JPS5866267A - Manufacture of substrate for alkaline storage battery - Google Patents

Manufacture of substrate for alkaline storage battery

Info

Publication number
JPS5866267A
JPS5866267A JP56165982A JP16598281A JPS5866267A JP S5866267 A JPS5866267 A JP S5866267A JP 56165982 A JP56165982 A JP 56165982A JP 16598281 A JP16598281 A JP 16598281A JP S5866267 A JPS5866267 A JP S5866267A
Authority
JP
Japan
Prior art keywords
sintered
slurry
porosity
sintering
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56165982A
Other languages
Japanese (ja)
Inventor
Mitsuo Yamane
山根 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP56165982A priority Critical patent/JPS5866267A/en
Publication of JPS5866267A publication Critical patent/JPS5866267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a sintered substrate having large porosity, excellent strength, desired pore distribution, and good high rate discharge performance by using microballoons as a pore making agent. CONSTITUTION:A slurry is made with 5pts. phenol microballoon, 47pts. carbonyl nickel powder 1 used for sintering of metal powder, and 47pts. about 3% carboxymethylcellulose as a binder. A strap such as nickel net is passed in the slurry. The strap coated with the slurry is passed between a knife of the predetermined slit, then it is dried with a dryer with an ultrared lamp and heated at 500-600 deg.C for several minutes to remove an organic substance by decomposition, then sintered at 800-1,000 deg.C for several minutes under reducing atmosphere to form a sintered plate having 90% porosity.

Description

【発明の詳細な説明】 本発明は二ノヶノ1カドミウムアルカリ蓄電池すどに使
用される多孔殴焼結基板の新規な製造法に関するもので
、その目的は気孔率が大きく、強度の優れた、しかも任
意の孔径分布をもつ焼結体で、高率放電用の使用にも適
した焼結基板を容易に製造する方法を提供Vるものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new method for manufacturing a porous punched and sintered substrate used in Ninogano 1 cadmium alkaline storage battery. The present invention provides a method for easily producing a sintered substrate having an arbitrary pore size distribution and suitable for use in high-rate discharge.

従来ニッケルカドミウム電池等のアルカリ蓄電池は重負
荷放電特注、低温特性に優れ、また密閉電池であるとこ
ろから、取扱いも容易である為に、様々の用途に用いら
れてきた。更にニッケルカドミウム電池は集電体として
ニッケル粉末の焼結体が使用されるに至って、その性能
が一段と向上したが、更にこの性能を向上させる為に種
々の工夫が焼結体にほどこされ、気孔率の向上、表面積
の増加等が企てられてきた。しかし従来技術により気孔
率を大きくした焼結体は機械的強度を度外視したため脆
弱となり、空隙内に活物質を充填した際に、基板が変形
あるいは崩壊したり、あるいは化成充電時、巻込み時に
脱落するなどの欠点を痔っている。あるいはその孔径は
全く不均一で使用に耐えない等の欠点をもっていた。此
等の原因は従来気孔率を高める為に(1)焼結温度を下
げる、(2)有機発泡剤を用い、焼結時に発泡させる、
(3)炭酸ニッケル、炭酸マグネシウムの分解に伴うガ
スを発泡剤として用いる、などの方法にたよっていた為
であり、焼結温度を下げれば必然的に焼結体強度が弱く
なり、又畜機発泡。剤の場合は発泡剤の粒子径が均−t
あり、更に分散が均一でなければ均一な孔径分布を持つ
焼結体は得難い。
Conventionally, alkaline storage batteries such as nickel-cadmium batteries have been used for a variety of purposes because they are custom-made for heavy load discharge, have excellent low-temperature characteristics, and are easy to handle because they are sealed batteries. Furthermore, the performance of nickel-cadmium batteries has further improved since nickel powder sintered bodies were used as current collectors, but in order to further improve this performance, various improvements have been made to the sintered bodies to reduce pores. Attempts have been made to improve the ratio, increase the surface area, etc. However, the sintered bodies with increased porosity made using conventional technology do not take into consideration mechanical strength, making them brittle, resulting in the substrate deforming or collapsing when the active material is filled into the voids, or falling off during chemical charging or entrainment. He has such shortcomings as hemorrhoids. Alternatively, the pore diameters were completely non-uniform, making them unusable. The causes of this are conventional methods for increasing porosity: (1) lowering the sintering temperature, (2) using an organic foaming agent to foam during sintering.
(3) This is because the method used was to use gas from the decomposition of nickel carbonate and magnesium carbonate as a blowing agent, and lowering the sintering temperature inevitably weakens the strength of the sintered body. Foaming. In the case of a blowing agent, the particle size of the blowing agent is uniform
Furthermore, unless the dispersion is uniform, it is difficult to obtain a sintered body with a uniform pore size distribution.

また無機の炭酸ニッケルあるいは炭酸マグネシウムを使
った場合、分解して生成するニッケルのカ 強い凝集光の為に大巾な気孔率の向上が期待できない。
Furthermore, when inorganic nickel carbonate or magnesium carbonate is used, a significant improvement in porosity cannot be expected due to the strong condensed light of the nickel produced by decomposition.

あるいは焼結後残査が残り、その為に焼結強度が低下し
たり又は不純物を取除く工程が必要であるなどの欠点が
ある。いずれiこしても発泡剤を使う方法あるいは低温
焼結とする方法は、気孔率を大にすれは機械的強度が減
少するが、これ(J気孔率を大にすればそれだけ焼結さ
れるニッケル粒子数が少なくなり、従って粒子間の融着
部分も減少する為である。
Alternatively, there are disadvantages such as a residue remaining after sintering, resulting in a decrease in sintering strength or the need for a step to remove impurities. In any method using a foaming agent or low-temperature sintering, the mechanical strength decreases as the porosity increases; This is because the number of particles decreases, and therefore the fused portion between particles also decreases.

本発明は上記従来の欠点を除去するもので、焼、語用ニ
ッケル粉末と汀機質バインダーからなるスラリーに造孔
剤として10〜21]0μの径をもつ有機高分子樹脂マ
イクロバルーンを混和してペースト状となし余剰もしく
は金属穿孔板などからなる芯金に塗着し、a結せしめる
ことを特徴とする。以r図に基いて説明する。
The present invention eliminates the above-mentioned conventional drawbacks by mixing organic polymer resin microballoons with a diameter of 10 to 21 μm as a pore-forming agent to a slurry consisting of sintered nickel powder and a slag organic binder. It is characterized in that it is applied in a paste form to a core made of surplus or metal perforated plate, and then tied. This will be explained below based on the diagram.

第1図は従来法におけるニッケル多孔体の一部断面図、
第2図は本発明一実施例における多孔体の一部断面図で
あり、従来多孔体はニッケル粒子1間の空隙が小さいの
に比べ、本発明多孔体のものは、造孔剤を用いているの
で、ニッケル粒子1は骨格構造をつくって充分に焼結で
き、機械的強度を上げても気孔率の減少程度はわずかで
あり、強へ高多孔度の焼結体を得ることができる。なお
2は造孔剤の抜けた部分である。造孔剤としては凍結時
揮発する物質で、残査を残さず、乾燥1@j(では変形
しないものが望ましく、一般的には有機高分子樹脂粒子
が適当である。しかし有機高分子樹脂は焼結時に分解ガ
スを出しあるいはカーボン化し、焼結体中やその表面に
付着したり、炉を汚す欠点がある。従ってこの欠点をで
きるだけ最小限にするために中空であるマイクロバルー
ンを使うことが最適であり、90%程実の中空度のマイ
クロバルーンを使用すれば有機高分子樹脂の使用量は暑
oに減少し、上記の弊害は可成り緩和されることになる
。又、第2図の如き骨格構造をつくる為には完全な球形
でしかも粒子径の比較的均一なマイクロバルーンは最も
良い材料である。
Figure 1 is a partial cross-sectional view of a porous nickel body in the conventional method.
FIG. 2 is a partial cross-sectional view of a porous body in an embodiment of the present invention. Compared to the conventional porous body, in which the voids between the nickel particles 1 are small, the porous body of the present invention uses a pore-forming agent. Therefore, the nickel particles 1 form a skeleton structure and can be sufficiently sintered, and even if the mechanical strength is increased, the degree of decrease in porosity is slight, and a sintered body with a strong and high porosity can be obtained. Note that 2 is the part where the pore-forming agent has escaped. As a pore-forming agent, it is desirable to use a substance that evaporates when frozen, does not leave any residue, and does not deform when dried (1@j), and organic polymer resin particles are generally suitable.However, organic polymer resin During sintering, decomposed gas is emitted or carbonized, which may adhere to the inside or surface of the sintered body or pollute the furnace.Therefore, to minimize this drawback, hollow microballoons should be used. If microballoons with a hollowness of about 90% are used, the amount of organic polymer resin used will be reduced to a minimum, and the above-mentioned adverse effects will be considerably alleviated. Microballoons, which are perfectly spherical and have a relatively uniform particle size, are the best material for creating such a skeletal structure.

以下実施例に従って発明を詳述する。The invention will be described in detail below according to examples.

フェノールマイクロバルーン5部を焼結用金属粉末であ
るカーボニルニッケル粉末47部、粘着剤として約59
6のカルボキシメチルセルローズ47邦のスラリーをつ
くる。か\るスラリー溶液中にニッケルネット等の帯体
を通し、スラリーを塗着させた帯体を所定スリットのナ
イフ間を通した後、赤外線ランプ等よりなる乾燥炉で乾
燥し、51〕0〜61] 0℃で数分1i31加熱して
有機物を分解除去後、還元゛尋問気中にて800〜10
00℃にて数分間還元焼結することにより9096の気
孔率を有する焼結体を得た。このようにしてできた焼結
体は従来の緻密な焼結状態部分とマイクロバルーンの径
に起因する10μ程度の大きい径の孔の二種類よりなり
、その焼結条件により個々の粒子の焼結程度は充分大き
く融着されているために、本実施例による焼結体の強度
は表−1の如く、従来品に比較し、同じ程度の気孔率で
比較すれば大巾に優れている。
5 parts of phenol microballoon, 47 parts of carbonyl nickel powder as metal powder for sintering, and about 59 parts as adhesive.
6. Make a slurry of carboxymethyl cellulose 47. A band such as nickel net is passed through the slurry solution, and the band coated with the slurry is passed through a knife in a predetermined slit, and then dried in a drying oven consisting of an infrared lamp, etc. 61] After heating at 0°C for several minutes to decompose and remove organic matter, the mixture was heated to 800 to 100% in a reducing atmosphere.
A sintered body having a porosity of 9096 was obtained by reduction sintering at 00°C for several minutes. The sintered body made in this way consists of two types: the conventional dense sintered part and the large pores of about 10μ due to the diameter of the microballoon, and depending on the sintering conditions, individual particles can be sintered. Since the degree of fusion is sufficiently large, the strength of the sintered body of this example is significantly superior to that of the conventional product, as shown in Table 1, when compared at the same level of porosity.

第6図1こ本マイクロバルーンを使用して焼結した本発
明品(A)と従来品CB)気孔率と抗張力との関係を示
す。図よりわかる如く、気孔率が高くなる捏水発明によ
る効果は顕著である。
FIG. 6 shows the relationship between porosity and tensile strength of the present invention product (A) and conventional product CB, which were sintered using this microballoon. As can be seen from the figure, the effect of the water-sprinkling invention, which increases the porosity, is remarkable.

第4図に本発明による焼結体と従来品の焼結体の電気抵
抗を示す。図よりわかる如く、本発明品の電気抵抗は著
るしく小さくなっており、ニッケル粒子の融着椎間が著
るしく改善された事がわかる。
FIG. 4 shows the electrical resistance of a sintered body according to the present invention and a conventional sintered body. As can be seen from the figure, the electrical resistance of the product of the present invention was significantly reduced, and it can be seen that the fusion of nickel particles between the vertebrae was significantly improved.

又、本発明による焼結体は、単に気孔率を増加したのみ
でなく、従来の焼結体とはゾ同じ孔径分布を有する部分
及びマイクロバルーンによる約10゛μ程度の平均孔径
分布をもつ焼結部分からなる為に、従来の多孔体では低
温高率放電時に拡散律速により電解液が橋板外より供給
されにくい条件でも、極板内に多量の電解液を含有でき
る特徴かあり、低温・高率放電にも有効である。
In addition, the sintered body according to the present invention not only has increased porosity, but also has a portion with the same pore size distribution as the conventional sintered body and a sintered body with an average pore size distribution of about 10μ due to micro balloons. Because it consists of a condensed portion, a conventional porous material can contain a large amount of electrolyte within the electrode plate even under conditions where electrolyte is difficult to be supplied from outside the bridge plate due to diffusion control during low-temperature, high-rate discharge. It is also effective for high rate discharge.

以上のように、本発明によれば高気孔率で電気抵抗が低
くしかも強度の高い焼結体を容易に製造できるが、造孔
剤としてマイクロバルーンを使用するために、従来の行
機高分子樹脂粒子を使用する場合に較へ1/h〜1/1
oの使用量で良く、従って有機物分解時に生ずる分解生
成物も少なくなり、炉や焼結体を汚すことは少なくなる
。更にマイクロバルーンは完全に球型であり、その粒子
径もはゾ均一であることより、適当なマイクロバルーン
ヲ選択することにより圧意の孔径分布を持ち、用途に応
じた焼結体を容易に製造できるなどその工業的価値大な
るものである。
As described above, according to the present invention, it is possible to easily produce a sintered body with high porosity, low electrical resistance, and high strength. When using resin particles, compared to 1/h to 1/1
Therefore, the amount of decomposition products generated during decomposition of organic matter is reduced, and the amount of contamination of the furnace and sintered body is reduced. Furthermore, since microballoons are completely spherical and have a uniform particle size, by selecting an appropriate microballoon, it is possible to easily create a sintered body with a well-defined pore size distribution. Its industrial value is great as it can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多孔体の要部断面図、第2図は本発明一
実施例による多孔体の要部断面図、第6図は気孔率と抗
張力の相関々検図、第4図は、a気抵抗と気孔率の相関
ヤ検図である。 ]・・・ニッケル粒子 2・・・造孔剤の抜けた部分A
・・本発明品   B・・・従来品 出願人 湯浅電池株式会社 第1図    第2図 層兄+?(2)
Figure 1 is a sectional view of the main part of a conventional porous body, Figure 2 is a sectional view of the main part of a porous body according to an embodiment of the present invention, Figure 6 is a correlation diagram of porosity and tensile strength, and Figure 4 is , is a correlation chart between a-air resistance and porosity. ]...Nickel particles 2...Portion A where the pore-forming agent has escaped
...Product of the present invention B...Conventional product Applicant Yuasa Battery Co., Ltd. Figure 1 Figure 2 Layer brother +? (2)

Claims (1)

【特許請求の範囲】[Claims] 焼結用ニッケル粉末と有機質バインダーからなるスラリ
ーに造孔剤として10〜200μの径をもつ有機高分子
樹脂゛フィクロバルーンを混和してペースト状となし、
金網もしくは金属穿孔板などからなる芯金に塗着し、焼
結せしめることを特徴とするアルカリ蓄電池用基板の製
造法。
A slurry consisting of nickel powder for sintering and an organic binder is mixed with fibroballoon, an organic polymer resin having a diameter of 10 to 200 μm as a pore-forming agent, to form a paste.
A method for producing a substrate for an alkaline storage battery, which is characterized by coating a core metal made of wire mesh or perforated metal plate and sintering it.
JP56165982A 1981-10-16 1981-10-16 Manufacture of substrate for alkaline storage battery Pending JPS5866267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165982A JPS5866267A (en) 1981-10-16 1981-10-16 Manufacture of substrate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165982A JPS5866267A (en) 1981-10-16 1981-10-16 Manufacture of substrate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS5866267A true JPS5866267A (en) 1983-04-20

Family

ID=15822672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165982A Pending JPS5866267A (en) 1981-10-16 1981-10-16 Manufacture of substrate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS5866267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169773A (en) * 1982-03-30 1983-10-06 Matsushita Electric Ind Co Ltd Manufacturing method of sintered base plate for alkaline storage battery
JPS60205967A (en) * 1984-03-29 1985-10-17 Shin Kobe Electric Mach Co Ltd Manufacture of porous sintered substrate for sealed alkaline battery
JP4588288B2 (en) * 2001-07-10 2010-11-24 パナソニック株式会社 Method for manufacturing substrate for electrode plate, method for manufacturing positive electrode plate, and alkaline storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169773A (en) * 1982-03-30 1983-10-06 Matsushita Electric Ind Co Ltd Manufacturing method of sintered base plate for alkaline storage battery
JPS6359228B2 (en) * 1982-03-30 1988-11-18
JPS60205967A (en) * 1984-03-29 1985-10-17 Shin Kobe Electric Mach Co Ltd Manufacture of porous sintered substrate for sealed alkaline battery
JP4588288B2 (en) * 2001-07-10 2010-11-24 パナソニック株式会社 Method for manufacturing substrate for electrode plate, method for manufacturing positive electrode plate, and alkaline storage battery

Similar Documents

Publication Publication Date Title
US5848351A (en) Porous metallic material having high specific surface area, method of producing the same, porous metallic plate material and electrode for alkaline secondary battery
KR100261258B1 (en) Battery electrode substrate and process for producing the same
US4132547A (en) Method of producing self-supporting fully activated iron electrodes by thermal reduction-sintering
JPS6250524B2 (en)
US3625765A (en) Production of battery electrode
JP2001040402A (en) Porous metallic thin sheet body and its manufacture
JPS5866267A (en) Manufacture of substrate for alkaline storage battery
JPH10312802A (en) Metal for alkaline dry battery negative electrode and manufacture therefor and alkaline dry battery
JP3468493B2 (en) Battery electrode substrate and method of manufacturing the same
JPS6329450A (en) Manufacture of electrode for cell
JPS63105469A (en) Manufacture of nickel substrate for alkaline battery
JPS5956361A (en) Manufacture of substrate for alkaline storage battery
JPS6359228B2 (en)
JPH05221601A (en) Hydrogen occluding porous material and its production
JP2003297371A (en) Sintered substrate for alkaline storage battery
JPH02276160A (en) Manufacture of sintered substrate for alkaline storage battery
JPS6114636B2 (en)
KR101609127B1 (en) Method for producing a porous electrode
JPH0272558A (en) Manufacture of fuel cell electrode
JPH05314988A (en) Sintered substrate for square alkaline storage battery and manufacture thereof
CN117568736A (en) Preparation method and application of thermal control coating
CN115740431A (en) Compound copper powder and preparation method and application thereof
JPH08287917A (en) Manufacture of metallic porous body
JPH07335210A (en) Electrode for alkaline battery
JP2003288901A (en) Manufacturing method of sintered substrate for alkaline storage battery