。
The deposited cathode was an industrial mild steel bar with a diameter of 2.54tx and a length of 19α. The supply equipment or the supply cathode tI'i, which is to be fed to the bath melted tortoise shell, is a stainless steel tube with a circular w-shaped cobalt, nickel or nickel metal tube. The lower end of the mesh was closed, which had a 100-mesh electrolytically or non-electrolytically plated iron or nickel mesh. CdFi α1 to α6 of plated feed cathode network
And Cf was (L2 no Takashi 50).

操作は液体Ti C14t−ポンプで供給陰極に送った
0それが供給陰極の孔から溶融陰極液中に入ると気化し
てTi1l。
The operation was such that liquid TiC14t was pumped to the feed cathode.When it entered the molten catholyte through the feed cathode pores, it vaporized and produced Ti1L.

お工びTiC11に還元された。陽極で塩素が発生した
沈着陰極上に金属チタンが着くに充分な負荷を供給陰極
および陽極と一極に与えた。塩素i陽極室がら亀M’l
Jのカバーからのびたパイプによって絶えず除去した。
It was reduced to manufactured TiC11. A sufficient load was applied to the supply cathode and the anode and one electrode to deposit metallic titanium on the deposition cathode where chlorine was generated at the anode. Chlorine i anode chamber turtle M'l
It was constantly removed by a pipe extending from the cover of J.

チタンは定期的に先ず沈着陰極を装置から取りはずし陰
極から固体沈着チタンスポンジをはがして回収し次いで
陰&[t−櫂に取つけた。
The titanium was periodically collected by first removing the deposited cathode from the apparatus, peeling the solid deposited titanium sponge from the cathode, and then attaching it to the cathode.

陽極基幹よび陽極室内の雰囲気は+*M1mの大気圧に
対し;E圧を保つに充分なアルゴンガスを絶えず各室に
送って実質的に不活性状態に保った。
The atmosphere within the anode trunk and anode chamber was maintained in a substantially inert state by constantly feeding sufficient argon gas into each chamber to maintain an atmospheric pressure of +*M1 m; E pressure.

実施例5〜42により得たチタンtR効率およびチタン
硬度ならびにこれらの方法のパラメーターt−auiと
■に示している。表■と■から上記方法によって低硬度
、IIIJち高純度金稿チタンが効率的に生成出来るこ
とが明らかである。
The titanium tR efficiency and titanium hardness obtained by Examples 5 to 42 and the parameters of these methods t-aui and ■ are shown. It is clear from Tables (1) and (2) that low hardness, high purity gold titanium can be efficiently produced by the above method.

実施例5〜42に記載したと同様の方法でCd(100
3お工びC・f 1.1の隔膜管用いて満足にチタンか
製造出来た。
Cd (100
3.I was able to satisfactorily manufacture titanium using a diaphragm tube with C・f 1.1.

表  ■ 5   X α394α5663G 1856    
X(5)α205 (α490604057   X 
旺209α570゛30&808    X  123
B (α418301409    X  b、446
α598506.0510    X(5)扛505 
t43B 306.60t t           
      x(sン    tL333   rL6
77   50    48512     X   
      五325 α6763α6 &0013X
l1212α78460 !i+、6514     
X       ll”′248  α771 60 
 ’5.82:1: 1s  x   h4osα660−−16  X  
 b2s2(α24016(L6 α4517  X 
  ’[α220 rl、2466a84.602.1
3    5.43    530   6.4.0 
  77.5      ?42.13    5.1
2    530    −    67.0    
  −2.14    5.10    525   
711L5   711L5     702.15 
   400    550   62.5   72
.8     84Z17     !1L77   
 550   470     fao      9
02.16    4.68  525〜530 49
.3   7[L!1    1132.15    
 &27    51   62.0   69.2 
    872.24    五〇0  495〜5’
15 79.9   7&8     782.55 
   2.75  450〜555 81.3   8
4.7     702.23   2..541  
552   7&3   84.7      bts
llll。
Table ■ 5 X α394α5663G 1856
X (5) α205 (α490604057
Want 209α570゛30 & 808 x 123
B (α418301409 X b, 446
α598506.0510 X(5) 扛505
t43B 306.60t t
x(sn tL333 rL6
77 50 48512 X
5325 α6763α6 &0013X
l1212α78460! i+, 6514
X ll"'248 α771 60
'5.82:1: 1s x h4osα660--16X
b2s2(α24016(L6 α4517
'[α220 rl, 2466a84.602.1
3 5.43 530 6.4.0
77.5? 42.13 5.1
2 530 - 67.0
-2.14 5.10 525
711L5 711L5 702.15
400 550 62.5 72
.. 8 84Z17! 1L77
550 470 fao 9
02.16 4.68 525-530 49
.. 3 7 [L! 1 1132.15
&27 51 62.0 69.2
872.24 500 495~5'
15 79.9 7&8 782.55
2.75 450-555 81.3 8
4.7 702.23 2. .. 541
552 7&3 84.7 bts
lllll.

2.18  2.47  ”1553  ’ −82,
S    −2,212,37550〜558 77.
2   8&4    642.17   240  
550〜5587五1   87.7     68表
  ■ 26    X  α302α458504.127 
          X     IL2’84   
α418 3.OA928    X  A301 A
49030 A329    X  (1355α59
830130    X  cL285 (A418 
So 4.43t  X   α197 (A7213
04.552      X         森19
7  α6’76 6&4  A055  X   A
14.3 A77179.7 A554  X   A
1421198 B[175,Oss    x   
   &ts61α546ム1&056    X  
     A218 18130 60 5737  
X   (A247 A75604058  X   
ajsO8A49(1605802,1f    55
7  525〜535 612   644     
975  2.14    alj   530〜55
2  52.1   65.3   985  2.1
6   4.161    547    67.5 
  7五5   830   2.16    4,4
7  550〜537  76.5   62゜5  
   A30   2.14    4.75    
 535     86.4   27.3     
880   2.12    4..98  517〜
5.55.  74.6    j2.o      
880   2.20    198  502〜51
0  77.4   64.8     650   
2.20    150     527     7
五6   67.2     69o    ’z、s
s     五l   525〜530  7&5  
 770     9Q0  2.24   A[05
2”’2〜530 79.5  6a0   651.
1′。
2.18 2.47 ”1553 '-82,
S-2,212,37550~558 77.
2 8 & 4 642.17 240
550~558751 87.7 68 table ■ 26 X α302α458504.127
XIL2'84
α418 3. OA928X A301A
49030 A329 X (1355α59
830130X cL285 (A418
So 4.43t X α197 (A7213
04.552 X Forest 19
7 α6'76 6&4 A055 X A
14.3 A77179.7 A554 X A
1421198 B[175, Oss x
&ts61α546mu1&056X
A218 18130 60 5737
X (A247 A75604058 X
ajsO8A49 (1605802, 1f 55
7 525-535 612 644
975 2.14 alj 530-55
2 52.1 65.3 985 2.1
6 4.161 547 67.5
755 830 2.16 4,4
7 550-537 76.5 62゜5
A30 2.14 4.75
535 86.4 27.3
880 2.12 4. .. 98 517~
5.55. 74.6 j2. o
880 2.20 198 502~51
0 77.4 64.8 650
2.20 150 527 7
56 67.2 69o'z,s
s 5l 525~530 7&5
770 9Q0 2.24 A[05
2”'2~530 79.5 6a0 651.
1′.

、−一5・22工529 −  59.4  −6  
2.24    A60     −     71.
5   41.0     741  2.17   
2.56  550〜555  95.7   92.
6     63図5は負にチャージされた陰極上に金
属を電着させるため電解液内におくに適した本発明によ
る金属化合物供給陰極装置である。供給陰極装置は管又
はパイプ8oの様な供給管よりJlイオン化性多価金金
塊合物がそれをとおるのである。
, -15.22 529 - 59.4 -6
2.24 A60-71.
5 41.0 741 2.17
2.56 550-555 95.7 92.
663 FIG. 5 shows a metal compound delivery cathode device according to the invention suitable for placement in an electrolyte for electrodepositing metals onto a negatively charged cathode. The feed cathode device is a feed tube such as tube or pipe 8o through which the Jl ionizable multivalent gold bullion compound passes.

塩化カリウムと塩化リチウムの溶融混合物の様な電解液
中にパイプ80から4塩化チタン(TiC14)の様な
金属化合物の出るパイプ80の開口82をがこみ一般に
包囲しているのが包囲部品84である。包囲部品84の
少なくも一部#i亀導性肴孔部品86tl−成ムパイプ
8oの外部と包囲部品84の内部によって形成された環
状室88の様な供給電極室内から溶融tm浴中の金4ヒ
合物からのイオンを隣−・::。
A surrounding component 84 is inserted and generally surrounds the opening 82 of the pipe 80 from which a metal compound such as titanium tetrachloride (TiC14) exits from the pipe 80 into an electrolytic solution such as a molten mixture of potassium chloride and lithium chloride. be. At least a portion of the enclosure part 84 #i conductive bore part 86 tl - gold 4 in the molten tm bath from the supply electrode chamber, such as the annular chamber 88 formed by the exterior of the forming pipe 8o and the interior of the enclosure part 84. Ions from arsenic compounds next to -.::.

りの沈着他室(図に示していない)′にある陰極液に送
るに適している。実質的にガスをとおさない部品9oが
有孔部品86の上下端を物理的に閉じている。
It is suitable for sending the catholyte to the catholyte in the other chamber (not shown). Substantially gas-tight components 9o physically close the upper and lower ends of perforated component 86.

包囲部品84はパイプ8oの周囲に一同軸的に既知の方
法で固定されている・電気あに接続された負電源94に
よって負のチャージが有孔部品に与えられた場合有孔部
品84からパイプ80を電気絶縁する為に包囲部品84
からバイニブaoYtはなしでおく様任意に電気絶縁部
品92を入れる。
The surrounding part 84 is fixed coaxially around the pipe 8o in a known manner. When a negative charge is applied to the perforated part by a negative power supply 94 connected to the Enclosing part 84 to electrically insulate 80
An electrical insulating component 92 is optionally inserted so that the binib aoYt is left alone.

図5の実施態様操作中供給陰極t−亀気的にチャージさ
れた部分の少なぐも一部、好ましくは実質的に全部が溶
融ハロゲン化物電解浴の表面下に入る様電解檜内におく
。4塩化チタンの様なイオン化性金属化合物は図1に示
すとおり源泉24から流れ又はポンプで送られ導管8o
をとお?開口82から供給電解液室88に入る。負電源
94を働らか1 せるとM孔物品8り一極となる。電気的に負の有孔部品
1・・1゜ 86蝶少なくもある程度供給陰極内および周囲のチタン
イオンを高原子価から低原子価に還元する〇溶融電解液
を環状室88内からの実質的量の物理的撹流(例えば室
にガス状TiCl4の入る為生ずる)の伝達もなく供給
陰極周一の陰極室中に送るに充分な大きさの孔をもつ有
孔部品86を用いることによって従来法にまさる改善さ
れたTiCl4の利用が実埃されたのである0図6は本
発明の他の実施態様の容器102とカバー104をもつ
電解槽100の図で返る。金属沈着陰極106は陰極室
108にあり陽極室112内にある正負荷陽極110と
多孔性隔膜114に工9V@離されている。供給@極1
16は電解槽100内にあり陰極室108内にある陰極
液中に少なくも一部浸漬されている。供給陰極116は
溶融塩電解液中に浸漬しまたTiC1a’j:通すに適
した材質の供給/くイブ80mをもつ。陰極液は浴融I
・ロゲン化物混合物、例えばリチウムとカリウムの塩化
合物が好ましいo4塩化チクチタンイプ80aq)li
アルゴンの様な不活性ガスと共に同時に渡してもよい。
During operation of the embodiment of FIG. 5, the feed cathode t- is placed in an electrolysis chamber such that at least a portion, and preferably substantially all, of the gasically charged portion is below the surface of the molten halide electrolytic bath. An ionizable metal compound such as titanium tetrachloride flows or is pumped from a source 24 to a conduit 8o as shown in FIG.
What? It enters the supply electrolyte chamber 88 through the opening 82 . When the negative power supply 94 is turned on, the M-hole article 8 becomes one pole. Electrically negative perforated parts 1...1゜86 supply at least to some extent to reduce titanium ions in and around the cathode from high valence to low valence; molten electrolyte is substantially supplied from inside the annular chamber 88; Conventional methods can be achieved by using a perforated component 86 with holes large enough to route the supply cathode circumference into the cathode chamber without the transmission of a large amount of physical agitation (e.g., caused by the entry of gaseous TiCl4 into the chamber). FIG. 6 is a diagram of an electrolytic cell 100 having a vessel 102 and a cover 104 in accordance with another embodiment of the present invention. A metal deposited cathode 106 is located in a cathode chamber 108 and separated by 9 V from a positively loaded anode 110 in an anode chamber 112 and a porous diaphragm 114 . Supply @ pole 1
16 is located in the electrolytic cell 100 and is at least partially immersed in the catholyte in the cathode chamber 108 . The supply cathode 116 is immersed in the molten salt electrolyte and has a supply/tube 80 m of a material suitable for passing through TiC1a'j. The catholyte is bath melt I
・Rogenide mixtures, for example salt compounds of lithium and potassium are preferred
It may also be passed together with an inert gas such as argon.

不活性ガスはtiw液中のTlC14又は固体金属化合
物の混合を促進する0有孔部品86mはパイプ80&の
下端82龜を実質的に完全に包囲している。
The inert gas promotes mixing of the TIC 14 or solid metal compound in the TIW liquid.The perforated piece 86m substantially completely surrounds the lower end 82 of the pipe 80&.

部品86&はパイプ80mと一般に共軸で任意に離れて
いる支持物118に物理的に支持され電気的に接続して
いる。
Components 86& are physically supported and electrically connected to supports 118 which are generally coaxial and optionally spaced from pipe 80m.

支持物118又はパイプ80a内をとおるガスを加熱し
また近くのtM液の固化を最小とする為電気加熱器の様
な加熱設備170″を任意にパイプ80mおよび支持物
118の間に隣接しておいてもよい。支持物118中に
電解液に#;解又は解離しないアルゴンの様な過剰ガス
t−環状部124をとおり適当な容器(図に示していな
い)に排出するガス排出口122t−設ける。支持物1
18に任意に少なくも電解液に一部浸漬出来る実質的な
気密部品901t一つけ電解槽内の雰囲気に過剰ガスの
進入を防ぐ。実質的に部品84m全部を電解液中に浸漬
するのがよい。
Heating equipment 170'', such as an electric heater, is optionally placed adjacently between pipe 80m and support 118 to heat the gas passing through support 118 or pipe 80a and to minimize solidification of nearby tM liquid. Excess gas, such as argon, which does not dissociate or dissociate into the electrolyte in the support 118, and a gas outlet 122t, which passes through the annular portion 124 and discharges it into a suitable container (not shown). Provide.Support 1
18, a substantially airtight component 901t which can optionally be at least partially immersed in the electrolytic solution is installed to prevent excess gas from entering the atmosphere within the electrolytic cell. Preferably, substantially the entire part 84m is immersed in the electrolyte.

有効部品86aは流量係数Cfがα1乃至300の範囲
内である場合電気的係数Cdが0より大きく約1迄、好
ましくはα1乃至1の範囲でめる特徴をもつ。有孔部品
の係数Iri隔膜係数測定について記載したと同じ方法
で測定出来るO 有孔部品86[は例えば実質的に均一な穴又は孔が全面
にある焼結板、網、板又は薄膜でよい。この孔は例えば
筒孔、打抜き、!!6蛾等によって形成出来る。有孔部
品86mは望むCdとCfをもつ様篭漸的又は非電気的
方法で充分の蓋のコバルト、鉄又はニッケルの様な物J
xを着けた米国標準ふるい50乃至250メツシユ、好
ましくは100乃至200メツシユの織網ふるいが好ま
しい。適当する沈着法は例えばメッキ液中光択剤菫を減
しして見た目ににぷい:5゜ 又は粗い表面とするに適した耽知あり1法である。例え
ば次の浴Mを使用して100又は200メツシユの炭素
鋼又は工条用純ニッケル網の満足なメッキを行なつ喪の
でめる:非電気的コバルト          最終液
f/を塩化コバルト(CoC1箕・H鵞0)30くえん
酸ナトリウム(Na3C@H50?*2H20)   
 55〜50塩化アンモニウム(NH4C1)    
       50次亜りん酸ナトリウム(Na Ha
POz ・2H10)      20pH8〜9 非電気的ニッケル          最終1fi、t
7を塩基性炭酸ニッケル(4NiCOs・3Ni(OH
)雪・4H意0)1α00くえんM!(Cs)IsOy
)                5.25重ふつ化
アンモニウム(NH4HF、)、          
1α00次亜りん酸ナトリウム(NaH2PO2・H2
O)       2α00臭化水素醸(70容童lH
F液)″      瓜001を水酸化アンモニウム(
容量−NH40H)    5α00dl/lpH約6
−5゜ □ □ □□ 電解鉄 市販ぶつほう酸第1鉄          77 容量
−塩化ナトリウム(NaC1)           
45重量−水                   
23.容量−有孔部品の基質は電解槽100内の環境に
耐え槽内の操業温度に望む物理的強度をもつ鋼およびス
ティンレス鋼を含む鉄、コバルト又はニッケル又り少な
くも50重量sのコバルト又はニッケルを含むそれらの
合金の様な材質でよい0 有孔部品86mの形態は上記装置において重要であるO
有孔部品86mの孔又は開口は金属チタン粒子、他の多
価金属、酸化チタン又は滓の実質的量が詰らない程度に
充分大きい必要がある0更にこの孔は供給陰極116内
の撹流が陰極室内に入ることを最小とし出来れば実質的
に完全に防ぐに充分な面積をもつものでなければ表らな
いO同時に多数の孔は陰極室108から塩化リチウム−
塩化カリウム電J4液の望む浴濃度を保つに充分な量が
供給隘極室に入るに充分な大きさのものが好ましい0メ
ツキした有孔部品はCfが(11乃至300の場合al
乃至αるのCdt−もつものがよい。Cfはα2乃至3
0が好ましくα2乃至8が最もよい。
The effective component 86a has a characteristic that when the flow coefficient Cf is in the range α1 to 300, the electrical coefficient Cd is greater than 0 and is up to about 1, preferably in the range α1 to 1. The perforated component coefficient Iri can be measured in the same manner as described for the diaphragm coefficient measurement. This hole can be, for example, a cylindrical hole, a punched hole, or! ! 6 It can be formed by moths etc. The perforated parts 86m can be filled with desired Cd and Cf materials such as cobalt, iron or nickel in a gradual or non-electrical manner.
US standard sieves with 50 to 250 mesh, preferably 100 to 200 mesh woven mesh sieves are preferred. Suitable deposition methods include, for example, one known technique suitable for reducing the photoselective violet in the plating solution to produce a visually duller or rougher surface. For example, the following bath M can be used to satisfactorily plate 100 or 200 mesh carbon steel or pure nickel mesh: H0) 30 Sodium citrate (Na3C@H50?*2H20)
55-50 ammonium chloride (NH4C1)
50 Sodium hypophosphite (Na Ha
POz ・2H10) 20pH8~9 Non-electrical nickel Final 1fi, t
7 is basic nickel carbonate (4NiCOs・3Ni(OH)
) Snow/4H intention 0) 1α00 Kuen M! (Cs)IsOy
) 5.25 ammonium difluoride (NH4HF, ),
1α00 Sodium hypophosphite (NaH2PO2・H2
O) 2α00 hydrogen bromide brew (70 Yodo lH
Liquid F)'' Melon 001 was mixed with ammonium hydroxide (
Capacity - NH40H) 5α00dl/lpH approx. 6
-5゜□ □ □□ Electrolytic iron Commercially available ferrous borate 77 Capacity - Sodium chloride (NaC1)
45 weight - water
23. Capacity - The matrix of the perforated parts is made of iron, cobalt or nickel, including steel and stainless steel, or at least 50 wt s of cobalt or The form of the perforated part 86m is important in the above device.
The pores or openings in the perforated component 86m must be large enough to prevent substantial amounts of titanium metal particles, other polyvalent metals, titanium oxide, or slag from clogging. At the same time, a large number of pores must have a sufficient area to minimize, if possible, virtually completely prevent lithium chloride from entering the cathode chamber 108.
The 0-plated perforated part is preferably large enough to allow a sufficient amount of potassium chloride electrolyte J4 solution to enter the supply outlet chamber to maintain the desired bath concentration.
It is preferable to have Cdt-. Cf is α2 to 3
0 is preferable, and α2 to 8 are best.

供給陰極116(図6)の操作は図5に記載したとおり
で災に電源は沈着陰極106に規定した負の、チャージ
を与え陽極110に規定した正のチャージを与える様接
続する。
The operation of supply cathode 116 (FIG. 6) is as described in FIG. 5, with a power source connected to provide a defined negative charge to deposition cathode 106 and a defined positive charge to anode 110.

4塩化チタンを供給陰極に送った場合沈着陰極105に
おいて金属チタンが電着しまた陽極10において塩素元
素が発生し上方へ塩素貯槽(図示されていない)に流れ
る。実質的に有孔部品136a上には金属チタンは沈着
していない。
When titanium tetrachloride is delivered to the supply cathode, metallic titanium is electrodeposited at the deposition cathode 105 and elemental chlorine is generated at the anode 10 and flows upward to a chlorine reservoir (not shown). Substantially no titanium metal is deposited on the perforated component 136a.

次の実施例は更に本発明を例証するものである0実施例
 43〜4.9 図5(示したと同じ供給陰極をもち陽極と陰極が隔膜で
隔離されている低炭素鋼電解槽において純度的99.9
重量−の金属チタンをTiCl4から生成した。電解装
置は外径4 Fh、6 ex、高さ56αの実質的円筒
形容器内にあった。直径4.8 cm、長さ16.5c
H1で下端が閉じている実質的に円筒形の隔@を直径t
?へ長さ約45.6elll固体グラファイトvIjj
極の周囲に実質的に平行しておいた。陽極の長さ1&2
5Iをほぼ共融点組成をもつ塩化リチウム−塩化カリウ
ム溶融浴中に浸漬した。M孔部品は表■に示したCdお
よびCfとするに充分な童のコバルト、鉄又はニッケル
で電解的に又は非電気的に着けた鉄合金又は市販純ニッ
ケルいずれかの100メツシユ織網であった。
The following examples further illustrate the invention. EXAMPLES 43-4.9 Figure 5. 99.9
Weight of titanium metal was produced from TiCl4. The electrolyzer was in a substantially cylindrical vessel with an outer diameter of 4 Fh, 6 ex and a height of 56α. Diameter 4.8 cm, length 16.5 cm
A substantially cylindrical space closed at the lower end at H1 has a diameter t
? Length about 45.6ell solid graphite vIjj
They were kept substantially parallel to the circumference of the poles. Anode length 1 & 2
5I was immersed in a lithium chloride-potassium chloride molten bath having approximately the eutectic composition. The M-hole part is a 100-mesh woven net of either iron alloy or commercially available pure nickel coated electrolytically or non-electrolytically with cobalt, iron or nickel of sufficient grade to provide the Cd and Cf shown in Table 3. Ta.

表■に示しfc特性をもつ有孔織網部品tもつ供給陰極
を用い陽極と陰極に電位を印加して実施例43.〜49
のt解操業によって満足な金属チタンを生成し友。
Example 43 was carried out by applying a potential to the anode and cathode using a supplied cathode having a perforated mesh part t having the fc characteristics shown in Table 3. ~49
A satisfactory titanium metal was produced by the t-solution operation.

4塩化チタンを連続的にポンプで供給陰極に送るとチタ
ンはイオン化された後供給陰11io織網有孔部品の多
数の孔をとおって陰極室に入った。TiCl4の電解液
に入る際おこった供給陰極内の撹流は供給陰極内に充分
留まった。陽極発生塩素と陰極におけるチタンは適当に
檜から取り出したO 表  ■ 43  α222 α216  鉄   電解   鉄
44  α281  CL252   鉄   電解 
  鉄45   7   +1175  ニッケル  
電解  ニッケル46   α581  α699 ニ
ッケル   電解  コバルト47  α359 α7
71 ニッケル 非電気的 ニッケル48   α29
6  (1498ニッケル 非電気的 コバルト4? 
  CL524  [45ニッケル 非電気的  コバ
ルト上iピ明細書から嬰らかなとおり本発明は上に記載
した処□ と異なる種々の別色おLび修正法も実施出来る0この理
由から上記明細書は具て例証したものであって本発明を
限定するものと解釈されるべきでないことは十分了解さ
れるであろう〇
Titanium tetrachloride was continuously pumped to the feed cathode, the titanium being ionized and then entering the cathode chamber through the numerous holes in the feed cathode 11io woven perforated part. The agitation within the feed cathode that occurred upon entry into the TiCl4 electrolyte remained sufficiently within the feed cathode. The chlorine generated at the anode and the titanium at the cathode were extracted from Japanese cypress.
Iron 45 7 +1175 Nickel
Electrolytic Nickel 46 α581 α699 Nickel Electrolytic Cobalt 47 α359 α7
71 Nickel Non-electrical Nickel 48 α29
6 (1498 nickel non-electrical cobalt 4?
CL524 [45 nickel non-electrical cobalt top ipi] As is clear from the specification, the present invention is capable of carrying out various different color and correction methods different from those described above.For this reason, the above specification does not include It will be fully understood that these are illustrative examples and should not be construed as limiting the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

付図トは本発明に関連のある多価金属製造型M権の断面
図である。 付図2は本発明に関連のある他の%解槽の断面図である
。 付図3は本発明に関連のめる、隔膜をとおる水の流速測
定設備の概略図である0 付図4は本発明に関連のある隔膜係数測定設備の概略図
である。 付図5は本発明の供給陰極装置の概略図でめる0付図6
は本発明の供給fc*’e組合せた電解装置の実施例の
図である。 各図中番号: 10、10 m、 100−・・tM槽12.12m、
102・・・容器 14.14&、112・・・陽極室 16.16m、108・・・陰極室 18.18a、110−・陽極 20.20m、106・・・陰極 17.17m、52,66.114・・・隔膜22、2
2 m、 8 Tl、 80 a−TjC14供給設備
う4・・・Tiσi源泉 58,58a、58b・・・
空気ロック42・・・原子価電極     60・・・
−次陽極61・・・−次陰極      74・・・第
1塩ブリツジ70.71−・・カロメル測定電極 76・・・第2塩ブリツジ   78.80・・・オリ
アイス6B、69−・・支持物    80,80a・
−・ノくイブ82.82m・・・−口    84・・
・包囲部品86、86 m=・@孔部品  116−・
・供給陰極11B・・・支持物。
The attached figure is a cross-sectional view of a polyvalent metal manufacturing type M-type which is related to the present invention. FIG. 2 is a cross-sectional view of another tank that is related to the present invention. Attached Figure 3 is a schematic diagram of equipment for measuring the flow velocity of water through a diaphragm, which is related to the present invention.0 Attached Figure 4 is a schematic diagram of equipment for measuring the diaphragm coefficient, which is related to the present invention. Attached Figure 5 is a schematic diagram of the supply cathode device of the present invention.
1 is a diagram of an embodiment of the feed fc*'e combination electrolyzer of the present invention; FIG. Numbers in each figure: 10, 10 m, 100-...tM tank 12.12 m,
102... Container 14.14&, 112... Anode chamber 16.16m, 108... Cathode chamber 18.18a, 110--Anode 20.20m, 106... Cathode 17.17m, 52,66. 114...Diaphragm 22, 2
2 m, 8 Tl, 80 a-TjC14 supply equipment 4...Tiσi source 58, 58a, 58b...
Air lock 42...Valence electrode 60...
-Secondary anode 61...-Secondary cathode 74...First salt bridge 70.71-...Calomel measurement electrode 76...Second salt bridge 78.80...Oliice 6B, 69-...Support 80,80a・
-・Nokubu 82.82m...-guchi 84...
・Encircling parts 86, 86 m=・@hole parts 116−・
- Supply cathode 11B... support.

Claims (1)

【特許請求の範囲】 1、  (a)多価金属化合物をその源泉から電解槽中
の浴−塩浴に送るに適した出口少なくも1つをもつ、電
解槽に多価金属化合物を供給するための供給管:およl
b)少なくも一部が多価金属化合物イオンおよび電解液
をとおすに適した電導性有孔物体より成り、上記供給管
の少なくも出口を取巻き実質的に完全に包囲している部
品;より成ることを特徴とする溶融塩浴を入れた電解槽
中での使用に適す供給陰極装置。 2、N孔物体が0より大きく1迄の電気的係数と(Ll
乃至300の範囲の流量係数をもつ特許請求の範囲第1
項に記載の供給陰極装置。 & 電気的係数がα1乃至α6の範囲でありかつ流量係
数が[12乃至8の軛囲内である特許請求の範囲第2項
に記載の供給陰極装置。 4、供給賃金有孔物体から離すために電気絶縁材を配置
して成る特許請求の範囲第1項から3項迄のいずれかに
記載の供給陰極装置。 5、  Ti、 V、、 Cr、 Mn、 Fe、 C
o、 Ni、 Y、 Zr、 Nb。 Mo、 Ru、 Rh5PdXTe、 Os、  Ir
、又はptより選ばれた金楓の化合物を供給管をとおし
て送り高原子価イオンを低原子価に還元するように配置
して成る特許請求の範囲第1項から4項迄に記載の供給
陰極装ko   ’4 M孔物体が本質的に鉄、ニッケ
ル、コバルト又は上記金楓を少なくも50重1にチ含む
合金より成る多孔質金楓基責および本質的にコバルト又
はニッケルあるいはコバルト又はニッケルの合金より成
る金属被後より成る特許請求の範囲第1項から5項迄の
いずれかに記載の供給陰極装置。
[Claims] 1. (a) Supplying a polyvalent metal compound to an electrolytic cell having at least one outlet suitable for conveying the polyvalent metal compound from its source to a bath-salt bath in the electrolytic cell. Supply pipe for: approx.
b) a part consisting at least in part of an electrically conductive perforated body suitable for passing polyvalent metal compound ions and an electrolyte, surrounding and substantially completely surrounding at least the outlet of said supply tube; A supply cathode device suitable for use in an electrolytic cell containing a molten salt bath, characterized in that: 2. The N-hole object has an electrical coefficient greater than 0 and up to 1 (Ll
Claim 1 having a flow coefficient in the range of 300 to 300.
Supply cathode device as described in Section. & The supply cathode device according to claim 2, wherein the electrical coefficient is in the range of α1 to α6 and the flow coefficient is within the range of [12 to 8]. 4. The supply cathode device according to any one of claims 1 to 3, wherein an electrically insulating material is arranged to separate the supply cathode from the perforated object. 5, Ti, V, Cr, Mn, Fe, C
o, Ni, Y, Zr, Nb. Mo, Ru, Rh5PdXTe, Os, Ir
The supply according to claims 1 to 4, wherein a compound of maple selected from , or pt is sent through a supply pipe and arranged so as to reduce high valence ions to low valence ions. Cathode mounting ko '4 M Porous body consisting essentially of iron, nickel, cobalt or an alloy containing at least 50 parts by weight of the above-mentioned gold maple and essentially cobalt or nickel or cobalt or nickel. A supply cathode device according to any one of claims 1 to 5, comprising a metal cover made of an alloy of.
JP57171064A 1978-04-19 1982-10-01 Supply cathode device for fused salt bath electrolytic cell Pending JPS5873784A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
GB15530/78A GB1602664A (en) 1978-04-19 1978-04-19 Apparatus and method for electrowinning multivalent metals
CA301,957A CA1112605A (en) 1978-04-19 1978-04-25 Apparatus for electrowinning multivalent metals
AU75002/81A AU7500281A (en) 1978-04-19 1981-09-07 Apparatus and method for electrowinning multivalent metals
NO813249A NO813249L (en) 1978-04-19 1981-09-24 FEEDING CATHOD DEVICE FOR USE IN AN ELECTROLYSIS CELL CONTAINING A MELTED SALT BATH
NO813250A NO813250L (en) 1978-04-19 1981-09-24 PROCEDURE FOR DETERMINING THE SUITABILITY OF A METALLIC DIAPHRAGMA FOR USE IN AN ELECTROLYSIS CELL
JP57171065A JPS5873855A (en) 1978-04-19 1982-10-01 Method of inspecting adaptability of diaphragm used for electrolytic cell
JP57171064A JPS5873784A (en) 1978-04-19 1982-10-01 Supply cathode device for fused salt bath electrolytic cell

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
GB15530/78A GB1602664A (en) 1978-04-19 1978-04-19 Apparatus and method for electrowinning multivalent metals
CA301,957A CA1112605A (en) 1978-04-19 1978-04-25 Apparatus for electrowinning multivalent metals
AU75002/81A AU7500281A (en) 1978-04-19 1981-09-07 Apparatus and method for electrowinning multivalent metals
NO813249A NO813249L (en) 1978-04-19 1981-09-24 FEEDING CATHOD DEVICE FOR USE IN AN ELECTROLYSIS CELL CONTAINING A MELTED SALT BATH
NO813250A NO813250L (en) 1978-04-19 1981-09-24 PROCEDURE FOR DETERMINING THE SUITABILITY OF A METALLIC DIAPHRAGMA FOR USE IN AN ELECTROLYSIS CELL
JP57171065A JPS5873855A (en) 1978-04-19 1982-10-01 Method of inspecting adaptability of diaphragm used for electrolytic cell
JP57171064A JPS5873784A (en) 1978-04-19 1982-10-01 Supply cathode device for fused salt bath electrolytic cell

Publications (1)

Publication Number Publication Date
JPS5873784A true JPS5873784A (en) 1983-05-04

Family

ID=27560650

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57171065A Pending JPS5873855A (en) 1978-04-19 1982-10-01 Method of inspecting adaptability of diaphragm used for electrolytic cell
JP57171064A Pending JPS5873784A (en) 1978-04-19 1982-10-01 Supply cathode device for fused salt bath electrolytic cell

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP57171065A Pending JPS5873855A (en) 1978-04-19 1982-10-01 Method of inspecting adaptability of diaphragm used for electrolytic cell

Country Status (5)

Country Link
JP (2) JPS5873855A (en)
AU (1) AU7500281A (en)
CA (1) CA1112605A (en)
GB (1) GB1602664A (en)
NO (2) NO813249L (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097132B2 (en) 2006-07-04 2012-01-17 Luis Antonio Canales Miranda Process and device to obtain metal in powder, sheet or cathode from any metal containing material

Also Published As

Publication number Publication date
CA1112605A (en) 1981-11-17
NO813249L (en) 1979-10-15
AU7500281A (en) 1982-01-14
JPS5873855A (en) 1983-05-04
NO813250L (en) 1979-10-15
GB1602664A (en) 1981-11-11

Similar Documents

Publication Publication Date Title
US8460535B2 (en) Primary production of elements
US4104133A (en) Method of in situ plating of an active coating on cathodes of alkali halide electrolysis cells
US4555317A (en) Cathode for the electrolytic production of hydrogen and its use
US4560454A (en) Electrolysis of halide-containing solutions with platinum based amorphous metal alloy anodes
CA1060844A (en) Ruthenium coated cathodes
US2789943A (en) Production of titanium
JPH0452296A (en) Copper plating method
US4696731A (en) Amorphous metal-based composite oxygen anodes
US3282808A (en) Nickel impregnated porous cathode and method of making same
US2975111A (en) Production of titanium
US2848397A (en) Electrolytic production of metallic titanium
US1077920A (en) Electrode.
US2908619A (en) Production of titanium
US4219401A (en) Metal electrowinning feed cathode
US6432293B1 (en) Process for copper-plating a wafer using an anode having an iridium oxide coating
US4113584A (en) Method to produce multivalent metals from fused bath and metal electrowinning feed cathode apparatus
CA1113427A (en) Silicon carbide-valve metal borides-carbon electrodes
JPS5873784A (en) Supply cathode device for fused salt bath electrolytic cell
US4116801A (en) Apparatus for electrowinning multivalent metals
US3082159A (en) Production of titanium
US4165262A (en) Method of electrowinning titanium
US3945907A (en) Electrolytic cell having rhenium coated cathodes
US4118291A (en) Method of electrowinning titanium
WO1983001464A1 (en) Precipitation or depositing of particles from a solution
JPS5914556B2 (en) Metallic diaphragm for electrolytic production of titanium, electrolytic cell using the diaphragm, and method for producing titanium in the electrolytic cell