JPS5866209A - Composite superconductor - Google Patents

Composite superconductor

Info

Publication number
JPS5866209A
JPS5866209A JP56164207A JP16420781A JPS5866209A JP S5866209 A JPS5866209 A JP S5866209A JP 56164207 A JP56164207 A JP 56164207A JP 16420781 A JP16420781 A JP 16420781A JP S5866209 A JPS5866209 A JP S5866209A
Authority
JP
Japan
Prior art keywords
composite superconductor
stabilizing material
current
composite
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56164207A
Other languages
Japanese (ja)
Other versions
JPH0233993B2 (en
Inventor
進 島本
良和 高橋
直文 多田
堀田 好寿
恭臣 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Ltd
Priority to JP56164207A priority Critical patent/JPS5866209A/en
Publication of JPS5866209A publication Critical patent/JPS5866209A/en
Publication of JPH0233993B2 publication Critical patent/JPH0233993B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Non-Insulated Conductors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は複合超電導体に係シ、特に、安定化材と複合超
電導線とで構成された複合超電導体に適用するに最適な
複合超電導体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite superconductor, and more particularly, to a composite superconductor that is most suitable for application to a composite superconductor composed of a stabilizing material and a composite superconducting wire.

複合超電導体の臨界電流測定や複合超電導体の接続部の
接続抵抗測定などは、通常、液体ヘリウム中で外部磁界
と複合超電導体の通電電流の方向を直角にし、4端子法
で電気抵抗を測定する。、その測定に際しては、外部磁
界印加用マグネットの大きさや複合超電導体の種類、大
きさに応じて第1図(a)、Φ)、 (C)、 (d)
の如き測定配置が用いられる。
To measure the critical current of a composite superconductor or the connection resistance of a composite superconductor's connections, the electrical resistance is usually measured using the four-probe method, with the direction of the external magnetic field and the current flowing through the composite superconductor perpendicular to each other in liquid helium. do. , for the measurement, depending on the size of the magnet for applying an external magnetic field and the type and size of the composite superconductor, the following methods are used: (a), Φ), (C), (d)
A measurement arrangement such as

1は外部磁界印加用マグネット、2は複合超電導体で、
外部磁界印加用マグネット1による磁界の方向Hと複合
超電導体2に通電する電流の方向工は、いずれも直角で
ある。今、複合超電導体2には、電流を通電するための
電流リード線3及び電圧リード線4が取付けられ、いわ
ゆる4端子法で電気抵抗が測定される。第1図(a) 
、 (b)の複合超電導体2は、いずれも直状で、(C
)の複合超電導体2はU字形状、(d)の複合超電導体
2は円筒に巻付けた数ターンコイルである。
1 is a magnet for applying an external magnetic field, 2 is a composite superconductor,
The direction H of the magnetic field by the external magnetic field applying magnet 1 and the direction of the current flowing through the composite superconductor 2 are both at right angles. Now, a current lead wire 3 and a voltage lead wire 4 for supplying current are attached to the composite superconductor 2, and the electrical resistance is measured by the so-called four-terminal method. Figure 1(a)
, (b) are both straight and (C
The composite superconductor 2 shown in ) is U-shaped, and the composite superconductor 2 shown in (d) is a several-turn coil wound around a cylinder.

しかし、第1図(a) 、 (b) 、 (C) 、 
(d)の各ケースは、いずれも断面長と長さの比が比較
的大きい場合に適用できるもので、第2図(a)、(b
)のような縦断面長と長さの比が小さい複合導体では適
用しにくい。
However, Fig. 1 (a), (b), (C),
Each case (d) can be applied when the ratio of the cross-sectional length to the length is relatively large, and is applicable when the ratio of the cross-sectional length to the length is relatively large.
) is difficult to apply to composite conductors with a small ratio of vertical section length to length.

即ち、第2図(a) 、 (b)の如き複合超電導体は
、銅等の安定化材5と超電導素線6を含む複合超電導線
がはんだ7で一体に複合化されているが、電流リード線
3を複合超電導体2の両端にはんだ8を介して接続し、
電圧リード線4をその中央部よシビス又ははんだ等で接
続点9に取付け、液体ヘリウム中で電気抵抗を測定する
。超電導素線6が電気抵抗零の超電導状態では、電流は
電流リード線3よシ安定化材5、はんだ7を介して超電
導素線6に流れ込み、接続点9の電圧端子間には電圧は
生じないが、超電導素線6の臨界電流以上の大電流を通
電すると、安定化材5にも分流し、接続点9の電圧端子
間で電圧を検出することが出来る。
That is, in the composite superconductor shown in FIGS. 2(a) and 2(b), a composite superconducting wire including a stabilizing material 5 such as copper and a superconducting wire 6 is integrated with solder 7, but the current Lead wires 3 are connected to both ends of the composite superconductor 2 via solders 8,
The voltage lead wire 4 is attached to the connection point 9 with solder or the like at its center, and the electrical resistance is measured in liquid helium. When the superconducting wire 6 is in a superconducting state with zero electrical resistance, current flows into the superconducting wire 6 through the current lead wire 3, the stabilizing material 5, and the solder 7, and a voltage is generated between the voltage terminals at the connection point 9. However, when a large current higher than the critical current of the superconducting wire 6 is applied, the current is also shunted to the stabilizing material 5, and the voltage can be detected between the voltage terminals at the connection point 9.

ところが現実の複合超電導体2では、電流リード線3と
安定化材5との間に必ず有限の接続抵抗があシ、大電流
を通電すると、この接続部で発熱し、極端な場合には超
電導素線6の臨界電流特性に影響を及ぼすこと、及び、
安定化材5よシ超電導素線6に電流が流れ込む際、安定
化材5と超電導素線6との間の界面抵抗によって有限の
分流長さがあシ、極端な場合に−は接続点9の電圧端子
間でも未だ分流域で、超電導素線6が超電導状態であっ
ても接続点9の電圧端子間で電圧の検出が観測される。
However, in the actual composite superconductor 2, there is always a finite connection resistance between the current lead wire 3 and the stabilizing material 5, and when a large current is passed, heat is generated at this connection, and in extreme cases, the superconductor influencing the critical current characteristics of the strand 6, and
When current flows through the stabilizing material 5 and into the superconducting wire 6, there is a finite branch length due to the interfacial resistance between the stabilizing material 5 and the superconducting wire 6, and in extreme cases - is the connection point 9. Detection of voltage is still observed between the voltage terminals of the connection point 9 even though the superconducting strand 6 is in a superconducting state because it is still a branch region.

特に複合超電導体2の縦断面積の大きい大型複合超電導
体では、すべての超電導素線6に電流が流れ込むまでに
は、大きな分流長さが必要であることが確認された。
In particular, it was confirmed that in a large composite superconductor 2 having a large longitudinal cross-sectional area, a long branching length is required before the current flows into all the superconducting strands 6.

従って、第2図に示した如き複合超電導体の測定を行う
ためには、長尺の導体が必要となシ、直状のままでは試
験装置を大型化せざるを得す現実的でない。そこで、第
1図(C)、(d)の場合の如く曲げ加工を施すことが
考えられる。ところが複合超電導体自身が大型であるた
め、小さな曲げ半径に加工することは困難であり、やは
シ試験装置は大型化せざるを得ない。試験装置を大型化
することによフ大量の液体ヘリウムを消費する欠点が生
じる。また、電極部に生じる分流のために測定誤差が生
じるという欠点がある。
Therefore, in order to measure a composite superconductor as shown in FIG. 2, a long conductor is required, and if the conductor is kept straight, the testing apparatus would have to be enlarged, which is impractical. Therefore, it is conceivable to perform a bending process as shown in FIGS. 1(C) and 1(d). However, since the composite superconductor itself is large, it is difficult to process it into a small bending radius, and the test equipment has to be larger. The disadvantage of increasing the size of the test apparatus is that it consumes a large amount of liquid helium. Another disadvantage is that measurement errors occur due to shunt currents occurring at the electrode portions.

本発明の目的は、大型の複合超電導体の電気抵抗を短尺
をもって高精度に測定することのできる複合超電導体を
提供するにある。
An object of the present invention is to provide a composite superconductor whose electrical resistance can be measured with high precision using a short length.

本発明は、上記目的を達成するために、電流分流が電流
リード線と電圧リード線との間で生じることに着目し、
この区間における安定化材の一部にスリット状の切欠部
を設けて、電流リード線よシの電流が小領域において強
制的に超電導素線に流れ込むようにしたものである。
In order to achieve the above object, the present invention focuses on the fact that a current shunt occurs between a current lead wire and a voltage lead wire,
A slit-shaped notch is provided in a part of the stabilizing material in this section, so that the current from the current lead wire is forced to flow into the superconducting wire in a small region.

第3図(a)は本発明の第1の実施例を示す正面図であ
シ、第3図(b)は第3図(a)の実施例の縦断面図で
ある。第3図(a)および(b)においては、第2図(
a)。
FIG. 3(a) is a front view showing the first embodiment of the present invention, and FIG. 3(b) is a longitudinal sectional view of the embodiment of FIG. 3(a). In Fig. 3 (a) and (b), Fig. 2 (
a).

(b)に示した部材と同一物であるものには同一符号を
付している。本実施例は、電流リード線3と電圧リード
線4との間に所定幅のスリット1oを安定化材5の全周
に設けたものである。っまシ\安定化材5が所定幅分の
み除去されることになる。
Components that are the same as those shown in (b) are given the same reference numerals. In this embodiment, a slit 1o of a predetermined width is provided between the current lead wire 3 and the voltage lead wire 4 around the entire circumference of the stabilizing material 5. Only a predetermined width of the stabilizing material 5 is removed.

このような構成によシ、電流リード線3よシの電流は、
スリット10の位置で全電流が超電導素線6に強制的に
流れ込み、かつ接続部の発熱の影響も大巾に緩和するこ
とが出来る。
With this configuration, the current flowing through the current lead wire 3 is:
The entire current is forced to flow into the superconducting wire 6 at the position of the slit 10, and the influence of heat generation at the connection portion can be greatly alleviated.

第4図は本発明の変形例を示す正面図である。FIG. 4 is a front view showing a modification of the present invention.

本実施例は、安定化材5の全周にスリッIf設けず、一
部のみを超電導素線6に接するまで除去したスリットと
したものである。
In this embodiment, the slit If is not provided all around the stabilizing material 5, but only a portion of the slit is removed until it comes into contact with the superconducting wire 6.

第5図は本発明の他の変形例を示す正面図である。本実
施例は、安定化材5の一部を切欠くと共に肉厚部の成る
厚みを残すようなスリットとしたものである。
FIG. 5 is a front view showing another modification of the present invention. In this embodiment, a part of the stabilizing material 5 is cut out and a slit is formed so as to leave the thickness of the thick part.

第4図および第5図に示した実施例では、除去部および
切欠部は複数個とし、ある程度多くした方が良好な結果
が得られる。また、第2図に示した実施例も含め、スリ
ット部(除去部)にエポキシ樹脂等の絶縁物を流し込む
ことにより、電磁ヵ等によるスリット部の機械的変形を
防止することができる。
In the embodiments shown in FIGS. 4 and 5, a plurality of removed portions and notches are provided, and better results can be obtained by increasing the number to a certain extent. In addition, including the embodiment shown in FIG. 2, by pouring an insulating material such as epoxy resin into the slit portion (removed portion), mechanical deformation of the slit portion due to electromagnetic force or the like can be prevented.

次に、発明者らによる実施結果を例示し説明する。Next, the results of implementation by the inventors will be illustrated and explained.

第6図は本発明と従来の臨界電流特性を比較図示したも
のである。図中、実線特性が本発明であり、点線特性が
従来例によるものである。この場合のサンプルは、従来
例として巾12.6ミリメードル、高さ26.8ミリメ
ートルの大型複合超電導体を夫々長さ360ミリメート
ル切り取シ、電流リード線は大型複合超電導体の両端部
70ミリメートルにわたってはんだ付し電圧端子は複合
超電導体の中央部120ミリメートルから取シ出した。
FIG. 6 is a comparative diagram of the critical current characteristics of the present invention and the conventional one. In the figure, the solid line is the characteristic of the present invention, and the dotted line is the characteristic of the conventional example. In this case, the sample was a conventional large composite superconductor with a width of 12.6 mm and a height of 26.8 mm, each cut out to a length of 360 mm, and the current lead wires were soldered over 70 mm of both ends of the large composite superconductor. The attached voltage terminal was taken out from a 120 mm central portion of the composite superconductor.

一方、本発明のす/゛プルは、電流リード接続部の内側
に安定化材のみが取除かれるように5ミリメートルの巾
のスリットを設け、そのスリット部にエポキシ樹脂を埋
め込んだ。サンプルは、いずれも直状のま\で外部磁界
と試料通電電流の方向は直角で、外部磁界8テスラ、液
体ヘリウム中で試験した。この結果は第6図に示すよう
に本発明によれば、臨界電流点まで電圧発生は殆んど生
じていないことがわかる。なお、本実施に際しては、励
磁用直流電源の関係で、20KAまで通電する例を示し
ている。
On the other hand, in the spring of the present invention, a 5 mm wide slit was provided inside the current lead connection portion so that only the stabilizing material was removed, and the slit portion was filled with epoxy resin. All samples remained straight, and the external magnetic field and the direction of the sample current were at right angles, and the test was conducted in liquid helium with an external magnetic field of 8 Tesla. As shown in FIG. 6, the results show that according to the present invention, almost no voltage is generated up to the critical current point. In addition, in this implementation, an example is shown in which current is applied up to 20 KA due to the excitation DC power source.

更に、発明者らは、巾12.6ミリメードル、高さ26
.8ミリメートルの大型複合超電導体を夫々長さ400
ミリメートル切り取シ、従来例と本発明における接続抵
抗を比較評価した。接続部は複合超電導体の長さ400
ミリメートルの中央部150ミリメートルにわたって複
合超電導線同志がはんだを介してランプ接続されており
、必ず有限の接続抵抗を有する。電流リード線は、大型
複合超電導体の両端部70ミリメートルにわたってはん
だ付し、電圧端子は接続部を中心にして150゜200
.250ミリメートルから夫々取シ出した。
Furthermore, the inventors have developed a device with a width of 12.6 mm and a height of 26 mm.
.. Each 8mm large composite superconductor is 400mm long.
The connection resistances of the conventional example and the present invention were compared and evaluated by millimeter cutting. The length of the connection part is 400 mm of the composite superconductor.
Composite superconducting wires are lamp-connected via solder over a 150-millimeter central portion, and always have a finite connection resistance. The current lead wires are soldered over 70 mm at both ends of the large composite superconductor, and the voltage terminals are soldered at an angle of 150° and 200° around the connection point.
.. Each was taken out from a 250mm diameter.

一方のサンプルには、電流リード接続部の内側に安定化
材のみが取除かれるように5ミリメートルの巾のスリッ
トを設けた。サンプルはいずれも直状のま\で、外部磁
界0.5テスラ、液体ヘリウム中で試験した。試験した
複合超電導体の接続抵抗値を示したのが下表である。
One sample had a 5 mm wide slit inside the current lead connection so that only the stabilizing material was removed. All samples remained straight and were tested in liquid helium with an external magnetic field of 0.5 Tesla. The table below shows the connection resistance values of the tested composite superconductors.

上表よシ明らかな如く、従来例では電圧端子間長さが大
きくなるにつれて加速度的に接続抵抗が増加するのに対
し、スリツl設けた本発明の方法では電圧端子長さに依
存せず、はソ一定の接続抵抗の得られることがわかる。
As is clear from the table above, in the conventional example, the connection resistance increases at an accelerating rate as the length between the voltage terminals increases, whereas in the method of the present invention, which provides the slits, it does not depend on the length of the voltage terminals. It can be seen that a constant connection resistance can be obtained.

本発明の実施例によれば、安定化材にスリットを設ける
ことによシ、大型超電導体の電気抵抗を短尺で精度良く
測定することが出来る。このことは試験装置が従来より
小型のもので測定出来ることで、使用する液体ヘリウム
量を大巾に軽減出来る。又、高精度に測定出来ることか
ら、測定上の原因等による繰シ返し測定の頻度を大巾に
軽減出来、その経済的効果は極めて大きい。
According to the embodiment of the present invention, by providing a slit in the stabilizing material, the electrical resistance of a large superconductor can be measured with high precision over a short length. This means that measurements can be made using a smaller test device than conventional ones, and the amount of liquid helium used can be greatly reduced. Furthermore, since measurements can be made with high precision, the frequency of repeated measurements due to measurement reasons can be greatly reduced, and the economic effect is extremely large.

なお本発明の如き複合超電導体の電気抵抗測定は、複合
超電導体を製造した場合、必ず測定し検査すべき基本的
特性であシ、従来法に比べて安価に測定出来ることは、
複合超電導体を安価に製造出来る利点を有することと同
じである。
The electrical resistance measurement of a composite superconductor as in the present invention is a fundamental characteristic that must be measured and inspected when a composite superconductor is manufactured.
This is the same as having the advantage that composite superconductors can be manufactured at low cost.

以上よシ明らかなように本発明によれば、大型複合超電
導体の電気抵抗を短尺で高精度に測定することができる
As is clear from the above, according to the present invention, the electrical resistance of a large composite superconductor can be measured with high precision in a short length.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b) 、 (C) 、 (d)の
各々は複合超電導体の電気抵抗測定における配置を示す
説明図、第2図(a)、(b)は従来の電気抵抗測定用
大型複合超電導体の正面図および縦断面図、第3図(a
)、Φ)は本発明の実施例を示す正面図および縦断面図
、第4図は本発明の変形例を示す正面図、第5図は本発
明の他の変形例を示す正面図、第6図は本発明と従来の
臨界電流比較特性図である。 2・・・複合超電導体、3・・・電流リード線、4・・
・電圧リード線、訃・・安定化材、6・・・超電導素線
、7゜8・・・はんだ、9・・・接続点、1o・・・ス
リット。 代理人 弁理士 高橋明A ! 第 10 (d) 拓41 躬60 電表(KA ) − 特許庁長官 島田春樹殿 事件の表示 昭和56年特許願第164207号 発明の名称 複合超電導体 補正をする者 事件との関停  特許出願人 住  所 東京都千代田区丸の内−丁目5番1号名  
称15101株式会社 日 立 製 イ乍 所代表者 
三 1)勝 茂 住  所 シ京都千代田区内幸町二丁目2112号名 
称(409)日本原子力研究所 18   所 東京都千代田区丸の内−丁目5番1号株
式会社日立製作所内 ゛市、η東F1:435−422
1 +夫代&l委任状および1面。 補正の内容
Figures 1 (a), (b), (C), and (d) are explanatory diagrams showing the arrangement for measuring electrical resistance of composite superconductors, and Figures 2 (a) and (b) are diagrams showing conventional electrical resistance measurements. Front view and longitudinal sectional view of a large composite superconductor for measurement, Figure 3 (a
), Φ) are a front view and a longitudinal cross-sectional view showing an embodiment of the present invention, FIG. 4 is a front view showing a modification of the invention, and FIG. FIG. 6 is a characteristic diagram comparing the critical current of the present invention and the conventional method. 2... Composite superconductor, 3... Current lead wire, 4...
・Voltage lead wire, end...Stabilizing material, 6...Superconducting wire, 7゜8...Solder, 9...Connection point, 1o...Slit. Agent: Patent attorney Akira Takahashi A! No. 10 (d) Taku 41 躬 60 Electric table (KA) - Commissioner of the Japan Patent Office Haruki Shimada Indication of the case 1982 Patent application No. 164207 Name of the invention Composite superconductor Interruption with the case of the person making the amendment Patent applicant's residence Address: 5-1 Marunouchi, Chiyoda-ku, Tokyo
Name 15101 Hitachi Co., Ltd. Representative
3 1) Katsu Shigejuku 2-2112 Uchisaiwaicho, Chiyoda-ku, Kyoto
Name (409) Japan Atomic Energy Research Institute 18 Location 5-1 Marunouchi-chome, Chiyoda-ku, Tokyo Hitachi, Ltd., η East F1: 435-422
1 + husband & l power of attorney and page 1. Contents of correction

Claims (1)

【特許請求の範囲】 1、超電導線と、該超電導線を電磁気的に安定させる安
定化材と、該安定化材の両端に設けられる電流端子と、
該電流端子よシ内側の前記安定化材の表面に設けられる
一対の電圧端子と乞具備して電気抵抗の測定に供せられ
る複合超電導体において、前記電流端子と前記電圧端子
の間の前記安定化材の一部に少なくとも1つのスリツI
f設けてなる複合超電導体。 2、前記スリットは、前記安定化材の長手方向の所定幅
の総てを全周にわたシ除去したものであることを特徴と
する特許請求の範囲第1項記載の複合超電導体。 3、前記スリットは、前記安定化材の長手方向の所定幅
の総てを成る周長にわたって除去したものであることを
特徴とする特許請求の範囲第1項記載の複合超電導体。 4、前記スリットは、前記安定化材の長手方向の所定幅
の一部を成る局長にわたって除去したものであることを
特徴とする特許請求の範囲第1項記載の複合超電導体。
[Claims] 1. A superconducting wire, a stabilizing material that electromagnetically stabilizes the superconducting wire, and current terminals provided at both ends of the stabilizing material,
In a composite superconductor that is provided with a pair of voltage terminals provided on the surface of the stabilizing material on the inner side of the current terminal and used for measuring electrical resistance, the stabilizer between the current terminal and the voltage terminal At least one slit I on a part of the treated material
Composite superconductor with f. 2. The composite superconductor according to claim 1, wherein the slit is formed by removing a predetermined width of the stabilizing material along its entire circumference. 3. The composite superconductor according to claim 1, wherein the slit is formed by removing the entire predetermined width of the stabilizing material along its circumference. 4. The composite superconductor according to claim 1, wherein the slit is removed over a portion of a predetermined longitudinal width of the stabilizing material.
JP56164207A 1981-10-16 1981-10-16 Composite superconductor Granted JPS5866209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164207A JPS5866209A (en) 1981-10-16 1981-10-16 Composite superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164207A JPS5866209A (en) 1981-10-16 1981-10-16 Composite superconductor

Publications (2)

Publication Number Publication Date
JPS5866209A true JPS5866209A (en) 1983-04-20
JPH0233993B2 JPH0233993B2 (en) 1990-07-31

Family

ID=15788697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164207A Granted JPS5866209A (en) 1981-10-16 1981-10-16 Composite superconductor

Country Status (1)

Country Link
JP (1) JPS5866209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183941A (en) * 2003-11-28 2005-07-07 Dowa Mining Co Ltd Composite conductor, superconductive device system, and manufacturing method of composite conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183941A (en) * 2003-11-28 2005-07-07 Dowa Mining Co Ltd Composite conductor, superconductive device system, and manufacturing method of composite conductor
JP4568894B2 (en) * 2003-11-28 2010-10-27 Dowaエレクトロニクス株式会社 Composite conductor and superconducting equipment system

Also Published As

Publication number Publication date
JPH0233993B2 (en) 1990-07-31

Similar Documents

Publication Publication Date Title
US3434052A (en) Deformable loop apparatus for measuring alternating currents
Ries et al. Coupling losses in finite length of superconducting cables and in long cables partially in magnetic field
Adam et al. Rutherford cables with anisotropic transverse resistance
CA1236540A (en) Method and apparatus for providing extremely low- resistance connection between the end sections of two superconductors
JP3796850B2 (en) Terminal structure of superconducting cable conductor and connection method thereof
DE3029295A1 (en) ELECTRICAL RESISTANCE
KR0136791B1 (en) Dc biasing apparatus
JPS5866209A (en) Composite superconductor
Kim et al. Contact Resistance and Current Characteristics of NI HTS Coils in Low Frequency AC Method
EP0038892A1 (en) Insulated strand brushes for a dynamoelectric machine
Stoll Method of measuring alternating currents without disturbing the conducting circuit
Goodrich et al. Effect of twist pitch on short-sample VI characteristics of multifilamentary superconductors
Heck et al. The electrical resistance of Rutherford-type superconducting cable splices
JP2018068049A (en) Terminal structure of superconducting cable
JPS6344710A (en) Quenching detection device for superconductive coil
US3688811A (en) Method of establishing a warp joint of a stranded wire and stranded wires used therein
US3456157A (en) Electronic assembly
US3621386A (en) Method of determining bonding in a composite superconductor
JPS61290370A (en) Critical current measuring instrument for superconductive wire
JPH1082807A (en) Superconductor and measuring method for its alternating current loss
US2764744A (en) Current transformer construction
JPH04272670A (en) Connecting device for superconducting wire
JPH0434802B2 (en)
Albrecht et al. Electrical joints for the European LCT coil
Matras et al. Measurement of splice resistance and normal zone propagation velocity in REBCO tapes for the Superconducting Link of HL-LHC