JPS5867069A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5867069A
JPS5867069A JP56166741A JP16674181A JPS5867069A JP S5867069 A JPS5867069 A JP S5867069A JP 56166741 A JP56166741 A JP 56166741A JP 16674181 A JP16674181 A JP 16674181A JP S5867069 A JPS5867069 A JP S5867069A
Authority
JP
Japan
Prior art keywords
gate electrode
electrode
forming
insulating film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56166741A
Other languages
Japanese (ja)
Inventor
Michihiro Ishikawa
通弘 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56166741A priority Critical patent/JPS5867069A/en
Publication of JPS5867069A publication Critical patent/JPS5867069A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form a device with a high density fine wiring, by forming an insulating layer on the side surface of a conductive layer provided on an insulating film, forming the second insulating film over the entire surface thereof, and then forming the second conductive layer thereon. CONSTITUTION:Since a CVD-SiO2 film 107 is entirely etched after forming the first gate electrode 105 resulting in survival on the side surface of the first gate electrode, the over etching time can be shortened without causing the short interacting in the second gate electrode when forming the second gate electrode 112 which is of P doped polycrystalline Si. Accordingly, the difference of pattern conversion is restrained down resulting in the manufacture of an MOS dynamic RAM with the second gate electrode 112 which has high density and is fine. Besides, since the thick insulating layer 108' is interposed between the first gate electrode 105 and the second gate electrode 112, the insulation dielectric strength remarkably improves.

Description

【発明の詳細な説明】 本発明は多層導電層構造、例えば多層ff−)電極構造
、を有する半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device having a multilayer conductive layer structure, for example a multilayer ff-) electrode structure.

一般に、この種の半導体装置においては、第1の導電層
と半導体基板との間、及び第10導電層と第2の導電層
との間の耐圧が所望の値を保有するように製造すること
が信頼性の点から重要である。
Generally, this type of semiconductor device is manufactured so that the breakdown voltage between the first conductive layer and the semiconductor substrate and between the tenth conductive layer and the second conductive layer has a desired value. is important from the point of view of reliability.

ところでかかる構造の半導体装置、例えば、MO8メイ
ナζツクRAMを製造するKは、従来次のような方法が
採用されている。まず第1図(、)に示すようKPII
シリコン基板1上に選択酸化法によシ、素子分離のため
のフィールド酸化膜2を形成する。つづいて第1図伽)
に示すように熱酸化処理を施して第1ダート絶縁膜とな
る厚さ3001@度の熱酸化膜3を成長させ更に第1の
ダート電極となる厚さ40001程度の多結晶シリコン
膜4を堆積し、これを光蝕刻法によ)Δターニングして
第1のr−)電極6を形成しさらに、同電極5をマスク
として熱酸化膜Jをエツチング除去して、第1ダート絶
縁jl[6を形成する(第1図(、)図示)。ひきつづ
き高温中のウェット酸素雰囲気中で熱処理を施して第1
のr−ト電極I周囲に層間絶縁膜となる厚いシリプン酸
化膜1を、露出する基板1上に厚さ5oo18度O熱酸
化l!&8を成長させる(菓1図(、li)図示)。次
いで全面に第2のr−)電極となる多結晶シリコン膜を
堆積し、これをノ量ターニングして、第2のダート電極
#を形成し、更に蚊電極9をマスクとして熱酸化膜8を
エツチングして第2デート絶縁Hxaを形成した後、露
出する半導体基板に砒素を拡散してn十拡散層11を形
成する(第1図(・)図示)。その後、全面4CCVD
−8102g 12 f 111積し、コノcVD−8
iO11[12にコンタクトホールを開孔した後、Al
属を堆積しX )4ターニングして第1と第2のr−)
電極5,9及びn十拡散層11とコンタクトホールを介
して接続したAI配線13.14.15を形成してMO
SダイナミックRAMを製造する(第1図(f)図示)
By the way, the following method has conventionally been adopted for manufacturing a semiconductor device having such a structure, for example, an MO8 main RAM. First, as shown in Figure 1 (,), KPII
A field oxide film 2 for element isolation is formed on a silicon substrate 1 by selective oxidation. Continued in Figure 1)
As shown in the figure, thermal oxidation treatment is performed to grow a thermal oxide film 3 with a thickness of 3001°C which will become the first dirt insulating film, and then a polycrystalline silicon film 4 with a thickness of about 40001°C which will become the first dirt electrode is deposited. Then, this is subjected to Δ turning by photoetching to form a first r-) electrode 6, and the thermal oxide film J is removed by etching using the same electrode 5 as a mask to form a first dirt insulator jl[6]. (Illustrated in FIG. 1(, )). Subsequently, heat treatment is performed in a wet oxygen atmosphere at high temperature to obtain the first
A thick silicone oxide film 1 serving as an interlayer insulating film is placed around the r-to-electrode I on the exposed substrate 1 to a thickness of 5mm to 18°C. &8 (illustrated in Fig. 1). Next, a polycrystalline silicon film that will become a second r-) electrode is deposited on the entire surface, and this is turned to form a second dirt electrode #, and then a thermal oxide film 8 is deposited using the mosquito electrode 9 as a mask. After forming the second date insulation Hxa by etching, arsenic is diffused into the exposed semiconductor substrate to form an n+ diffusion layer 11 (as shown in FIG. 1). After that, the entire surface was 4CCVD
-8102g 12 f 111 product, Kono cVD-8
After opening a contact hole in iO11[12, Al
Deposit the genus x) with 4 turns and the first and second r-)
AI wirings 13, 14, and 15 connected to the electrodes 5, 9 and the n+ diffusion layer 11 through contact holes are formed to form the MO
Manufacturing S dynamic RAM (as shown in Figure 1(f))
.

しかしながら上述したMOSダイナミックRAMの製造
方法にあっては、次のような欠点があった。すなわち全
面に第2のダート電極となる多結晶シリコン膜を堆積し
、これを光蝕刻法によシ、・母ターニングして、第2の
ダート電極9を形成する際に1第2図に示す如く、第1
のダー熱酸化膜8との段差部分にある多結晶シリコン9
′をエツチングするためにはかな9のオーバーエツチン
グが必要となシ、その結果、第2のダート電極の巾が著
しく細くなシ、ひいては^密度微細・臂ターン加工の障
害となる。これを避ける丸めに、多結晶シリコン膜をジ
ャストエツチングして第2のr−)電極9を形成すると
、シリコン酸化膜7と熱酸化膜8との段差部分にある多
結晶シリコン9′が残少、これによって第2のr−)電
極間が短絡する。
However, the method for manufacturing the MOS dynamic RAM described above has the following drawbacks. That is, a polycrystalline silicon film that will become the second dirt electrode is deposited on the entire surface, and then subjected to photolithography and main turning to form the second dirt electrode 9 as shown in FIG. Like, 1st
The polycrystalline silicon 9 in the step part with the thermal oxide film 8 of
In order to etch ', over-etching of the kana 9 is required, and as a result, the width of the second dart electrode cannot be made extremely narrow, which in turn becomes an obstacle to the density fine/arm turn processing. To avoid this, if the second r-) electrode 9 is formed by just etching the polycrystalline silicon film, the polycrystalline silicon 9' at the step between the silicon oxide film 7 and the thermal oxide film 8 will remain. , this causes a short circuit between the second r-) electrodes.

本発明はかかる従来の方法による欠点を解決することを
目的とし、基板上の絶縁膜と第1の導電層上の絶縁膜と
の段差を緩和させ、高密度の微細配線を備えた半導体装
置を提供しようとするものである。
The present invention aims to solve the drawbacks of such conventional methods, and aims to reduce the difference in level between the insulating film on the substrate and the insulating film on the first conductive layer, thereby producing a semiconductor device with high-density fine wiring. This is what we are trying to provide.

即ち、本発明の半導体装置の製造方法は、半導体基板の
第1絶縁膜上に設けられた第1の導電層の側面に絶縁層
を形成し、この全面に第2の絶縁膜を形成し、この第2
の絶縁膜上に第2の導電層を形成することを特徴とする
ものである。
That is, in the method for manufacturing a semiconductor device of the present invention, an insulating layer is formed on the side surface of a first conductive layer provided on a first insulating film of a semiconductor substrate, and a second insulating film is formed on the entire surface of the first conductive layer. This second
The second conductive layer is formed on the insulating film.

本発明に用いる絶縁膜としては1. CVD−810゜
膜、窒化シリコン膜、熱酸化膜等を挙げることができる
As the insulating film used in the present invention, 1. Examples include a CVD-810° film, a silicon nitride film, and a thermal oxide film.

但し、絶#膜は、半導体基板上に直接形成されたもの、
或いは第1のダート電極配線周囲に設けられたもの等を
挙げることができ、特に第1の導電層を多結晶シリコン
、金属硅化物で構成し、この熱酸化によシ、成長された
酸化膜を絶縁膜として利用することができる。
However, the insulation film is one formed directly on the semiconductor substrate,
Alternatively, the first conductive layer is formed around polycrystalline silicon or metal silicide, and the oxide film grown by this thermal oxidation is used. can be used as an insulating film.

本発明に用いる導電層材料としては、例えば多結晶シリ
コン、金属硅化物等を挙げることができる。
Examples of the conductive layer material used in the present invention include polycrystalline silicon, metal silicide, and the like.

本発明における段差緩和用の絶縁膜のエツチング手段と
しては、例えば反応性イオンエツチング法を用いる方法
等を挙げることができる。
In the present invention, as the etching means for the insulating film for reducing the step difference, for example, a method using a reactive ion etching method can be mentioned.

次に本発明を二層f−)電極構造を有するMOSダイナ
ミックRAMの製造に適用した例について、第3図(a
)〜[有])及び第4図、第5図を参照として説明する
Next, an example in which the present invention is applied to the manufacture of a MOS dynamic RAM having a two-layer f-) electrode structure is shown in FIG.
) to [exist]) and FIGS. 4 and 5 will be described.

まず第3図伽)に示すようにP型(100面)のシリコ
ン基板101(比抵抗11〜13ohm、国)を窒化シ
リコンをマスクとして、選択酸化して、素子分離の丸め
の厚さ1μmのフィールド酸化膜102を形成した。
First, as shown in Fig. 3, a P-type (100-sided) silicon substrate 101 (resistivity 11-13 ohm, country) was selectively oxidized using silicon nitride as a mask to form a rounded layer with a thickness of 1 μm for element isolation. A field oxide film 102 was formed.

次いで、1000℃のドライ酸素雰囲気中で熱処理して
シリコン基板101の素子形成領域上に厚さ300Xの
熱酸化膜103を成長させ、更に、厚さ4ooo1の多
結晶シリコン膜104を堆積したのち、この多結晶シリ
コン膜104にリン拡散を行ってリンをlX1021A
−ドーピングした(第3回軸)図示)。ひきつづき、リ
ント−!多結晶シリコン膜104を写真蝕刻により14
ターニングして、第1のダート電極105を形成し、更
に骸電極105をマスクとして熱酸化膜103をセルフ
ァラインでエツチングし、第1r−)絶縁膜106を形
成した(第3図(c)図示)。
Next, a thermal oxide film 103 with a thickness of 300X is grown on the element formation region of the silicon substrate 101 by heat treatment in a dry oxygen atmosphere at 1000°C, and a polycrystalline silicon film 104 with a thickness of 4001 is further deposited. Phosphorus is diffused into this polycrystalline silicon film 104 to
- Doped (as shown in the 3rd axis). Continue, Lindt! Polycrystalline silicon film 104 is etched 14 by photolithography.
Turning was performed to form a first dirt electrode 105, and the thermal oxide film 103 was etched with a self-line using the skeleton electrode 105 as a mask to form a first r-) insulating film 106 (as shown in FIG. 3(c)). ).

次いでCVD−8its膜10Fを全面に堆積させ(第
3図(d)図示)、これを反応性イオンエツチング法で
全面エツチングした。このとき、第1のダート電極10
5の側面には、cvo−sto冨層1011が残るよう
にエツチング時間を調整した(第3図(、)、第4図図
示)。この第1のダート電極105の側面のCVD−8
i Os層108が、第1のダート電極ノ05上の絶縁
膜と、基板10ノ上の絶縁膜の段差を緩和するのである
。さらに、層間絶縁膜と第2ff−)絶縁膜形成のため
に800℃のウェット酸累雰囲気中で熱処理を行う(第
3図(f)図示)。
Next, a CVD-8its film 10F was deposited on the entire surface (as shown in FIG. 3(d)), and the entire surface was etched using a reactive ion etching method. At this time, the first dirt electrode 10
The etching time was adjusted so that the CVO-STO rich layer 1011 remained on the side surface of 5 (as shown in FIGS. 3(a) and 4). CVD-8 on the side surface of this first dirt electrode 105
The iOs layer 108 alleviates the difference in level between the insulating film on the first dirt electrode 05 and the insulating film on the substrate 10. Furthermore, heat treatment is performed in a wet acidic atmosphere at 800° C. to form an interlayer insulating film and a second ff-) insulating film (as shown in FIG. 3(f)).

次いで、全面に第2のe−)電極材料としての厚さ40
00Xのリント−!多結晶シリコン膜を堆積し、写真蝕
刻法によシ・ヤターニングして、第2のr−)電極11
2を形成した。更に該電極112をマスクとして熱酸化
膜110をセルファラインでエツチングして第2r−)
絶縁膜111を形成した後、砒素をシリコン基板101
にイオン注入して、訝拡散層113を形成し九(第3図
優)、第5図図示)。
Then, a second e-) electrode material with a thickness of 40 mm is applied to the entire surface.
00X Lint! A polycrystalline silicon film is deposited and turned by photolithography to form a second r-) electrode 11.
2 was formed. Furthermore, using the electrode 112 as a mask, the thermal oxide film 110 is etched with a self-alignment layer (2r-).
After forming the insulating film 111, arsenic is applied to the silicon substrate 101.
Then, ions are implanted into the substrate to form a transparent diffusion layer 113 (see FIG. 3) and FIG. 5 (shown in FIG. 5).

このCVD−8ins膜114にコンタクトホールを開
孔した後、Al膜を堆積し、・母ターニングして、第1
層、第2層のり”−計電極105,112及ヒ、n+拡
散層113とコンタクトホールを介して接続したAI配
線115.116.117を形成してMOSダイナミッ
クRAMを製造した(第3図(h)図示)。
After opening a contact hole in this CVD-8ins film 114, an Al film is deposited, and the first
A MOS dynamic RAM was manufactured by forming AI wirings 115, 116, and 117 connected to the second layer glue electrodes 105, 112, and the n+ diffusion layer 113 through contact holes (see Fig. 3). h) As shown).

上述した本実施例において第1のダート電極105を形
成したのちcvo−sto、膜xovt全WJエツチン
グして、第1のr−)電極の側面に残したため、そのの
ちのリンドープ多結晶シリコンの第2のダート電極11
2の形成に際し、第2のr−)電極相互の短絡を招くこ
となくオーバーエツチング時間を少なくできることによ
シ、・ぐターン変換差を小さくおさえることができ、高
密度で微細な第2のr−)電極112を備え九MO8ダ
イナぐツクRAMを製造できた。
In this embodiment described above, after forming the first dirt electrode 105, the entire WJ etching of the cvo-sto film xovt was performed, and it was left on the side surface of the first r-) electrode. 2 dart electrode 11
2, by reducing the overetching time without causing short circuit between the second r-) electrodes, it is possible to suppress the difference in turn conversion to a small level, and to form a high-density and fine second r-) electrode. -) Nine MO8 dynamic RAMs equipped with electrodes 112 could be manufactured.

また得られ九MOSダイナミックRAMは、第1のr−
)電極1015を形成したのち、第1のr−計電極10
5の側面に絶縁層108が残るように絶縁膜107を全
面エツチングする工程から第1のダート電極105と第
2のf−)電極112の間に厚い絶縁層108′が介在
するため、それらの絶縁耐圧が著しく向上した。
The nine MOS dynamic RAM obtained is also the first r-
) After forming the electrode 1015, the first r-meter electrode 10
Since a thick insulating layer 108' is interposed between the first dart electrode 105 and the second f-) electrode 112 due to the process of etching the entire surface of the insulating film 107 so that the insulating layer 108 remains on the side surfaces of the Dielectric strength has been significantly improved.

以上、詳述した如く、本発明によれば絶縁膜を第1のデ
ート電極の側面に残し、第1のr−計電極と第2のr−
)電極の層間絶縁膜を形成するため、第1のr−)電極
上の絶縁膜と基板上の絶縁膜の段差が緩和され、第2の
e−)電極の形成時、電極相互の短絡を招くことなくオ
ーバーエツチング時間を少なくでき、ひいては高密度の
微細電極を備えた半導体装置を製造し得る方法を提供で
きる。
As described in detail above, according to the present invention, the insulating film is left on the side surface of the first date electrode, and the first r-meter electrode and the second r-meter electrode are connected to each other.
) To form an interlayer insulating film for the electrode, the difference in level between the insulating film on the first r-) electrode and the insulating film on the substrate is alleviated, and when forming the second e-) electrode, short circuits between the electrodes can be prevented. It is possible to provide a method in which overetching time can be reduced without causing problems, and in turn, a semiconductor device having high-density fine electrodes can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(f)は従来法による二層ダート電極構
造を有するMOSダイナミックRAMの製造工程を示す
断面図。第2図は、第1図0)の部分拡大断面図。第3
図(m)〜(h)は、本発明の実施例における二層ダー
ト電極構造を有するMOSダイナミックRAMの製造工
程を示す断面図。第4図は、第3図(・)の部分拡大断
面図。第5図は、第3図−)の部分拡大断面図である。 101・・・PIMシリコン基板、102・・・フィー
ルド酸イヒ膜、104・・・リンドープ多結晶シリコン
膜、105−・・第1ダート電極、106・・・第1タ
ート絶縁膜、1 o 7 =−CVD−8lot g、
109−・・CVD−810m膜、111−・・第2ダ
ート絶縁膜、112・・・第2ダート電極、113・・
・1拡散層(デジットライン)、114 ・−CVD−
810m膜、115,116゜111・・・AI配線。 出願人代理人 弁理土鈴 圧式 彦 第1図 gall ji2図 183関 第3図 (f)
FIGS. 1(a) to 1(f) are cross-sectional views showing the manufacturing process of a MOS dynamic RAM having a two-layer dart electrode structure according to a conventional method. FIG. 2 is a partially enlarged sectional view of FIG. 1 (0). Third
Figures (m) to (h) are cross-sectional views showing the manufacturing process of a MOS dynamic RAM having a two-layer dart electrode structure in an embodiment of the present invention. FIG. 4 is a partially enlarged sectional view of FIG. 3 (-). FIG. 5 is a partially enlarged sectional view of FIG. 3-). DESCRIPTION OF SYMBOLS 101... PIM silicon substrate, 102... Field acid Ihi film, 104... Phosphorus-doped polycrystalline silicon film, 105-... First dirt electrode, 106... First tart insulating film, 1 o 7 = -CVD-8lot g,
109--CVD-810m film, 111--Second dirt insulating film, 112-Second dirt electrode, 113-...
・1 diffusion layer (digit line), 114 ・-CVD-
810m film, 115, 116° 111...AI wiring. Applicant's agent: Patent attorney Dorin Ushiki Hiko Figure 1 Gall ji 2 Figure 183 Figure 3 (f)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の第1の絶縁膜上に設けられた第1の
導電層の側面に絶縁層を形成する工程と、この全面に新
たに第2の絶縁膜を形成する工程と、この第2の絶縁膜
上に第2の導電層を形成する工程とを含む、半導体装置
の製造方法。
(1) A step of forming an insulating layer on the side surface of the first conductive layer provided on the first insulating film of the semiconductor substrate, a step of newly forming a second insulating film on this entire surface, forming a second conductive layer on the second insulating film.
(2)前記第1の導電層を第1ダート電極とし、前記第
2の導電層を第2ダート電極とすることを特徴とする特
許請求の範囲第(1)項記載の方法。
(2) The method according to claim (1), wherein the first conductive layer is a first dirt electrode, and the second conductive layer is a second dirt electrode.
JP56166741A 1981-10-19 1981-10-19 Manufacture of semiconductor device Pending JPS5867069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56166741A JPS5867069A (en) 1981-10-19 1981-10-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56166741A JPS5867069A (en) 1981-10-19 1981-10-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5867069A true JPS5867069A (en) 1983-04-21

Family

ID=15836884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56166741A Pending JPS5867069A (en) 1981-10-19 1981-10-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5867069A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261147A (en) * 1986-05-07 1987-11-13 Nec Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261147A (en) * 1986-05-07 1987-11-13 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JPS5877253A (en) Integrated circuit resistor and method of producing same
JP3229665B2 (en) Method of manufacturing MOSFET
US4216573A (en) Three mask process for making field effect transistors
JPS5867069A (en) Manufacture of semiconductor device
JPH039572A (en) Manufacture of semiconductor device
JPH02226727A (en) Manufacture of ldd type mos semiconductor device
JP2654175B2 (en) Method for manufacturing semiconductor device
JPH0247853B2 (en)
JPS58170030A (en) Manufacture of semiconductor device
JPS5863158A (en) Manufacture of semiconductor device
JPS6148957A (en) Manufacture of mos capacitor
JPS639748B2 (en)
JPS58212166A (en) Manufacture of semiconductor device
JPS62206873A (en) Manufacture of semiconductor device
JPS6297331A (en) Manufacture of semiconductor device
JPS5821355A (en) Semiconductor device
JPS5817662A (en) Manufacture of semiconductor device
JPS59181645A (en) Manufacture of semiconductor device
JPH0222544B2 (en)
JPS62114240A (en) Manufacture of semiconductor device
JPS59155126A (en) Manufacture of semiconductor device
JPS6149436A (en) Manufacture of semiconductor device
JPH03123030A (en) Semiconductor device and manufacture thereof
JPS59181075A (en) Manufacture of josephson integrated circuit device
JPH0582729A (en) Manufacture of capacitor