JPS5865144A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPS5865144A
JPS5865144A JP16246481A JP16246481A JPS5865144A JP S5865144 A JPS5865144 A JP S5865144A JP 16246481 A JP16246481 A JP 16246481A JP 16246481 A JP16246481 A JP 16246481A JP S5865144 A JPS5865144 A JP S5865144A
Authority
JP
Japan
Prior art keywords
doppler
probe
scanning
ultrasonic
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16246481A
Other languages
Japanese (ja)
Other versions
JPH0135656B2 (en
Inventor
博 福喜多
早川 佳宏
舘田 良文
屋野 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16246481A priority Critical patent/JPS5865144A/en
Publication of JPS5865144A publication Critical patent/JPS5865144A/en
Publication of JPH0135656B2 publication Critical patent/JPH0135656B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は生体内の断層情報と共に血流速度情報を得るこ
とのできる電子走査型超音波診断装置に関するもので、
簡便な装置で広範囲に上記二つの情報を得られるように
することを目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic scanning ultrasound diagnostic device that can obtain in-vivo tomographic information as well as blood flow velocity information.
The purpose is to make it possible to obtain the above two types of information over a wide range with a simple device.

従来生体内の血流速度を非観血的に測定する一手段とし
て超音波ドプラ法が知られている。
BACKGROUND ART The ultrasonic Doppler method is conventionally known as a means of non-invasively measuring blood flow velocity in a living body.

この種の装置は超音波の送信波と血球等による反射波と
の周波数差すなわち周波数偏移から血流速度を求める技
術を土台とするものである。
This type of device is based on a technology that determines the blood flow velocity from the frequency difference, that is, frequency shift, between the transmitted ultrasonic wave and the reflected wave from blood cells or the like.

近年この種の技術に関連して断層情報と血流情報を同時
に得られる装置すなわち複合超音波診断装置が医学分野
で嘱望されている。従来はこのような装置の例としては
断層像走査方式およびドプラ方式に対して別個の振動子
が用いられる場合と、両方式に対して同一の振動子が用
いられる場合が現在報告されている。前者の装置の構成
を簡単に説明すると、診断装置〃の断層用探触子にアー
ムを介して超音波ドプラ計測用の探触子を取付け、両探
触子の位置、および超音波ビームの送受波方向をポテン
シオメータによって検出する。そして−力の探触子にて
リアルタイム断層像を得、他方の探触子にて超音波のド
プラ変位から血流速度を観測するものである。この種の
装置は上記2つの情報を関連して同時に得ることができ
るために非常に有用である。しかしながら上記方式に関
しては、2つの探触子の音波放射面が分離しているため
、ドプラ計測用の超音波ビームの通過領域が完全に描出
できないので、ドプラ超音波ビームが目的部位捷で確実
に到達しているか否かは判らない。例えばセクタ電子走
査の探触子を用いて断層像を得る場合には近距離の被検
視野が非常に狭いため、近距離におけるドプラ計測用の
超音波ビームの通過領域が完全に描出できないという欠
点を用する。。
In recent years, in connection with this type of technology, a device capable of simultaneously obtaining tomographic information and blood flow information, that is, a complex ultrasonic diagnostic device, has been desired in the medical field. Conventionally, examples of such devices currently reported include cases in which separate transducers are used for the tomographic scanning method and Doppler method, and cases in which the same transducer is used for both methods. To briefly explain the configuration of the former device, a probe for ultrasonic Doppler measurement is attached to the tomographic probe of the diagnostic device via an arm, and the position of both probes and the transmission and reception of the ultrasonic beam are controlled. The wave direction is detected by a potentiometer. Then, a real-time tomographic image is obtained using the force probe, and the blood flow velocity is observed from the Doppler displacement of the ultrasound using the other probe. This type of device is very useful because it allows the above two pieces of information to be obtained simultaneously. However, with the above method, since the sound wave emitting surfaces of the two probes are separated, the passage area of the ultrasound beam for Doppler measurement cannot be completely visualized. I don't know if it has been reached or not. For example, when obtaining a tomographic image using a sector electronic scanning probe, the field of view at short distances is very narrow, so the disadvantage is that the area through which the ultrasound beam for Doppler measurement at short distances cannot be completely visualized. use. .

−iた、一般に人体中における超音波の減衰特性は組織
により大きく異なり、例えば骨、あるいは空気存が多く
含まれている肺、消化器系の多くの組織等で(d減衰が
非常に大き′い。このような組織がドプラ計測用の探触
子とドプラ検査の目的部位との間に存在する場合、目的
部位からの有効なエコー信号は得ることが不可能となる
ので断層像上で減衰の大きな組織を避けてドプラ超音波
ビームを入射させる必要がある。しかしながら上記構成
の装置の場合、ドプラ超音波ビームの通過領域が完全に
描出できないため、特に近距離領域に減衰の大きな組織
がある場合でも断層像で確認できない場合が考えられる
。この欠点は2つの分離した探触子を用いているために
起るのであるが、以下に述べるように断層像の走査方式
によりこの欠点の程度は異ってくる。すなわち探触子か
ら近距離の領域で視野が広い場合にはドプラ超音波ビー
ムの通過領域で表示不可能な部分は少くなる。
In general, the attenuation characteristics of ultrasound waves in the human body vary greatly depending on the tissue. If such tissue exists between the probe for Doppler measurement and the target area for Doppler examination, it will be impossible to obtain an effective echo signal from the target area, so it will be attenuated on the tomogram. It is necessary to make the Doppler ultrasound beam incident while avoiding large tissues.However, in the case of the device with the above configuration, the area through which the Doppler ultrasound beam passes cannot be completely visualized, so there are tissues with large attenuation, especially in the short distance area. Even in the case of a tomographic image, it may not be possible to confirm the situation.This defect occurs because two separate probes are used, but as described below, the degree of this defect can be reduced by the scanning method of the tomographic image. In other words, if the field of view is wide in a region close to the probe, the portion that cannot be displayed in the region through which the Doppler ultrasound beam passes will be smaller.

現時点で代表的な電子走査方式としては、セクタ電子走
査とリニア電子走査が考えられるがセクタ方式では近距
離の被検幅が狭いので、上記欠点に対処するためにはリ
ニア方式が適しているといえる。しかしリニア電子走査
では遠距離における被検幅も探触子の走査幅で限ノセさ
れてしまうため以下に示す理由で不都合を生じる場合が
ある。
At present, the typical electronic scanning methods are sector electronic scanning and linear electronic scanning, but since the sector method has a narrow inspection width at short distances, the linear method is considered to be suitable to address the above drawbacks. I can say that. However, in linear electronic scanning, the test width at long distances is also limited by the scanning width of the probe, which may cause problems for the following reasons.

一般に装置によって得られるドプラ周波数偏移と流速と
の関係は次式によって表わされる。
Generally, the relationship between the Doppler frequency shift obtained by the device and the flow velocity is expressed by the following equation.

ただしΔf−周波数偏移、f0−超音波の放射周波数、
V−血液の平均流速、C−組織中の音速(約1540m
/秒)、θ−血流方向とドプラ超音波ビームのなす角度
である。したがって周波数偏移は第1式で示すように超
音波ビームと血流方向がなす角度θの余弦に比例し、両
者が平行な場合に最大となり精度よく測定され、直交す
る場合には零となり測定不可能となる。このような理由
から超音波ビームは血流方向に対して60度以下の角度
で入射させることが望ましいとされている。
where Δf - frequency deviation, f0 - radiation frequency of ultrasound,
V - Average flow velocity of blood, C - Speed of sound in tissue (approximately 1540 m
/sec), θ - the angle between the blood flow direction and the Doppler ultrasound beam. Therefore, as shown in the first equation, the frequency deviation is proportional to the cosine of the angle θ between the ultrasound beam and the blood flow direction, and when the two are parallel, it is maximum and measured with high accuracy, and when they are orthogonal, it is zero and the measurement is It becomes impossible. For these reasons, it is considered desirable that the ultrasonic beam be incident at an angle of 60 degrees or less with respect to the blood flow direction.

一方腹部の重要血管をドプラ検査する場合、例えば腹大
動脈、下大静脈等は体表面に対して平行。
On the other hand, when performing a Doppler examination of important blood vessels in the abdomen, for example, the abdominal aorta and inferior vena cava are parallel to the body surface.

深部に位置している。このような被検部位に対して、被
検幅りのリニア電子走査探触子の端部より位表面に対し
て45度の角度でドプラ超音波ビームを入射させた場合
、ドプラ超音波ビームの通過領域が表示できるのは深さ
Jjでとなる。一般に被検幅りとしては1ocn1程度
以下であり、しがも探触子は走査幅が短い方が体表面と
の音響的な結合が良いという条件もある。以トのような
理由からある程度深い部位に位置する血流に対しては、
通常・すIJ ニア電子走査により得られる被検領域は
適切であるとは言いがたい。この問題を解決するために
は近距離ではリニア走査程度の被検幅を有し、遠距離で
はセクター走査程度の被検幅となる台形状の領域を表示
できることが必要である。
It is located deep inside. When a Doppler ultrasound beam is incident on such a test area at an angle of 45 degrees to the surface from the end of a linear electronic scanning probe with the test width, the Doppler ultrasound beam The passage area can be displayed at depth Jj. Generally, the test width is about 1ocn1 or less, and there is also a condition that the shorter the scanning width of the probe, the better the acoustic coupling with the body surface. For the following reasons, for blood flow located at a certain depth,
It is difficult to say that the test area obtained by normal/sun IJ near electronic scanning is appropriate. In order to solve this problem, it is necessary to be able to display a trapezoidal area that has a test width comparable to linear scanning at short distances and a test width comparable to sector scanning at long distances.

この条件を満たすため探触子の複数個の圧電振動子をそ
の音波放射面側が凸面となるように配し、リニア電子走
査と同様な回路を組合わせて超音波ビームの方向を放射
状に走査させ、体表面付近ではある程度の被検幅を有し
、深い領域では通常のリニア電子走査の被検幅よりも広
い視野を確保する方式が本出願人により提案された。第
1図にこの方式の探触子を示し、それを利用した複合超
音波診断装置を以下に説明する。
In order to satisfy this condition, multiple piezoelectric vibrators of the probe are arranged so that their sound wave emitting surfaces are convex, and a circuit similar to linear electronic scanning is combined to scan the direction of the ultrasound beam radially. The present applicant has proposed a method that has a certain width of inspection near the body surface and secures a field of view wider than the inspection width of normal linear electronic scanning in deep regions. FIG. 1 shows a probe of this type, and a complex ultrasonic diagnostic apparatus using it will be described below.

図において、11は断層用超音波探触子、12はドプラ
計測用超音波探触子、2は被検体、21は被検体表面、
22は血管、31はNヶの圧電振切子、4幹よび6はそ
れぞれ圧電撮動子31の前面に接合された第1および第
2の音響整合層、8゜10(#i接続線、91は電子ス
イッチ群、92も電子スイッチである。非ドプラモード
での探触子11の駆動法は通常のリニア電子走査と同様
に、送受信はM(<N)個の振動子よりなる群を少しず
つ移動するようにスイッチ群91により選択する。
In the figure, 11 is an ultrasound probe for tomography, 12 is an ultrasound probe for Doppler measurement, 2 is a subject, 21 is a surface of the subject,
22 is a blood vessel, 31 is N piezoelectric transducers, 4 stems and 6 are first and second acoustic matching layers bonded to the front surface of the piezoelectric transducer 31, respectively, 8° 10 (#i connection line, 91 is an electronic switch group, and 92 is also an electronic switch.The driving method of the probe 11 in non-Doppler mode is the same as normal linear electronic scanning. The switch group 91 is used to select the desired movement.

ドプラモードではスイッチ92によりドプラ計測用探触
子12を選択する。非ドプラモードで駆動された圧電振
動子列から出る超音波は被検体2の中を矢印6のように
進行する。被検体内での反射信号7は、再び同じ圧電振
動子列により受信され、接続線8、電子スイッチ91お
よび接続線1゜を通して診断装置本体の表゛示装置部、
およびドプラ信号検出回路等に結合される。
In the Doppler mode, the Doppler measurement probe 12 is selected by the switch 92. Ultrasonic waves emitted from a piezoelectric transducer array driven in a non-Doppler mode travel inside the subject 2 as shown by an arrow 6. The reflected signal 7 within the subject is received again by the same piezoelectric transducer array, and is sent to the display unit of the diagnostic device main body through the connection line 8, electronic switch 91, and connection line 1°.
and a Doppler signal detection circuit.

電子走査によって切替えられ、被検体内に発射され受信
される超音波信号およびエコー信号の走青領域は、探触
子1が円弧状になっているため、従来のリニア走査型の
よう身長方形ではなく、かつセクタ走査型のように探触
子部を中心としてその点からの扇形でもなく、探触子1
の円弧の中心部11から放射状でかつ探触子の位置で区
切られたような走査領域となる。
Since the probe 1 has an arc shape, the scanning region of the ultrasonic signals and echo signals that are switched by electronic scanning and emitted and received into the subject is different from that of the conventional linear scanning type body rectangle. It is not a sector scanning type, and it is not fan-shaped from that point around the probe part as in the sector scanning type.
The scanning area is radial from the center 11 of the circular arc and divided by the position of the probe.

上記した探触子を用いた場合、セクタ電子走査方式の場
合のような近距離部の情報の欠落がなく近距離も被検領
域が比較的広い。′!、たセクタ電子走査方式のような
大型の送受信部や加算部が不要であり、従来のリニア電
子走査方式とほぼ同様の簡易な送受信部で行なえるなど
多くの特長を持っている。しかしこの場合の被検幅は探
触子の曲率によって決まるため、リニア走査以上の被検
幅を得るためにも探触子の曲率を大きくしなければなら
ないが曲率を大きくすると探触子の被検体との密着、特
に断層用探触子とドプラ計測用探触子の接合部における
開部分の影響等による密着が悪くなり良好な画像が得ら
れない。被検体との音響的結合を良好ならしむるために
第1図の様に超音波探触子1を被検体表面21にくい込
ませると周辺臓器が圧迫され血管22も彎曲、偏平化す
る等自然な状態での血流測定が困難となることは明らか
である。
When the above-mentioned probe is used, there is no loss of information at short distances as in the case of the sector electronic scanning method, and the detection area is relatively wide even at short distances. ′! It has many advantages, such as eliminating the need for large transmitting/receiving units and adding units as in sector electronic scanning systems, and can be performed using a simple transmitting/receiving unit similar to that of conventional linear electronic scanning systems. However, since the test width in this case is determined by the curvature of the probe, the curvature of the probe must be increased in order to obtain a test width greater than linear scanning. Close contact with the specimen, particularly due to the influence of the open portion at the joint between the tomography probe and the Doppler measurement probe, deteriorates, making it impossible to obtain a good image. In order to achieve good acoustic coupling with the subject, when the ultrasonic probe 1 is embedded in the subject's surface 21 as shown in Figure 1, surrounding organs are compressed and the blood vessels 22 are naturally curved and flattened. It is clear that blood flow measurement under such conditions is difficult.

以上述べてきた列はすべて断層用探触子とドプラ計測用
探触子の2つを組合わせて使用している、。
All of the arrays mentioned above use a combination of a tomography probe and a Doppler measurement probe.

一方断層像走査方式およびドプラ方式にzjシて同一の
振動子を用い、探触子の操作性を向Hさ仕るとともに断
層像上でのドプラ超音波ビームのフJ向決定を正確にす
ることを特長とする装置も考えられている。しかしこの
方式に関しても現時’taで実用化されているものを見
る限りいくつかの欠点を有し、例えば被検部位の性質に
合わせ−(断層面内におけるドプラ超音波ビームの方向
を変えたり、あるいは断層用の超音波周波数とは別に血
流の最高速度に合わせドプラ超音波周波数を選ぶ等の設
計の自由度が制約され、ドプラ周波数偏移の正確な測定
が困難となる場合がある。
On the other hand, the same transducer is used in both the tomographic image scanning method and the Doppler method to improve the operability of the probe and to accurately determine the direction of the Doppler ultrasound beam on the tomographic image. Devices featuring this feature are also being considered. However, this method also has some drawbacks, as far as the ones currently in practical use are concerned. Alternatively, the degree of freedom in design such as selecting a Doppler ultrasound frequency in accordance with the maximum velocity of blood flow in addition to the ultrasound frequency for tomography may be restricted, making accurate measurement of the Doppler frequency shift difficult.

本発明は以上のような事情を考、憲してなされたもので
、その目的とするとζるは断層用の超音波撮動子と振動
子とドプラ走査用の振動子を別個に有する探触子を用い
、しかもドプラ超音波ビームの通過領域を表示するのに
適した断層像表示領域を有する実用的な複合超音波診断
装置を提供するものである。以下図面を用いて本発明の
一実施例を詳細に説明する。
The present invention has been made in consideration of the above circumstances, and its purpose is to provide a probe having separate ultrasonic imagers and transducers for tomography, and transducers for Doppler scanning. The object of the present invention is to provide a practical composite ultrasonic diagnostic apparatus that uses an ultrasonic beam and has a tomographic image display area suitable for displaying the area through which a Doppler ultrasonic beam passes. An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図には、本発明を採用し7た探触子部の基本構成を
、第3図には、第2図の探触子部を用いた超音波探触子
を、また第4図には、第3図の超音波探触子を用いた複
合超音波診断装置のブロック図を示す。なお、以下前回
と同一部分には同一番号を付し説明を略す。
FIG. 2 shows the basic configuration of a probe section adopting the present invention, FIG. 3 shows an ultrasonic probe using the probe section of FIG. 2, and FIG. 3 shows a block diagram of a composite ultrasonic diagnostic apparatus using the ultrasonic probe shown in FIG. 3. Hereinafter, the same parts as the previous one will be given the same numbers and the explanation will be omitted.

本発明の特徴は、凸面状に配列された断層用の圧電振動
子列とドプラ走査用のt+−准振動子の各々の前面に設
けられた音響整合層と被検体との間に、走査角度を拡大
する音響伝搬媒質を設けた探触子を用いて広範囲の断層
像とドプラ情報を得られるようにしたことであり、更に
被検体表面を変形させることなく良好な音響的結合を得
るとともに、ドプラ超音波ビームの通過領域をその広い
断層像表示領域内に収め、かつドプラ超音波ビームの方
向、あるいは高周波の設定に関しては被検部位の性質に
合わせて最適の値を選べることにある。
A feature of the present invention is that a scanning angle between the acoustic matching layer provided in front of each of the piezoelectric transducer array for tomography arranged in a convex shape and the t + - quasi-oscillator for Doppler scanning and the subject is By using a probe equipped with an acoustic propagation medium that magnifies The purpose is to keep the passage area of the Doppler ultrasound beam within the wide tomographic image display area, and to select the optimum value for the direction of the Doppler ultrasound beam or the setting of the high frequency according to the properties of the region to be examined.

本発明の一実施例として走査角を拡大した場合について
第2図を用いて説明する。例えば被検体が人体の場合に
は、シリコンゴムのように音直が人体より遅くしかも音
響インピーダンスがほぼ等しい材質でできた音響伝搬媒
質26を、図のように凸面状に配された圧電振動子列3
1とドプラ走査用の振動子32との間に、音響整合層4
,6を介して被検体2との接触部がほぼ平面状になるよ
うに設ける。このようにすれば超音波の走査角は更に拡
大され、従ってドプラ超音波ビームの通過領域を表示す
るのにより適しているとい泉る。この場合音響伝搬媒質
26は走査角拡大用の音響レンズとなる。
As an embodiment of the present invention, a case where the scanning angle is enlarged will be described with reference to FIG. For example, if the subject to be examined is a human body, the acoustic propagation medium 26 made of a material such as silicone rubber, which has a slower acoustic directivity and approximately the same acoustic impedance than the human body, is used as a piezoelectric vibrator arranged in a convex shape as shown in the figure. Column 3
1 and the Doppler scanning transducer 32, an acoustic matching layer 4
, 6 so that the contact portion with the subject 2 is substantially flat. In this way, the scanning angle of the ultrasonic wave is further expanded, and therefore it is said to be more suitable for displaying the area through which the Doppler ultrasonic beam passes. In this case, the acoustic propagation medium 26 becomes an acoustic lens for expanding the scanning angle.

こρようが構造の振動子部を用いた超音波探触子の構成
を第3図に示す。第3図において、第1図に示すように
凸面状に配列された振動子列31の部分の駆動法は第1
図に関して説明した通り、通常のリニア電子走査と同様
に送、受信はある群を同時に行い、非ドプラモードでは
それらの群を少しずつ移動するように、ドプラモードで
は特定の群を選択するように電子スイッチ群91により
制御されるか、あるいは電子スイッチ92を切替えてド
プラ計測用撮動子32を選択する。ここで述べたように
本発明の探触子では断層用の振動子列から送、受信され
る超音波ビーム進行方向は放射状に広がっているので、
ドプラ周波数偏移を得るのに適した角度で被検部位を走
査する場合も多く、その場合には断層用の振動子列の特
定の群をドプラ計測用に用いることも可能となる。この
ようにして駆動された圧電振動子列から出る超音波は、
音響レンズ26によって更に偏向され、被検体2の中を
矢印6で示すように進行する。被検体2内での反射信号
7は再び同じ圧電振動子列により受信され、電子スイッ
チ91.92を通して診断装置本体の表示装置部に結合
される。
FIG. 3 shows the configuration of an ultrasonic probe using a transducer section having a ρ-like structure. In FIG. 3, the driving method for the vibrator array 31 arranged in a convex manner as shown in FIG.
As explained in relation to the figure, similar to normal linear electronic scanning, transmission and reception are performed on certain groups at the same time, and in non-Doppler mode, the groups are moved little by little, and in Doppler mode, a specific group is selected. The camera element 32 for Doppler measurement is selected by controlling the electronic switch group 91 or by switching the electronic switch 92. As described here, in the probe of the present invention, the traveling direction of the ultrasonic beam transmitted and received from the tomographic transducer array spreads radially.
In many cases, the examined region is scanned at an angle suitable for obtaining the Doppler frequency shift, and in that case, it is also possible to use a specific group of transducer arrays for tomography for Doppler measurement. The ultrasonic waves emitted from the row of piezoelectric vibrators driven in this way are
It is further deflected by the acoustic lens 26 and travels inside the subject 2 as shown by an arrow 6. The reflected signal 7 within the subject 2 is received again by the same piezoelectric vibrator array, and is coupled to the display unit of the main body of the diagnostic apparatus through electronic switches 91 and 92.

上記した探触子において、電子走査によって切替えられ
振動子列31から被検体内に発射され受信される超音波
信号およびエコー信号の走査領域は、点27を中心とす
る円弧状の領域26となる。
In the above-described probe, the scanning area of the ultrasonic signals and echo signals that are switched by electronic scanning and emitted and received from the transducer array 31 into the subject becomes an arc-shaped area 26 centered on a point 27. .

これは、凸面状に配された圧電振動子列31の前面の音
響伝搬媒質215によって音波の走査角が拡大されるた
めである。従って領域26の表示は台形あるいはアーク
状となる。第3図ではドプラ計測用の振動子32は1個
の四面撮動子で構成される。その音波放射面の方向は被
検部位の位置や、音響レンズ26と生体表面の境界にお
ける屈折も考慮して決定される。凹面振動子の代りに凹
面状に配列された複数個の振動子を用いてもよい。ある
いは凹、凸にかかわらず配列された複数個の振動子に対
しても走査回路を用意してドプラ計測用の超音波ビーム
の方向を電子的に制御することも可能である。いずれの
場合にせよ断層用の振動子部とドプラ検査用の振動子部
は同−探触子内にあるので近接して配置することが可能
であり、ドプラ超音波ビームの通過領域表示に適した構
造となっている。
This is because the scanning angle of the sound wave is expanded by the acoustic propagation medium 215 in front of the piezoelectric vibrator array 31 arranged in a convex shape. Therefore, the area 26 is displayed in a trapezoidal or arc shape. In FIG. 3, the transducer 32 for Doppler measurement is composed of one four-sided camera. The direction of the sound wave emitting surface is determined by taking into account the position of the region to be examined and the refraction at the boundary between the acoustic lens 26 and the biological surface. A plurality of vibrators arranged in a concave shape may be used instead of the concave vibrator. Alternatively, it is also possible to provide a scanning circuit for a plurality of transducers arranged regardless of whether they are concave or convex, and electronically control the direction of the ultrasound beam for Doppler measurement. In either case, the transducer section for tomography and the transducer section for Doppler examination are located within the same probe, so they can be placed close to each other, making it suitable for displaying the area through which the Doppler ultrasound beam passes. It has a similar structure.

第4図は、上記の音響伝搬媒質26を有する超音波探触
子を用いた複合超音波診断装置の構成を示すものであり
、図において、41は圧電撮動子を駆動する送信部であ
り、超音波を集束する場合には集束用の位相制御回路を
も含む。受信部42も、送信部41同様π集束を行う場
合には集束用の位相制御回路をも含むものである。装置
はこれ以外に超音波の送受信のタイミングをとり、ドプ
ラモード、非ドプラモードに7・j応じて電子スイッチ
を制御するための制御信号を発生させる制御部43、音
響伝搬媒質26の減衰等による各走査線での感度差を補
正する感度補市回路44、受信信号を断層像として表示
するための非ドプラ信号処理回路46、断層像およびド
プラ信号処理回路48のドプラ情報出力を表示するため
の表示部46、およびドプラ信号検出回路47から構成
されている。制御部43は超音波探触子の断層用振動子
部の任意の位置、あるいはドプラ計副用振動子部に超音
波ビームの設定を行うドプラ走査位置制御回路と、この
位置における超音波ビーム方向と被検\裏面の外わ幣l
方記も辷4 Z It贈υQムリ血流方向が被検体表面
に平行である場合にはここで与えられた角度情報により
(1)式を用いて周波数偏位から血流速度が計算可能と
なる。
FIG. 4 shows the configuration of a composite ultrasonic diagnostic apparatus using an ultrasonic probe having the above-described acoustic propagation medium 26. In the figure, 41 is a transmitter that drives a piezoelectric sensor. , when focusing the ultrasonic waves, it also includes a focusing phase control circuit. Like the transmitting section 41, the receiving section 42 also includes a phase control circuit for focusing when performing π focusing. In addition to this, the device also uses a control unit 43 that determines the timing of transmitting and receiving ultrasonic waves and generates a control signal for controlling the electronic switch according to Doppler mode and non-Doppler mode, and attenuation of the acoustic propagation medium 26. A sensitivity compensation circuit 44 for correcting sensitivity differences in each scanning line, a non-Doppler signal processing circuit 46 for displaying the received signal as a tomographic image, and a tomographic image and Doppler information output from the Doppler signal processing circuit 48 for displaying the received signal as a tomographic image. It consists of a display section 46 and a Doppler signal detection circuit 47. The control unit 43 includes a Doppler scanning position control circuit that sets the ultrasonic beam at an arbitrary position of the tomographic transducer part of the ultrasound probe or the Doppler meter sub-transducer part, and a Doppler scanning position control circuit that sets the ultrasound beam direction at this position. and the test subject \ outer banknote on the back.
If the direction of blood flow is parallel to the surface of the subject, the blood flow velocity can be calculated from the frequency deviation using equation (1) using the angle information given here. Become.

ドプラ信号検出回路47の具体例としては直交位相検波
技術を用いる方式等があり、またドプラ信号処理回路4
8の具体例としては離散フーリエ変換による周波数解析
技術を用いる方式等があり、例えば以下の文献に両者の
具体例の説明がなさitでいるので、ここでは詳しく述
べない。
Specific examples of the Doppler signal detection circuit 47 include a method using quadrature phase detection technology, and the Doppler signal processing circuit 4
As a specific example of No. 8, there is a method using a frequency analysis technique using a discrete Fourier transform, and since there is no explanation of specific examples of both in the following documents, for example, they will not be described in detail here.

千原 他著 [マイクロコンピュータを用いた 超音波パルスドプラ血流計」 化学技術 MBE79−20(1979)s3 表示部46では従来の断層像を表示する機能の他に、ド
プラ信号処理回路48からの出力であるドプラ情報を例
えば血流速度として、又はよく知られているようなソノ
グラム方式で表示することも可能である。
Chihara et al. [Ultrasonic pulsed Doppler blood flow meter using a microcomputer] Chemical technology MBE79-20 (1979) s3 In addition to the conventional function of displaying tomographic images, the display unit 46 also displays the output from the Doppler signal processing circuit 48. It is also possible to display certain Doppler information, for example as blood velocity, or in a sonogram manner as is well known.

重上のように本発明は、凸面状に配列された複数個の圧
電振動子からなる第1の振動子部と、1個または複数個
の振動子部からなる第2の振動子部を有し、かつ上記両
圧電振動子部と被検体との間に、音速が被検体より遅く
しかも音響インピーダンスが被検体とほぼ等しい材質で
できた音響伝搬媒質を被検体との接触部がほぼ平面状に
なるように設けた探触子と、断層像表示装置、ドプラ走
査位置制御1回路、ドプラ信号検出回路、ドプラ信号処
理回路、ドプラ走査ビーム方向角度発生回路等を具備し
、断層像情報と血流情報を得る複合超音波診断装置であ
り以下に示すような多くの特徴を有している。すなわち
1個の探触子の中に断層用振動子部とドプラ計測用振動
子を有し操作性が良い。また、断層像は近距離、遠距離
ともにドプラ超音波ビームの通過領域を表示するのに適
した台形状の被検領域を有しドプラ超音波ビームが確実
に目的部に到達していることを確認するのに適している
。しかも台形状の被検領域を得るために被検体中におい
て放射状に超音波ビームを走査すl技術に関しては、大
型の送、受信部や位相制御が不・悶である。また単に凸
面状の断層用振動子部と、ドプラ削測用振動子を配置し
て探触子の音波放射面に凸部、四部がある場合に比べて
、本発明では探触子の音波放射面がほぼ平面となるよう
な音響レンズを設けており、生体表面との密着性もよく
、無理に押しつけて周辺臓器を変形させる心配もない。
As described above, the present invention has a first vibrator section made up of a plurality of piezoelectric vibrators arranged in a convex shape, and a second vibrator section made up of one or more vibrator sections. In addition, an acoustic propagation medium made of a material whose sound velocity is slower than that of the object and whose acoustic impedance is approximately equal to that of the object is placed between the piezoelectric vibrator sections and the object, and the contact portion with the object is approximately planar. It is equipped with a tomographic image display device, a Doppler scanning position control circuit, a Doppler signal detection circuit, a Doppler signal processing circuit, a Doppler scanning beam direction angle generation circuit, etc. It is a complex ultrasonic diagnostic device that obtains flow information and has many features as shown below. That is, a single probe includes a tomographic transducer section and a Doppler measurement transducer, and has good operability. In addition, the tomographic image has a trapezoidal examination area suitable for displaying the area through which the Doppler ultrasound beam passes both near and far, ensuring that the Doppler ultrasound beam reaches the target area. suitable for checking. Furthermore, the technique of scanning an ultrasonic beam radially within a subject in order to obtain a trapezoidal test area requires large transmitting and receiving units and phase control. In addition, compared to a case where a convex tomography transducer section and a Doppler ablation transducer section are simply arranged, and the sound wave emission surface of the probe has convex sections and four sections, the present invention is capable of emitting sound waves from the probe. The acoustic lens has a nearly flat surface, which allows for good adhesion to the living body's surface, and there is no need to worry about deforming surrounding organs by forcing it onto the body.

更にこの音響レンズによる被検領域の拡大が、ドプラ超
音波ビーム通過領域表示に雫捷層内振動子と同一ではな
いので、被検部位の性質にあわせたドプラ超音波周波数
の選択、あるいはビーム方向の決定が可能となっている
Furthermore, since the expansion of the examination area by this acoustic lens is not the same as that of the intralayer transducer in displaying the Doppler ultrasound beam passage area, it is necessary to select the Doppler ultrasound frequency or beam direction according to the characteristics of the examination area. It is now possible to determine

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本出願人が提案した提案した凸面状超音波探触
子の構成図、第2図は本発明の一実施例における超音波
探触子の基本構成を示す斜視図、第3図は本発明による
超音波探触子の全体構成図、第4図は第3図の超音波探
触子を用いた複合超音波診断装置のブロック図である。 1・・・・・超音波探触子、12・、・・・ドプラ計測
用超音波探触子、2・・・・・・被検体、21・・・・
・・被検体表面、22・・・・・・血管、31・・・・
・・圧電撮動子、32・・・・・ドプラ計測用圧電振動
子、4・・・・・第1整合層、6・・・・・・第2整合
層、8.10・・・・・・−接続線、91,92・・・
・・・電子スイッチ、25・・・・・・音響レンズ、3
0・・・・・・超音波ビーム、41・・・・・・送信1
71(,42・・・・・・受信部、43・・・・・制御
部、44・・・・・・感度補正部、46・・・・・・処
理部、46・・・・・表示部、47・・・・ドプラ信号
検出IC1l路、48・・・・・ドプラ信号処理回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名畠1
図 へ− ”−7−″ 1142図 第 3 図 、′ ′3θ
Fig. 1 is a configuration diagram of a convex ultrasonic probe proposed by the applicant, Fig. 2 is a perspective view showing the basic configuration of an ultrasonic probe in an embodiment of the present invention, and Fig. 3 4 is an overall configuration diagram of an ultrasound probe according to the present invention, and FIG. 4 is a block diagram of a composite ultrasound diagnostic apparatus using the ultrasound probe of FIG. 3. 1... Ultrasonic probe, 12... Ultrasonic probe for Doppler measurement, 2... Subject, 21...
...Test surface, 22... Blood vessel, 31...
... Piezoelectric sensor, 32... Piezoelectric vibrator for Doppler measurement, 4... First matching layer, 6... Second matching layer, 8.10... ...-connection line, 91, 92...
...Electronic switch, 25...Acoustic lens, 3
0... Ultrasonic beam, 41... Transmission 1
71 (, 42...Receiving section, 43...Control section, 44...Sensitivity correction section, 46...Processing section, 46...Display Part, 47... Doppler signal detection IC1l path, 48... Doppler signal processing circuit. Name of agent: Patent attorney Toshio Nakao and one other person Hatake 1
To the figure - ``-7-'' 1142 Figure 3, ''3θ

Claims (1)

【特許請求の範囲】 凸面状に配列された複数個の圧電振葡子からなる第1の
振動子部と、1個または複数個の圧電振動子からなる第
2の振動子部と、各振動子部の音波放射面側に密着し被
検体側がほぼ平面状でありかつその音速が被検体より遅
い媒質からなる音響伝搬媒質とを有する超音波探触子と
、前記第1の振動子部を順次走査して台形あるいはアー
ク状の超音波断層像を得る手段と、前記第2の振動子部
を駆動してドプラ信号採取用超音波ビームの送受信を行
うドグラ走査位置制御回路と、この超音波ビームの反射
信号を検波してドプラ信号を得るドプラ信号検出回路と
、この位置における超音波ビーム方向と被検体表面の角
度情報を与える回路と、この角度情報を用いてドプラ信
号の解析を行う処理回−路と、処理されたドプラ信号を
表示する表示部を具備したことを特徴とする  超音波
ビーム。 置。
[Scope of Claims] A first vibrator section consisting of a plurality of piezoelectric vibrators arranged in a convex shape, a second vibrator section consisting of one or more piezoelectric vibrators, and each vibration an ultrasonic probe having an acoustic propagation medium that is in close contact with the sound wave emitting surface side of the child part, the object side is substantially planar, and the velocity of sound is slower than the object; and the first transducer part. means for sequentially scanning to obtain a trapezoidal or arc-shaped ultrasonic tomographic image; a Dogra scanning position control circuit for driving the second transducer section to transmit and receive an ultrasonic beam for collecting Doppler signals; A Doppler signal detection circuit that detects the reflected beam signal and obtains a Doppler signal, a circuit that provides information on the ultrasound beam direction and the angle of the object surface at this position, and processing that uses this angle information to analyze the Doppler signal. An ultrasound beam characterized by comprising a circuit and a display unit that displays a processed Doppler signal. Place.
JP16246481A 1981-10-12 1981-10-12 Ultrasonic diagnostic apparatus Granted JPS5865144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16246481A JPS5865144A (en) 1981-10-12 1981-10-12 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16246481A JPS5865144A (en) 1981-10-12 1981-10-12 Ultrasonic diagnostic apparatus

Publications (2)

Publication Number Publication Date
JPS5865144A true JPS5865144A (en) 1983-04-18
JPH0135656B2 JPH0135656B2 (en) 1989-07-26

Family

ID=15755110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16246481A Granted JPS5865144A (en) 1981-10-12 1981-10-12 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS5865144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146241A (en) * 1984-12-20 1986-07-03 松下電器産業株式会社 Composite ultrasonic probe
JP2014136103A (en) * 2013-01-18 2014-07-28 Fujifilm Corp Photoacoustic image generation device and photoacoustic image generation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695036A (en) * 1979-12-28 1981-08-01 Aloka Co Ltd Electronic scanning ultrasonic diagnostic apparatus
JPS56104650A (en) * 1980-01-26 1981-08-20 Tokyo Shibaura Electric Co Ultrasonic probe for measuring blood current
JPS56119237A (en) * 1980-02-27 1981-09-18 Tokyo Shibaura Electric Co Urtrasonic diagnosis apparatus
JPS56128145A (en) * 1980-03-12 1981-10-07 Yokogawa Electric Works Ltd Ultrasonic photographing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695036A (en) * 1979-12-28 1981-08-01 Aloka Co Ltd Electronic scanning ultrasonic diagnostic apparatus
JPS56104650A (en) * 1980-01-26 1981-08-20 Tokyo Shibaura Electric Co Ultrasonic probe for measuring blood current
JPS56119237A (en) * 1980-02-27 1981-09-18 Tokyo Shibaura Electric Co Urtrasonic diagnosis apparatus
JPS56128145A (en) * 1980-03-12 1981-10-07 Yokogawa Electric Works Ltd Ultrasonic photographing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146241A (en) * 1984-12-20 1986-07-03 松下電器産業株式会社 Composite ultrasonic probe
JP2014136103A (en) * 2013-01-18 2014-07-28 Fujifilm Corp Photoacoustic image generation device and photoacoustic image generation method

Also Published As

Publication number Publication date
JPH0135656B2 (en) 1989-07-26

Similar Documents

Publication Publication Date Title
US10675000B2 (en) Determining material stiffness using multiple aperture ultrasound
US4276491A (en) Focusing piezoelectric ultrasonic medical diagnostic system
US7785259B2 (en) Detection of motion in vibro-acoustography
JP4582827B2 (en) Ultrasonic diagnostic equipment
US6261232B1 (en) Continuous wave transmission/reception type ultrasonic imaging device and ultrasonic probe
JPH0532060B2 (en)
JPH02500464A (en) Method and apparatus for ultrasound beam compensation
JPH0898836A (en) Display method and display device of sound wave propagation period
JPH0790026B2 (en) Ultrasonic diagnostic equipment
US8905933B2 (en) Ultrasonic diagnostic apparatus
Kossoff et al. Ultrasonic two‐dimensional visualization for medical diagnosis
JP2003230560A (en) Ultrasonograph
WO2004032747A1 (en) Ultrasonic diagnosing device
JPH0556971A (en) Ultrasonic diagnostic device
JP3180958B2 (en) Ultrasound diagnostic equipment
JPH0140619B2 (en)
JPS5865144A (en) Ultrasonic diagnostic apparatus
US8303504B2 (en) Ultrasonic diagnostic apparatus
JP2796179B2 (en) Bone ultrasonic diagnostic equipment
JPH09187456A (en) Ultrasonic diagnostic apparatus
JP2742207B2 (en) Ultrasonic transducer
Breyer Basic physics of ultrasound
Breyer et al. Basic Principles of Ultrasonic Imaging
JPH0332652A (en) Ultrasonic probe
JPS61290938A (en) Ultrasonic diagnostic apparatus