JPS5865550A - Method and device for sealing clearance between two device relatively moving - Google Patents

Method and device for sealing clearance between two device relatively moving

Info

Publication number
JPS5865550A
JPS5865550A JP13640882A JP13640882A JPS5865550A JP S5865550 A JPS5865550 A JP S5865550A JP 13640882 A JP13640882 A JP 13640882A JP 13640882 A JP13640882 A JP 13640882A JP S5865550 A JPS5865550 A JP S5865550A
Authority
JP
Japan
Prior art keywords
gap
pressure
force
liquid
relatively moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13640882A
Other languages
Japanese (ja)
Inventor
フランツ・ル−ドルフ・ブロツク
ユルゲン・ペチユケ
デイ−タ−・フイツゲ
ゲルト・アルツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fried Krupp AG
Original Assignee
Fried Krupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fried Krupp AG filed Critical Fried Krupp AG
Publication of JPS5865550A publication Critical patent/JPS5865550A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • B22D11/0645Sealing means for the nozzle between the travelling surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は液状金属を鋳造するだめの装置の、相対的に運
動する2つのユニット装置の間の間隙をシールするだめ
の方法と装置であって、例えば該間隙が鋳造容器から鋳
造圧延装置への移行部分によって形成されておシ、その
間隙を通っての溶融物流出によるストランP形成への損
失発生を防ぐ必要があるものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method and apparatus for sealing a gap between two relatively moving unit apparatuses in a vessel apparatus for casting liquid metal, such as when the gap is It is formed by the transition part from the container to the casting and rolling mill, and it is necessary to prevent losses to the strand P formation due to the flow of melt through the gap.

高温と合金形成の傾向とを以っての溶融においては、前
記のような間隙を永続的にシールし得るような材料は存
在しない。
Upon melting with high temperatures and a tendency to form alloys, no material exists that can permanently seal such gaps.

磁界と液状金属内の電流とによって金属に作用せしめら
れる力は大体は、溶融物の液体表面の高さに基づいて当
該の間隙範囲内に生ぜしめられる圧力を補償するには不
十分である。また静止したガスによる空気力式の補償も
不可能であり、何故なら該ガスはその自重による無視可
能な程小さな圧力変化を除いては、機械的な装置におい
てどこでも同一の圧力を有するからであり、また他方で
液体が静止している状態ですら当該の液体柱はその自重
によって機械的装置の高さに亘って著しく相異なる圧力
を生せしめるものであり、従って大きな挑さに亘って空
気力式に圧力補償を維持することは不可能である。
The forces exerted on the metal by the magnetic field and by the electric current in the liquid metal are generally insufficient to compensate for the pressure created in the gap region due to the height of the liquid surface of the melt. Aerodynamic compensation with a stationary gas is also not possible, since the gas has the same pressure everywhere in a mechanical device, except for negligible pressure changes due to its own weight. , on the other hand, even when the liquid is at rest, the liquid column in question, due to its own weight, will generate significantly different pressures over the height of the mechanical device, and therefore the aerodynamic force will It is impossible to maintain pressure compensation in Eq.

また水平な境界面にお′いてのみ全体的に同一の圧力が
生じるので鉛直な間隙内の境界面をガス圧でシールする
ことは不可能である、即ちその場合当該の間隙の下側範
囲内で液体が流出してしまうか又は上側範囲内でガスが
液体内に押し入れられてしまう。
It is also not possible to seal interfaces in vertical gaps with gas pressure, since the overall pressure is the same only at horizontal interfaces, i.e. in the lower region of the gap in question. Either the liquid escapes or gas is forced into the liquid in the upper region.

本発明の課題は、液状金属を鋳造するだめの装置の、相
対的に運動する2つのユニット装置の間の間隙をシール
するための方法と装置において、液体とガスとの間で鉛
直方向に延びる境界面を安定させ得るものを提案するこ
とである。
The object of the present invention is to provide a method and a device for sealing a gap between two relatively moving unit devices of a device for casting liquid metals, extending vertically between the liquid and the gas. The purpose is to propose something that can stabilize the interface.

上記の課題は本発明の方法によれば、液圧の、間隙横断
面における最小液圧を越えない部分を空気力によって補
償し、その液圧の変動する残余部分は電磁力で補償する
ようにし、また該電磁力を電流による電磁誘導の作用に
よって液体内に生ぜしめる方法によって解決された。
According to the method of the present invention, the above problem can be solved by compensating for the part of the hydraulic pressure that does not exceed the minimum hydraulic pressure in the cross section of the gap by the aerodynamic force, and for the remaining part of the fluid pressure that fluctuates by using the electromagnetic force. The problem was solved by a method in which the electromagnetic force was generated in a liquid by the action of electromagnetic induction caused by an electric current.

上記の本発明の方法によれば、液体内の圧力差異が、付
加的に使用されている電磁力によって補償され得るよう
になる。本発明のように用いられる電磁力は、ガス柱の
大体無視可能“な自重を除いてどこでも同一となるガス
圧と異なり、局部的な必要にも容易に適合可能であり、
しかも原則的に単独では十分に強力でアシ得ないという
電磁力の有する欠点も本発明によれば、空気力式の圧力
に対して付加的に用いることによって解決されている。
According to the method of the invention described above, pressure differences within the liquid can be compensated for by additionally used electromagnetic forces. The electromagnetic force used as in the present invention can be easily adapted to local needs, unlike gas pressure, which is the same everywhere except for the largely negligible self-weight of the gas column.
Moreover, the drawbacks of electromagnetic forces, which in principle cannot be applied with sufficient force on their own, are overcome according to the invention by their use in addition to pneumatic pressure.

即ちこの電磁力は、最小液圧が空気力によって補償され
ている一方で、該最小値以上に達する圧力部分を補償す
るためにのみ用いられている。
That is, this electromagnetic force is only used to compensate for the pressure part that reaches above the minimum hydraulic pressure, while the minimum hydraulic pressure is compensated by the pneumatic force.

電磁力による磁束密度はそれ自体公知の種々の形式で変
化させることができる、即ち、a)液体内の電流を変え
る、b)電磁誘導の磁界を変える、C)この2つの手段
を同時に用いる。
The magnetic flux density due to the electromagnetic force can be varied in various ways known per se: a) by changing the current in the liquid, b) by changing the magnetic field of electromagnetic induction, or C) by using the two measures simultaneously.

特に簡単な解決法は、磁界を形成し電流を流過せしめる
導体に適当な形状を与えることであり、つまり例えば比
較的に高い液圧が生じる下側範囲内では導体を前記境界
面のより近くに配置することである。
A particularly simple solution is to give the conductors which form the magnetic field and allow the current to flow through them a suitable shape, i.e., for example in the lower region where relatively high hydraulic pressures occur, to move the conductors closer to said interface. It is to place it in.

本発明の方法の有利な1実施態様によれば、間隙を制限
する各壁部によって、循環式のエンドレスな間隙を生ぜ
しめる形を形成し、この間隙内で液体が形成する閉じた
導体内に電流を誘導するようになっている。しかしこの
間隙を制限する各壁部によって、有限の長さを有する間
隙を生せしめる形を形成し、該間隙の両端部に電極を介
して電流を供給するようにしてもよい。
According to an advantageous embodiment of the method according to the invention, the respective walls delimiting the gap form a shape that creates an endless gap in which the liquid forms a closed conductor. It is designed to induce electric current. However, the walls limiting this gap may form a gap with a finite length, and the current may be supplied via electrodes to both ends of the gap.

更に本発明の方法の有利な実施例によれば、ガス圧を、
その都度の間隙における最小液圧よシ僅かに低く制御し
、そのために該ガス圧を、取入れ口での充填状態測定に
よってか又は誘導力の損失出力の変化によって規定する
ようになっている。
Furthermore, according to an advantageous embodiment of the method according to the invention, the gas pressure is
The minimum hydraulic pressure in the respective gap is controlled to be slightly lower, and for this purpose the gas pressure is determined either by measuring the filling state at the intake or by changing the loss power of the induced force.

また本発明の方法によれば、1次電磁誘導を巻線で生ぜ
しめ、シールされるべき間隙までの該巻線の距離を、該
電磁誘導力が間隙に沿った液圧の変化と同じ程度で変化
するように設定されると有利である。
Further, according to the method of the invention, a primary electromagnetic induction is generated in a winding, and the distance of the winding to the gap to be sealed is controlled by the electromagnetic induction force as large as the change in hydraulic pressure along the gap. Advantageously, it is set to vary at .

更に前記の方法を実施するだめの本発明による装置にお
いては、外方へ向けてシールされガスが圧入される圧力
室と間隙の周辺との間に、圧力補償をは可能ならしめる
が対流電流の形成は防ぐようになっている組込み体が配
設されていることが提案されている。
Furthermore, in the device according to the invention for carrying out the above-mentioned method, pressure compensation is possible between the pressure chamber sealed outwardly and into which the gas is forced in, and the periphery of the gap, but no convection current is generated. It has been proposed that an incorporation is provided which is adapted to prevent formation.

本発明の装置の1変化実施例によれば、組込み体として
多孔性の石材が用いられている。
According to one variant embodiment of the device according to the invention, a porous stone material is used as the built-in body.

更に本発明の装置においては、互いに絶縁されている区
分によって、誘導力に隣接した導体内への、電流の大き
な拡がりが防がれていると有利である。
Furthermore, in the device according to the invention, it is advantageous if the mutually insulated sections prevent a large spread of the current into the conductor adjacent to the inductive force.

次に図示の実施例につき本発明を説明する。The invention will now be explained with reference to the illustrated embodiment.

特に第2図から分るように当該のシール作用は方形の間
隙に沿って行なわれる。その間隙の縁は、ストック容器
1の耐火性供給部2の突出部分13と、支持ローラ10
を介して循環するベルト5と、側壁を成す鍮塊9とから
形成されている。
As can be seen in particular from FIG. 2, the sealing action takes place along a rectangular gap. The edges of the gap are connected to the protruding part 13 of the refractory supply part 2 of the stock container 1 and the support roller 10.
It is made up of a belt 5 that circulates through the belt, and a piece of brass 9 that forms the side wall.

耐火性供給部2の突出部分13が両循環Rルト5の間に
達するように延ばされているので、当該の間隙範囲で液
状金属は閉じた方形の導体14を形成している。この間
隙の手前には交流で負荷されて電流が通じている方形の
巻線6が配設されている。時間的に可変な磁界によって
前記の液状の方形導体に電流が誘導せしめられる。巻線
6と方形導体14とによって形成される各導体環は互い
に反発し合う。
The protruding part 13 of the refractory supply 2 extends between the two circulation routes 5, so that in the area of the gap the liquid metal forms a closed rectangular conductor 14. A rectangular winding 6 loaded with alternating current and carrying current is arranged in front of this gap. A temporally variable magnetic field induces an electric current in the liquid rectangular conductor. The conductor rings formed by the winding 6 and the rectangular conductor 14 repel each other.

下側範囲内ではその比較的に高い圧力に相応して前記反
発力が大きくあるようにするために、巻線6は該範囲内
で当該の間隙の手前により近く配置されている(第3図
参照)。
In order to ensure that the repulsive force is greater in the lower region, commensurate with its relatively high pressure, the winding 6 is arranged in this region closer to the gap in question (FIG. 3). reference).

フェロスタティックな圧力の補償は主に空気 力によっ
て行なわれる。ガス供給導管3を介して適切なガス圧が
維持されている。このガス圧はストック容器1内の充填
状態に対応して後調整されるようになっておシ、それに
よって間隙の上縁部ではフェロスタティックな圧力の一
定した小さな部分のみが電磁式に補償されれば済むよう
になっている。このために前記の充填状態は図示されて
いない測定装置によって監視されている。また本発明に
よればその平均的な圧力を、1次巻線の損失出力の変化
を以って測定することも可能である。
Compensation of ferrostatic pressure is mainly performed by aerodynamic forces. A suitable gas pressure is maintained via the gas supply conduit 3. This gas pressure is post-adjusted depending on the filling state in the stock container 1, so that only a small, constant portion of the ferrostatic pressure at the upper edge of the gap is electromagnetically compensated. Now it's all you need to do. For this purpose, the filling state is monitored by a measuring device (not shown). Further, according to the present invention, it is also possible to measure the average pressure based on the change in the loss output of the primary winding.

ガスとしては有利には不活性ガスが考えられるが、当該
の液体の表面の近くでは気流を可及的に小キくするよう
にさえ考慮されれば空気でも多くの場合に適当である。
As the gas, an inert gas is advantageously considered, but air is also suitable in many cases, provided that the air flow is kept as small as possible near the surface of the liquid in question.

圧力室の外側のシールは従来の技術を以って行なわれ、
それは前述の熱及び力学上の各条件に相応して選択され
る。またこのシール部を比較的に熱くない範囲内に配設
するか又は該シール部自体を冷却することもしばしば可
能である。
The external sealing of the pressure chamber is done using conventional techniques,
It is selected depending on the thermal and mechanical conditions mentioned above. It is also often possible to arrange the seal in a relatively cool area or to cool the seal itself.

本発明においては、磁界を形成する巻線の近傍での各材
料は特別の条件を考慮して選択されるか又は該条件に適
合せしめられなければならない。
In the present invention, each material in the vicinity of the windings forming the magnetic field must be selected or adapted with special conditions in mind.

例えば導電性の良好な材料をこまかく分けてぞb各断面
を、例えば中間挿入物、酸化膜又はプラズマ注入などに
よって相互に絶縁し、それによって不所望に大きな電流
の拡がりが防がれるようにされる。
For example, a material with good conductivity may be divided into small sections and each cross section insulated from each other, for example by intermediaries, oxide layers or plasma implantation, to prevent undesirably large currents from spreading. Ru.

また高い磁気透過性を有する材料でも、それが所望の磁
界の形成を助成する限りにおいては使用可能である。
Materials with high magnetic permeability may also be used as long as they assist in forming the desired magnetic field.

1次巻線にどれ位の周波数を用いるのが有利であるかは
、当該の液体の導電性にかかつており、またどれ位の早
さで磁束密度が液体の表面から内部へ向けて減少せしめ
られなければならないかに左右される。
What frequency is advantageous to use for the primary winding depends on the conductivity of the liquid in question, and how quickly the magnetic flux density decreases from the surface of the liquid inward. It depends on what needs to be done.

導体内での電磁界の浸透深さδは δ=(2/ωゆ) 
t/ 2 = (πfkμ)4/2の公式で見積もるこ
とかできる。
The penetration depth δ of the electromagnetic field inside the conductor is δ=(2/ωyu)
It can be estimated using the formula t/2 = (πfkμ)4/2.

この場合は、μ=0.4−π’10  Vs/Amが電
磁透過性で、σが液状金属の導電性である。
In this case, μ=0.4−π′10 Vs/Am is the electromagnetic permeability and σ is the conductivity of the liquid metal.

磁束密度Fが磁気誘導Bと電流密度Sとにおいて双−次
的にF=8 XBの関係にあるので、磁束密度Fの浸透
深さは当該の電磁界の浸透深さの半分の値に過ぎない。
Since the magnetic flux density F has a quadratic relationship between the magnetic induction B and the current density S as F=8 do not have.

例えばK = O−7MS/” *””20mm又はユ
=lQmmである液状鋼に与えられる周波数fは、r=
(δ2πにμ)7”=9KHzである。
For example, the frequency f applied to liquid steel where K = O-7MS/"*""20mm or U = lQmm is r =
(μ to δ2π) 7”=9KHz.

もちろん本発明は上記の各側に限定されるものではない
0本発明によれば更に、低温溶融金属、特にアルミニウ
ムのだめの各公知文献に書かれているような多くの鋳造
技術(、ドイツ連邦共和国特許出願公開第283028
4号明細書及びそこに記された方法を参照)をいまや高
温容融金属にも使用可能である。
Of course, the invention is not limited to the above-mentioned aspects; the invention furthermore applies to many casting techniques, such as those described in the known literature, for low-melting metals, in particular aluminum pots (in the Federal Republic of Germany, Patent Application Publication No. 283028
4 and the method described therein) can now also be used for high-temperature melting metals.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の1実施例を示すものであって、第1図は
シールされるべき範囲内での鋳造圧延装置の鉛直方向横
断面図、第2図は第1図の]−n4mに沿った断面図、
第3図は鉛直方向横断面図の部分図である。 1・・・ス))ツノ容器、r、++2、・・・耐火性供
給部、3・・・ガス供給導管、4・・・ガスシール部、
5・・・循環ベルト、6・・・巻線、7・・・供給通路
、8・・・ストランド、9・・・鍮塊、10・・・支持
ローラ、11・・・凝固部分、12・・・液状部分、1
3・・・突出部分、14・・・方形導体
The drawings show one embodiment of the present invention, in which FIG. 1 is a vertical cross-sectional view of the casting and rolling mill within the area to be sealed, and FIG. cross-sectional view,
FIG. 3 is a partial vertical cross-sectional view. 1... S)) Horn container, r, ++2,... Fireproof supply part, 3... Gas supply conduit, 4... Gas seal part,
5... Circulation belt, 6... Winding wire, 7... Supply passage, 8... Strand, 9... Brass ingot, 10... Support roller, 11... Solidifying portion, 12...・Liquid part, 1
3...Protruding part, 14...Square conductor

Claims (1)

【特許請求の範囲】 1、液状金属を鋳造するだめの装置の、相対的に運動す
る2つのユニット装置の間の間隙をシールするだめの方
法において、液圧の、間隙横断面における最小液圧を越
えない部分を空気力によって補償し、その液圧の変動す
る残余部分は電磁力で補償するようにし、また該電磁力
を電流による電磁誘導の作用によって液体内に生ぜしめ
ることを特徴とする、2つの相対的に運動する装置の間
の間隙をシールするための方法。 2、間隙を制限する各壁部によって、循環式のエンドレ
スな間隙を生ぜしめる形を形成し、この間隙内で液体が
形成する閉じた導体内に電流を特徴する特許請求の範囲
第1項記載の方法。 3、間隙を制限する各壁部によって、有限の長さを有す
る間隙を生ぜしめる形を形成し、該間隙の両端部に電極
を介して電流を特徴する特許請求の範囲第1項記載の方
法。 4、 ガス圧を、その都度の間隙における最小液圧より
僅かに低く制御し、そのために該ガス圧を、取入れ口で
の充填状態測定によってか又は誘導力の損失出力の変化
によって規定する、特許請求の範囲第1項記載の方法。 5.1次電磁誘導を巻線で生ぜしめ、シールされるべき
間隙までの該巻線の距離を、電磁誘導力が間隙に沿った
液圧の変化と同じ程度で変化するように設定する、特許
請求の範囲第1項記載の方法。 6、液状金属を鋳造するための装置の、相対的に運動す
る2つのユニット装置の間の間隙をシールするだめの装
置であって、液圧の、間隙横断面における最小液圧を越
えない部分が空気力によって補償され、その液圧の変動
する残余部分が電磁力で補償され、しかもその電磁力が
電流による電磁誘導の作用によって液体内に生ぜしめら
れる形式のものにおいて、外方へ向けてシールされガス
が圧入される圧力室と間隙の周辺との間に、圧力補償を
は可能ならしめるが対流電流の形成は防ぐようになって
いる組込み体が配設されていることを特徴とする、2つ
の相対的に運動する装置の間の間隙をシールするための
装置。 7、 前記の組込み体として多孔性の石材が用いられて
いる、特許請求の範囲第6項記載の装置。 8、互いに絶縁されている区分によって、誘導力に隣接
した導体内への、電流の大きな拡がシが防がれている、
特許請求の範囲第6項記載の装置。
[Claims] 1. In a method for sealing a gap between two relatively moving unit devices of a device for casting liquid metal, the minimum hydraulic pressure in the cross section of the gap; The remaining part where the fluid pressure fluctuates is compensated by an electromagnetic force, and the electromagnetic force is generated in the liquid by the action of electromagnetic induction caused by an electric current. , a method for sealing a gap between two relatively moving devices. 2. Each gap-limiting wall forms a shape that creates a circulating endless gap, in which the liquid forms a current in a closed conductor, as claimed in claim 1. the method of. 3. A method according to claim 1, characterized in that each gap-limiting wall forms a shape that creates a gap with a finite length, and a current is passed through electrodes at both ends of the gap. . 4. Patent for controlling the gas pressure slightly below the minimum hydraulic pressure in the respective gap and for this purpose defining the gas pressure by measuring the filling state at the intake or by changing the loss power of the induced force. The method according to claim 1. 5. Generating a primary electromagnetic induction in a winding and setting the distance of the winding to the gap to be sealed such that the electromagnetic induction force varies to the same extent as the change in hydraulic pressure along the gap; A method according to claim 1. 6. A device for sealing a gap between two relatively moving unit devices of a device for casting liquid metal, where the hydraulic pressure does not exceed the minimum hydraulic pressure in the cross section of the gap. is compensated for by the aerodynamic force, the remaining part of the fluctuation of the liquid pressure is compensated for by the electromagnetic force, and the electromagnetic force is generated in the liquid by the action of electromagnetic induction by an electric current, and It is characterized in that a built-in body is arranged between the sealed pressure chamber into which gas is pressurized and the periphery of the gap, which makes it possible to compensate the pressure but prevents the formation of convective currents. , a device for sealing a gap between two relatively moving devices. 7. The device according to claim 6, wherein porous stone is used as the built-in body. 8. Sections insulated from each other prevent a large spread of current into the conductor adjacent to the inductive force,
An apparatus according to claim 6.
JP13640882A 1981-08-07 1982-08-06 Method and device for sealing clearance between two device relatively moving Pending JPS5865550A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE31313531 1981-08-07
DE19813131353 DE3131353A1 (en) 1981-08-07 1981-08-07 "METHOD AND DEVICE FOR SEALING THE GAP BETWEEN RELATIVELY MOVING DEVICES"

Publications (1)

Publication Number Publication Date
JPS5865550A true JPS5865550A (en) 1983-04-19

Family

ID=6138851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13640882A Pending JPS5865550A (en) 1981-08-07 1982-08-06 Method and device for sealing clearance between two device relatively moving

Country Status (3)

Country Link
EP (1) EP0071802A3 (en)
JP (1) JPS5865550A (en)
DE (1) DE3131353A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3231321C2 (en) * 1982-08-23 1984-06-07 Fried. Krupp Gmbh, 4300 Essen Sealing between a casting nozzle and a continuous casting mold for steel that surrounds it and has a rectangular casting cross-section
CH662073A5 (en) * 1983-06-01 1987-09-15 Lauener W F Ag METHOD FOR FEEDING A METAL MELT AND CASTING MACHINE FOR CARRYING OUT THE METHOD.
KR940008621B1 (en) * 1985-06-27 1994-09-24 가와사키세이데쓰 가부시키가이샤 Casting method & apparatus for endless strip
US4685505A (en) * 1986-01-06 1987-08-11 Aluminum Company Of America Non-contacting side edge dam means for roll casting
EP0290866A3 (en) * 1987-05-15 1989-07-19 Westinghouse Electric Corporation Improved discrete excitation coil producing seal at continuous casting machine pouring tube outlet nozzle/mold inlet interface
US4936374A (en) 1988-11-17 1990-06-26 The United States Of America As Represented By The United States Department Of Energy Sidewall containment of liquid metal with horizontal alternating magnetic fields
CA2041778A1 (en) * 1990-12-10 1992-06-11 James E. Kelly Method and apparatus for rheocasting
FR2885544B1 (en) * 2005-05-13 2009-01-16 Fai Production Soc Par Actions PROCESS AND PLANT FOR TRANSFORMING A LIQUID-LIKE METAL TO A SOLID AND FRAGMENTED METAL

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1015314A (en) * 1963-11-13 1965-12-31 Davy & United Eng Co Ltd Continuous casting
CH604970A5 (en) * 1974-11-01 1978-09-15 Erik Allan Olsson
CH600966A5 (en) * 1974-11-01 1978-06-30 Erik Allan Olsson
CH648500A5 (en) * 1980-07-11 1985-03-29 Concast Ag METHOD AND DEVICE FOR CONTINUOUSLY casting metal in a closed pouring system.

Also Published As

Publication number Publication date
EP0071802A3 (en) 1983-06-01
DE3131353A1 (en) 1983-02-24
EP0071802A2 (en) 1983-02-16

Similar Documents

Publication Publication Date Title
US3605865A (en) Continuous casting apparatus with electromagnetic screen
Vives et al. Experimental study of continuous electromagnetic casting of aluminum alloys
US7848383B2 (en) Cold crucible induction furnace with eddy current damping
US4936374A (en) Sidewall containment of liquid metal with horizontal alternating magnetic fields
JPS6254579B2 (en)
JP3377528B2 (en) Method and apparatus for coating surface of continuous cast material
JPS5865550A (en) Method and device for sealing clearance between two device relatively moving
US4974661A (en) Sidewall containment of liquid metal with vertical alternating magnetic fields
US5197534A (en) Apparatus and method for magnetically confining molten metal
KR860000126B1 (en) Method of electromagnetic thin strip casting
US6159293A (en) Magnetic containment of hot dip coating bath
EP0067433B1 (en) Horizontal continuous casting installation
KR20020063897A (en) Method for the vertical continuous casting of metals using electromagnetic fields and casting installation therefor
EP0248242B1 (en) Continuous metal casting apparatus
JP2007522425A (en) Cold crucible induction furnace
US4216817A (en) Inductor for an electromagnetic mold for continuous casting
JPS6192758A (en) Long-sized metallic product
ITMI20081207A1 (en) ELECTROMAGNETIC DEVICE FOR COATING WITH CONTINUOUS HOT DIVING OF METALLIC PRODUCTS, PLANS AND RELATED COATING PROCESS
EP0586732A1 (en) Apparatus and method for magnetically confining molten metal
JP4640349B2 (en) Continuous casting apparatus and casting method in continuous casting apparatus
KR100541507B1 (en) Device and method for casting metal strips, especially steel, in double roller continuous casting machines
US4905756A (en) Electromagnetic confinement and movement of thin sheets of molten metal
US4471832A (en) Apparatus and process for electromagnetically forming a material into a desired thin strip shape
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JPS6144589B2 (en)