JPS5871889A - Preparation of anhydrous ethanol - Google Patents

Preparation of anhydrous ethanol

Info

Publication number
JPS5871889A
JPS5871889A JP56170967A JP17096781A JPS5871889A JP S5871889 A JPS5871889 A JP S5871889A JP 56170967 A JP56170967 A JP 56170967A JP 17096781 A JP17096781 A JP 17096781A JP S5871889 A JPS5871889 A JP S5871889A
Authority
JP
Japan
Prior art keywords
column
anhydrous ethanol
entrainer
ethanol
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56170967A
Other languages
Japanese (ja)
Other versions
JPS594991B2 (en
Inventor
Eiichi Mizutani
水谷 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Kakohki Coltd
Original Assignee
Chuo Kakohki Coltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Kakohki Coltd filed Critical Chuo Kakohki Coltd
Priority to JP56170967A priority Critical patent/JPS594991B2/en
Publication of JPS5871889A publication Critical patent/JPS5871889A/en
Publication of JPS594991B2 publication Critical patent/JPS594991B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To improve the thermal efficiency in the preparation of anhydrous ethanol, by distilling and concentrating unrefined fermentation product in vacuum, adding an entrainer to the product, and distilling the mixture under pressure, wherein the vapor obtained from the top of the distillation column is used as a heat source. CONSTITUTION:The unrefined fermentation product is distilled and concentrated in the concentration column 12 under reduced pressure to obtain a composition near the azeotropic composition in an ethanol/water system. Toluene is added to the concentrate as an entrainer, and the mixture is distilled in the dehydration column 22 under pressure to separate anhydrous ethanol. The vapor obtained from the top of the dehydration column 22 is subjected to the heat exchange with the liquid contained in the concentration column 12 using the heat exchanger 33, and separated with a decanter 54 into the entrainer and water. The water-phase is sent to the concentration column 12 and the entrainer is introduced into the dehydration column 22. The objective anhydrous ethanol can be obtained from the bottom of the dehydration column 22.

Description

【発明の詳細な説明】 本発明はアルコール発酵で得られる発酵醪から蒸留によ
シ無水エタノールを製造する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing anhydrous ethanol by distillation from fermented mash obtained by alcoholic fermentation.

一般に99.5容量%以上のエタノールを含有する無水
エタノール(JIS規格)は、医薬品、化粧品、酒精飲
料等に汎用され、更に近年では石油代替エネルギ源とし
て注目されている。
Anhydrous ethanol (JIS standard), which generally contains 99.5% by volume or more of ethanol, is widely used in pharmaceuticals, cosmetics, alcoholic beverages, etc., and has recently attracted attention as an energy source replacing petroleum.

従来、かかる無水エタノールの製造については、数多く
の方法が提供されているが、その殆んどは、アルコール
発酵で得られる発酵醪のような希薄エタノール含有物か
ら蒸留により製造する方法である。この従来献は、前記
発酵醪を蒸留塔(醪塔乃至濃縮塔、以下この蒸留塔を濃
縮塔と総称する)でエタノール/水系の共沸点近くまで
濃縮し、この濃縮した液を他の蒸留塔(脱水塔又は共沸
塔、以下この蒸留塔を脱水塔と略称する)に供給して、
エタノール/水/エントレーナの三成分系で最低共沸点
を有するエントレーナ(例えば、現在量も一般的に用い
られているのはベンゼン)と共に共沸蒸留し、脱水塔の
塔頂から共沸蒸留物を留出させ、次いでとの共沸蒸留物
を凝縮した後に液液平衡でエントレーナに富む層と水に
富む層とに分離して、一方ではエントレーナに富む層を
脱水塔に返送し、他方では水に富む層を更に他の蒸留塔
(回収塔、この場合前記濃縮塔を代用することもある)
で処理して、エントレーナ及びエタノールを回収しつつ
、脱水塔の塔底より無水エタノールを得る方法である。
Conventionally, many methods have been provided for producing such anhydrous ethanol, but most of them are methods for producing it by distillation from a dilute ethanol-containing material such as fermented mash obtained by alcoholic fermentation. In this conventional solution, the fermented mash is concentrated to near the azeotropic point of the ethanol/water system in a distillation column (a moromi column or a concentration column; hereinafter, this distillation column is collectively referred to as a concentration column), and the concentrated liquid is transferred to another distillation column. (Dehydration tower or azeotropic tower, hereinafter this distillation tower will be abbreviated as dehydration tower),
In the ternary system of ethanol/water/entrainer, azeotropic distillation is carried out with entrainer having the lowest azeotropic point (for example, benzene is commonly used at present), and the azeotropic distillate is extracted from the top of the dehydration column. After condensing the azeotropic distillate, it is separated into an entrainer-rich layer and a water-rich layer in liquid-liquid equilibrium, with the entrainer-rich layer being returned to the dehydration tower on the one hand, and the water-rich layer being returned to the dehydration tower on the other hand. The rich layer is further transferred to another distillation column (recovery column, in which case the above-mentioned concentration column may be substituted).
In this method, anhydrous ethanol is obtained from the bottom of the dehydration tower while recovering entrainer and ethanol.

しかし、かかる従来法には次のような欠点がある0 (1)アルコール発酵で得られる発酵醪中には蛋白質や
澱粉及び糖等によって代表される有機物、またカルシウ
ムやマグネシウム等によって代表される無機物が多量に
含ま九、これらが濃縮塔(特に醪塔)の内面や蒸留棚等
に強固なスクールとして付着する。この結果、圧力損失
が大きくなシ、効率が低下し、場合によっては運転不能
となるため一1濃縮塔を分解して清掃するという極めて
煩わしく且つ手間のかかる作業を強いられる。
However, such conventional methods have the following drawbacks. (1) The fermented mash obtained by alcoholic fermentation contains organic substances such as proteins, starches, sugars, etc., as well as inorganic substances such as calcium and magnesium. Contains a large amount of 9, and these adhere as strong schools to the inner surface of concentration towers (particularly moromi towers) and distillation shelves. As a result, pressure loss is large, efficiency is reduced, and in some cases, operation becomes impossible, forcing the extremely troublesome and time-consuming work of disassembling and cleaning the concentration tower.

(2)発酵醪中にはエタノール以外の更に他の不純物、
例えばフーゼル油や脂肪酸エステル等の微量成分、が含
まれ、これら不純物を濃縮塔で充分に取シ除くことが困
難であるため、脱水塔での共沸蒸留操作に余分な熱エネ
ルギを必要とする0 (3)濃縮塔と脱水塔との少くも2本の蒸留塔を使用す
るので、各々に多量の熱エネルギを必要とする。
(2) There are other impurities other than ethanol in the fermented moromi,
For example, it contains trace components such as fusel oil and fatty acid esters, and it is difficult to remove these impurities sufficiently in a concentrating column, so extra thermal energy is required for azeotropic distillation in a dehydration column. 0 (3) Since at least two distillation columns, a concentration column and a dehydration column, are used, a large amount of thermal energy is required for each.

本発明は、これらの従来欠点を解消するべく、濃縮塔段
階を減圧下で操作し且つ脱水塔段階を加圧下で操作す名
とともに、脱水塔段階塔頂蒸気を濃縮塔段階の加熱源と
することによシ、スケールの付着防止による作業性の改
善、微量成分の充分な除去によ°る無水エタノールの品
質向上、これと併せて脱水塔塔頂蒸気の有効利用による
熱エネルギの節減等をする、改良された無水エタノール
の製造方法を提供するものである。
In order to overcome these conventional drawbacks, the present invention operates the concentrator stage under reduced pressure and the dehydration tower stage under pressure, and uses the overhead vapor of the dehydration tower stage as a heating source for the concentrator stage. In particular, we will improve workability by preventing scale adhesion, improve the quality of anhydrous ethanol by sufficiently removing trace components, and save thermal energy by effectively using the steam at the top of the dehydration tower. The present invention provides an improved method for producing anhydrous ethanol.

ところで最近、新たに無水エタノールの製造方法が提供
されている(特開昭54−16414号)0この方法も
、発酵醪から蒸留によシ無水エタノールを製造するので
あるが、この際、濃縮塔を加圧下で操作し且つ脱水塔を
常圧下で操作する点に1特徴を有する。しかしこの方法
では、前記従来欠点(1)及び(2)が解消されず、む
しろ濃縮塔を加圧下で操作するためスケールの付着や微
量成分の分・離困難が増長される傾向となシ、また気液
平衡からも還流比を多くする必要がある等の欠点がある
By the way, recently, a new method for producing anhydrous ethanol has been proposed (Japanese Patent Application Laid-Open No. 16414/1983). This method also produces anhydrous ethanol by distillation from fermented mash, but at this time, a concentration column is used. One feature is that the dehydration tower is operated under pressurized pressure and the dehydration tower is operated under normal pressure. However, this method does not solve the conventional drawbacks (1) and (2), but rather tends to increase scale adhesion and difficulty in separating and separating trace components because the concentrating column is operated under pressure. Further, there are drawbacks such as the need to increase the reflux ratio in terms of gas-liquid equilibrium.

本発明は、濃縮塔段階を減圧下に比較的低温で操作する
ことによシ、濃縮塔内面や蒸留棚へのスケールの付着を
減少し、微量成分の除去を向上し、排液温度を下げるこ
とによる加熱エネルギを節減し、また脱水塔段階を加圧
下に操作することによシ例えば留出物の凝縮をし易くし
つつ、更に加えて脱水塔段階塔頂蒸気を濃縮塔段階の加
熱源とすることによシ、これらが関連して究極的に大幅
な熱エネルギの節減をするものである。
The present invention operates the concentrating column stage under reduced pressure and at a relatively low temperature, thereby reducing scale buildup on the concentrating column inner surface and distillation rack, improving the removal of trace components, and lowering the effluent temperature. By operating the dehydration tower stage under pressure, it is possible to facilitate condensation of distillate, for example, while additionally using the dehydration tower stage overhead vapor as a heating source for the concentrator stage. These ultimately result in significant thermal energy savings.

以下、図面に基づいて本発明の構成を詳細に説明する。Hereinafter, the configuration of the present invention will be explained in detail based on the drawings.

第1図は従来法による概略の無水エタノール製造工程図
である。矢印Aにしたがって発酵醪は濃縮塔11の下部
缶出液と熱交換機31で熱交換して濃縮塔11へ供給さ
れ、ここで共沸組成近くまで濃縮されて、塔頂より矢印
Bにしだがって凝縮器41を介し脱水塔21へ供給され
る0この間、濃縮塔11の塔底より発酵醪中の蛋白質や
脂肪等の有機物及びカルシウムやマグネシウム等の無機
物が缶出液とともに同伴され、また濃縮塔11の塔中間
部よシフーゼル油を主とする有機物(エタノールと高沸
物との中間沸点を有するもの)が分離されて、これがフ
ーゼル油分離器51で分別される。脱水塔M1では、塔
頂よジェタノール/水/エントレーナ(エントレーナバ
一般ニベンゼンが使用されている)の三成分共沸物が留
出され、これは凝縮器42を介しデカンタ52で液々平
衡によジエントレーナに富む層と水に富む層とに分別さ
れ、前者は矢印Cにしたがって脱水塔21へ返送されて
後者は矢印りにしたがって濃縮塔11(別に回収塔を使
用する場合もある)へ返送され、エントレーナ及びエタ
ノールが回収されつつ、脱水塔21の塔底より無水エタ
ノールが得られる。
FIG. 1 is a schematic diagram of an anhydrous ethanol production process according to a conventional method. According to the arrow A, the fermented mash exchanges heat with the bottom bottom of the concentrator 11 in the heat exchanger 31, and is supplied to the concentrator 11, where it is concentrated to near the azeotropic composition, and is then released from the top of the column according to the arrow B. During this time, organic substances such as proteins and fats, and inorganic substances such as calcium and magnesium in the fermented mash are entrained with the bottom liquid from the bottom of the concentrating column 11, and are also concentrated. Organic substances mainly consisting of schifusel oil (having a boiling point intermediate between that of ethanol and high-boiling substances) are separated from the middle part of the column 11, and separated by a fusel oil separator 51. In the dehydration tower M1, a three-component azeotrope of jetanol/water/entrainer (general entrainer nibenzene is used) is distilled from the top of the tower, and this is converted into diene by liquid-liquid equilibrium in a decanter 52 via a condenser 42. It is separated into a trainer-rich layer and a water-rich layer, and the former is returned to the dehydration tower 21 according to the arrow C, and the latter is returned to the concentration tower 11 (a separate recovery tower may be used in some cases) according to the arrow. Anhydrous ethanol is obtained from the bottom of the dehydration tower 21 while the entrainer and ethanol are being recovered.

そして、この一連処理の間、加熱蒸気は矢印E1Fにし
たがって供給される。
During this series of treatments, heating steam is supplied in accordance with arrow E1F.

しかし、かかる従来法に各種の欠点があることは前記し
た通りである0 第2図は本発明による概略の無水エタノール製造工程図
である。濃縮塔12及び脱水塔22に対して熱交換機3
2、フーゼル油分離器53及び凝縮器43を用いる流れ
はこの限シで前記従来法と同様である。しかし本発明の
場合、濃縮塔12は減圧下で且つ脱水塔22は加圧下で
操作されるとともに、脱水塔22の塔頂蒸気は、矢印G
にしたがって熱交換機33で濃縮塔12の塔内液と熱交
換されてその加熱源の一部として利用された後、デカン
タ54に供給され、ここでエントレーナに富む層と水に
富む層とに分別され、以下各々が前記従来法と同様に返
送されて回収されている。
However, as mentioned above, such conventional methods have various drawbacks. FIG. 2 is a schematic diagram of the process for producing anhydrous ethanol according to the present invention. Heat exchanger 3 for concentration tower 12 and dehydration tower 22
2. The flow using fusel oil separator 53 and condenser 43 is similar to the conventional method described above in this limit. However, in the case of the present invention, the concentration column 12 is operated under reduced pressure and the dehydration column 22 is operated under pressure, and the overhead vapor of the dehydration column 22 is
Accordingly, the liquid is exchanged with the liquid in the concentrating column 12 in the heat exchanger 33 and used as part of its heating source, and then supplied to the decanter 54, where it is separated into an entrainer-rich layer and a water-rich layer. The following items are returned and collected in the same manner as in the conventional method.

本発明の骨子は叙上のように、濃縮塔段階を減圧下で操
作し且つ脱水塔段階を加圧下で操作するとともに、脱水
塔段階の塔頂蒸気を濃縮塔段階の加熱源として利用する
点にある。
As mentioned above, the gist of the present invention is that the concentrator stage is operated under reduced pressure and the dehydration tower stage is operated under pressure, and the overhead vapor of the dehydration tower stage is used as a heating source for the concentrator stage. It is in.

先ず、濃縮塔段階を減圧下で操作することの利点を具体
的に説明する。第3図はエタノール/水系における概略
の気液平衡曲線である。代表例として、760o+Hg
における気液平衡曲線10と150wHgにおける気液
平衡曲線2oとを示しているが、図示するように、減圧
となるにしたがって気液平衡曲線は45度の対角線より
離れるようになる。これは、エタノールと水との分離が
容易になっていくことを意味しているが、実際にも本発
明によれば、従来法では4.0の還流比を8.0に下げ
ても充分に従来法と同等の濃度迄濃縮することができ、
またこの分だけ熱エネルギの節減につながっている。
First, the advantages of operating the concentration column stage under reduced pressure will be specifically explained. FIG. 3 is a schematic vapor-liquid equilibrium curve in the ethanol/water system. As a typical example, 760o+Hg
A vapor-liquid equilibrium curve 10 at 150 wHg and a vapor-liquid equilibrium curve 2o at 150 wHg are shown, but as shown in the figure, as the pressure decreases, the vapor-liquid equilibrium curve becomes farther away from the 45 degree diagonal. This means that the separation of ethanol and water becomes easier, but in reality, according to the present invention, it is sufficient to lower the reflux ratio from 4.0 to 8.0 in the conventional method. can be concentrated to the same concentration as conventional methods,
This also leads to a reduction in thermal energy.

また、フーゼル油や脂肪酸エステル等の分離については
、減圧操作することによりその分離度を大幅に向上でき
ることが既に知られているが(特公昭38−4319号
)、実際にも本発明によれば、従来法では5分程度のカ
メレオン価(エタノール中の有機物測定に用いる値)を
1゛0分以上にすることができる。
Furthermore, regarding the separation of fusel oils, fatty acid esters, etc., it is already known that the degree of separation can be greatly improved by operating under reduced pressure (Japanese Patent Publication No. 38-4319). The chameleon value (a value used to measure organic matter in ethanol), which is about 5 minutes in the conventional method, can be increased to 10 minutes or more.

さらに本溌明によれば、濃縮塔段階を減圧操作すること
により塔内温度を従来法の常圧操作よシ下げ得るため、
スケールの付着が極めて少なく−なり、したがって作業
性の改善と安定した運転をすることかできる。
Furthermore, according to this report, by operating the concentration column stage under reduced pressure, the temperature inside the column can be lowered compared to the normal pressure operation in the conventional method.
The adhesion of scale is extremely reduced, and therefore workability is improved and stable operation can be achieved.

加えて本発明によれば、濃縮塔段階を減圧操作してその
塔底温度を下げ得るため、脱水塔の塔頂蒸気を加熱源と
して利用することができる。すなわち、従来法の常圧操
作では、第2図における熱交換機33を濃縮塔塔底に連
結して用いることはスケールの著るしい付着で不可能に
近いのであるが、減圧操作で塔底温度を下げ得る本発明
によれば、熱交換機33へのかかるスケールの付着が無
視し得る程度となり、その連結による使用ができるよう
になるのである。
In addition, according to the present invention, the bottom temperature of the concentrating column can be lowered by reducing the pressure of the concentrating column, so that the steam at the top of the dehydration column can be used as a heating source. In other words, in the normal pressure operation of the conventional method, it is almost impossible to connect the heat exchanger 33 in FIG. According to the present invention, which can reduce the heat exchanger 33, the adhesion of such scale to the heat exchanger 33 becomes negligible, and it becomes possible to use the heat exchanger 33 by connecting the heat exchanger 33.

次に、脱水塔段階を常圧以上の加圧下で操作することの
利点は、塔内圧が高くなるにしたがって単位当シの共沸
組成分中に占める水分の割合が増加する点にある。第1
表は、エントレーナとしてベンゼンを用い、4種類の圧
力条件下で脱水塔を操作した場合の各共沸組成分内容を
例示しているが、この表からも明らかなように、本発明
によれば同じ脱水量を得るに要する塔頂蒸気量を減少す
ることができるようになシ、この際還流比も加圧になる
にしたがって小さくすることができ、例えば8.4気圧
下では常圧下の従来法で8.0の還流比が2.5でも充
分となるのであり、これらの分だけ熱エネルギの節減に
つながっている。
Next, the advantage of operating the dehydration tower stage under pressure higher than normal pressure is that as the internal pressure of the tower increases, the proportion of water in the azeotropic composition per unit increases. 1st
The table exemplifies the content of each azeotropic composition when benzene is used as an entrainer and the dehydration tower is operated under four types of pressure conditions.As is clear from this table, according to the present invention, The amount of steam at the top of the column required to obtain the same amount of dehydration can be reduced, and in this case, the reflux ratio can also be reduced as the pressure increases. According to the method, a reflux ratio of 8.0 becomes sufficient even with a reflux ratio of 2.5, which leads to a reduction in thermal energy.

第1表 また、エントレーナとしてトルエンを使用した場合、共
沸温度が高くなり、単位当シの共沸組成分中に占める水
分の割合がベンゼンを使用した場合に比べて増加するこ
とが見出された。第2表は、エントレーナとしてトルエ
ンを用い、3種類の圧力条件下で脱水塔を操作した場合
の各共沸組成分内容を例示しているが、この表を前記第
1表と比較して明らかなように、同程度の脱水量を得る
にトルエンであればベンゼンに比して脱水塔の加圧程度
を低くすることができ、併せてトルエン単価がベンゼン
単価の半分程度であるととるから安価に無水エタノール
を製造することもできるのである0 第2表 最後に、以上説明した本発明による場合の熱エネルギの
節減程度について、従来法による場合の比較例を対象と
し、具体的に実施例を挙げる。
Table 1 It is also found that when toluene is used as an entrainer, the azeotropic temperature becomes higher and the proportion of water in the azeotropic composition increases compared to when benzene is used. Ta. Table 2 exemplifies the content of each azeotrope when the dehydration tower is operated under three types of pressure conditions using toluene as an entrainer. As shown above, in order to obtain the same amount of dehydration, toluene requires less pressure in the dehydration tower than benzene, and since the unit price of toluene is about half that of benzene, it is inexpensive. It is also possible to produce anhydrous ethanol.Table 2 Finally, regarding the degree of thermal energy savings in the case of the present invention explained above, a comparative example in the case of the conventional method is targeted, and a specific example is shown. List.

・実施例 前記第2図の無水エタノール製造工程図にしたがって、
次の条件下で無水エタノールを製造した。
・Example According to the anhydrous ethanol production process diagram in Figure 2 above,
Absolute ethanol was produced under the following conditions.

原料は8容量%のエタノールを含有する発酵醪を155
0kg/時。製品は99.5容量%のエタノールを含有
する無水エタノールを100kgZ時。
The raw material is 155% fermented moromi containing 8% ethanol by volume.
0kg/hour. The product is 100kgZ hour of anhydrous ethanol containing 99.5% ethanol by volume.

濃縮塔の操作は塔頂が140wHgで47℃、塔底が3
5(la+職で80℃、還流比が3.0゜脱水塔の操作
は塔頂が3350WHgで101℃、塔底が3540w
Hgテ125℃0エントレーナはベンゼン。
The operation of the concentration column is 140wHg at the top and 47℃, and 3℃ at the bottom.
5 (80°C at la + temperature, reflux ratio 3.0°) The operation of the dehydration tower is 3350WHg at the top and 101°C, and 3540w at the bottom.
Hgte 125℃0 entrainer is benzene.

・比較例 前記第1図の無水エタノール製造工程図にしたがって、
次の条件下で無水エタノールを製造した。
・Comparative example According to the anhydrous ethanol production process diagram in Figure 1 above,
Absolute ethanol was produced under the following conditions.

原料、製品及びエントレーナは実施例の場合と同じ。濃
縮塔の操作は塔頂が760薦−で78℃、塔底が105
0鱈七で110℃、還流比が4.O0脱水塔の操作は塔
頂が760m)(gで65℃、塔底が950鱈−で84
℃。
The raw materials, products, and entrainer are the same as in the example. The concentration column is operated at 760°C at the top and 78°C at the bottom, and at 105°C at the bottom.
0 cod 7, 110℃, reflux ratio 4. The operation of the O0 dehydration tower is 760 m at the top of the tower (65 °C in g, 84 g at the bottom of the column at 950 m).
℃.

・結果 実施例の場合は前記条件下で濃縮塔に110kg/時及
び脱水塔に135kgZ時で合計245kg/時の蒸気
を必要としたが、比較例の場合は前記条件下で濃縮塔に
360kg/時及び脱水塔に190に9/時で合計55
0kg/時の蒸気を必要とした。
・Results In the case of the example, under the above conditions, a total of 245 kg/hour of steam was required in the concentration column, 110 kg/hour and 135 kg/hour in the dehydration column, but in the case of the comparative example, under the above conditions, 360 kg/hour of steam was required in the concentration column. total of 55 per hour and 190 to 9 per hour to the dehydration tower
0 kg/hour of steam was required.

したがって本発明によれば、かかる場合の比較で従来法
の50%量強の蒸気を節減することができた0 以上説明した通りであるから、本発明には、アルコール
発酵で得られる発酵醪を減圧下で蒸留してエタノールの
共沸組成近くまで濃縮し、次いで濃縮した液をエントレ
ーナと共に加圧下で蒸留して無水エタノール!で脱水し
、この脱水の際の蒸留塔塔頂蒸気を前記濃縮の加熱源に
用いることによシ、スケールの付着防止による作業性の
改善、安定した運転の確保と微量成分の充分な除去によ
る無水エタノールの品質向上、これらと併せて脱水塔塔
頂蒸気の有効利用による熱エネルギの節減をするととが
できる効果がある。
Therefore, according to the present invention, it was possible to save more than 50% of steam in comparison with the conventional method. Distill under reduced pressure to concentrate to near the azeotropic composition of ethanol, then distill the concentrated liquid under pressure with an entrainer to create anhydrous ethanol! By using the distillation column top steam during this dehydration as a heating source for the concentration, workability is improved by preventing scale adhesion, ensuring stable operation, and sufficient removal of trace components. In addition to improving the quality of anhydrous ethanol, it is also effective to save thermal energy by effectively utilizing the steam at the top of the dehydration tower.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法による概略の無水エタノール製造工程図
、第2図は本発明による概略の無水エタノール製造工程
図、第3図はエタノール/水系の概略の気液平衡曲線図
である。 11.12・・・・濃縮塔、 21.22・・・脱水塔
、31.32.33・・・熱交換機、 41.42.43・・凝縮器、 51.53・・・・フーゼル油分離器、52.54・・
・・デカンタ、 10.20・・・・気液平衡曲線 第1図 第2図
FIG. 1 is a schematic diagram of an anhydrous ethanol production process according to a conventional method, FIG. 2 is a schematic diagram of an anhydrous ethanol production process according to the present invention, and FIG. 3 is a schematic vapor-liquid equilibrium curve diagram of an ethanol/water system. 11.12...Concentration column, 21.22...Dehydration tower, 31.32.33...Heat exchanger, 41.42.43...Condenser, 51.53...Fusel oil separation Vessel, 52.54...
... Decanter, 10.20 ... Vapor-liquid equilibrium curve Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 ■ アルコール発酵で得られる発酵醪から蒸留によシ無
水エタノールを製造する方法において、発酵醪を減圧下
で蒸留してエタノールの共沸組成近くまで濃縮し、次い
で濃縮した液をエントレーナと共に加圧下で蒸留して無
水エタノ−ルまで脱水し、この脱水の際の蒸留塔塔頂蒸
気を前記濃縮の加熱源に用いることを特徴とする無水エ
タノールの製造方法。 2 エントレーナがトルエンである特許請求の範囲第1
項記載の無水エタノールの製造方法。
[Claims] ■ In a method for producing anhydrous ethanol by distillation from a fermented mash obtained by alcoholic fermentation, the fermented mash is distilled under reduced pressure to concentrate it to an azeotropic composition close to that of ethanol, and then the concentrated liquid is A method for producing anhydrous ethanol, which comprises distilling ethanol under pressure with an entrainer to dehydrate it to anhydrous ethanol, and using the vapor at the top of the distillation column during this dehydration as a heating source for the concentration. 2 Claim 1 in which the entrainer is toluene
A method for producing anhydrous ethanol as described in Section 1.
JP56170967A 1981-10-26 1981-10-26 Method for producing anhydrous ethanol Expired JPS594991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170967A JPS594991B2 (en) 1981-10-26 1981-10-26 Method for producing anhydrous ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170967A JPS594991B2 (en) 1981-10-26 1981-10-26 Method for producing anhydrous ethanol

Publications (2)

Publication Number Publication Date
JPS5871889A true JPS5871889A (en) 1983-04-28
JPS594991B2 JPS594991B2 (en) 1984-02-02

Family

ID=15914681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170967A Expired JPS594991B2 (en) 1981-10-26 1981-10-26 Method for producing anhydrous ethanol

Country Status (1)

Country Link
JP (1) JPS594991B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083129A (en) * 2004-09-17 2006-03-30 Takara Shuzo Co Ltd Method of purification treatment of ethanol
JP2016131549A (en) * 2015-01-22 2016-07-25 積水化学工業株式会社 Method and apparatus for synthesizing ethanol
JP2019503701A (en) * 2016-02-04 2019-02-14 ランザテク・ニュージーランド・リミテッド Product management in biotransformation processes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083129A (en) * 2004-09-17 2006-03-30 Takara Shuzo Co Ltd Method of purification treatment of ethanol
JP2016131549A (en) * 2015-01-22 2016-07-25 積水化学工業株式会社 Method and apparatus for synthesizing ethanol
JP2019503701A (en) * 2016-02-04 2019-02-14 ランザテク・ニュージーランド・リミテッド Product management in biotransformation processes
JP2019503702A (en) * 2016-02-04 2019-02-14 ランザテク・ニュージーランド・リミテッド Low pressure separator with internal divider and use therefor

Also Published As

Publication number Publication date
JPS594991B2 (en) 1984-02-02

Similar Documents

Publication Publication Date Title
US4559109A (en) Dehydration of alcohol with extractive distillation
JP3712903B2 (en) Method for producing glycerin
US4039395A (en) Purification of acetic acid
JPS60109534A (en) Treatment of glycerol by distillation
JPH0239491B2 (en)
US4107002A (en) Process for the purification of crude acetic anhydride
CN111574375A (en) Separation method and separation equipment for methyl acrylate crude product gas
EP0031097B1 (en) Method for distilling ethyl alcohol
US3725211A (en) Continuous distillation of phthalic anhydride with vapor side stream recovery
EP3227252A2 (en) Integrated ethanol separation and vinasse/ slop concentration using mechanical vapour recompression
EP2934712B1 (en) Production of ethanol products
JPS6261006B2 (en)
JPS5871889A (en) Preparation of anhydrous ethanol
US4229261A (en) Process for separating water from organic multiple component mixtures by distillation
CA2402258A1 (en) A process for concentrating azelaic acid
KR20120022020A (en) Refine alcohol distillation system
WO2014004966A2 (en) Method for purification of alcohols
JP2571743B2 (en) Manufacturing method of absolute ethanol
CN110627802B (en) Method for extracting sesame lignan from by-product generated in sesame oil production
CN1043495A (en) The combined flow sequence of constant boiling and rectification by adding salt and extracting of purifying ethyl acetate
KR101842095B1 (en) Process and apparatus for refining acetic acid
JP2009256294A (en) Economical process for producing anhydrous alcohol or gasohol using ether solvent
EP3030331B1 (en) Production of ethanol by evaporative distillation
JPS5930397B2 (en) Distillation method of fermented alcohol
JPS581087B2 (en) Ethanol