JPS5864399A - Acidic electrolytic descaling method for steel wire rod - Google Patents

Acidic electrolytic descaling method for steel wire rod

Info

Publication number
JPS5864399A
JPS5864399A JP16484781A JP16484781A JPS5864399A JP S5864399 A JPS5864399 A JP S5864399A JP 16484781 A JP16484781 A JP 16484781A JP 16484781 A JP16484781 A JP 16484781A JP S5864399 A JPS5864399 A JP S5864399A
Authority
JP
Japan
Prior art keywords
descaling
electrolyte
steel wire
electrolytic
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16484781A
Other languages
Japanese (ja)
Other versions
JPS639039B2 (en
Inventor
Hiroo Nagano
長野 博夫
Nobuyuki Maruyama
丸山 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16484781A priority Critical patent/JPS5864399A/en
Publication of JPS5864399A publication Critical patent/JPS5864399A/en
Publication of JPS639039B2 publication Critical patent/JPS639039B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To descale steel wire rods in a short time with the composite effect of pickling and electrolysis by using an electrolyte pepd. adding FeSO4 and Fe2(SO4)2 to dibasic acid soln. CONSTITUTION:An electrolyte is prepd. by adding 0.2%- satd. concn. FeSO4 to a soln. of 1wt%- satd. concn. dibasic acid such as H2SO4 and, if necessary, by adding 1% satd. concn. Fe2(SO4)2 thereto. Steel wire rods are descaled in such electrolyte at 5-500A/dm<2> current density. Since this method makes combination use of the descaling effect by pickling and the electrolytic descaling and uses the dibasic acid for the electrolyte, the electrolyzing time and costs are reduced. Even the hard-to-descale steel wire rods are descaled surely.

Description

【発明の詳細な説明】 ゛本発明は、従来の中性塩溶液中の電解脱スケールおよ
び2塩基の酸による一洗脱スケール法では脱スケ゛−〜
レ−い一説スケール線、材の脱スケ−〃を可能にすべく
、前記電解による脱スケール作用と−による脱スケール
作用とを複合して、酸性溶液t−璽解液として電解脱ス
ケールを行なう方法を提供する本のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of descaling by conventional electrolytic descaling in a neutral salt solution and one-wash descaling method using dibasic acids.
In order to make it possible to descale scale lines and materials, electrolytic descaling is carried out by combining the descaling action by electrolysis and the descaling action by - as an acidic solution. This is a book that provides a method.

既に重量−人は、!ll11M材の直接通電方式による
電解−スケール方法(特開昭55−48421 )や、
−線材の間接通電方式による脱スケール方法及び装置(
特開昭55−48°422)、及び電解液のPRを3以
下に調製して行なう1線材の脱スケール方法(特願昭5
6−47018)等の発明を提案した。しかし、上記方
法にあっては、特開[155−48421や同55−4
842240811線材の脱スケール方法における間接
通電方式の場合や直接通電方式の場合は共にNaoL、
KoL等の金属塩化物系の1〜30憾濃度の電解液で5
 A/ aW?〜500ム/d−の電流密度で電解する
場合は1・o4を0.2〜飽和溶液濃度迄、必要に応じ
て1・dsを1幅〜飽和溶液濃度迄を添加するものであ
)、またMa11104 、 Kg!104等の金属流
酸塩系1〜30憾濃度の電解液で5ム/a−〜500ム
/d−の電流密度で電解する場合はハ80.を0.2%
〜飽和溶液濃度迄、また必−に応じて1・、 (104
)、を1s〜飽和溶液濃度迄を添加するのであるが、こ
の場合の電解液は中性であシ、何れの場合も鋼線材表面
の除去し難いミルスケールおよび赤錆を短時間で除来す
るためには電解電流密度を増加したり、または電解時間
を長くする必要があシコストアップにつながる−のであ
った。
Already weight-people! Electrolysis-scaling method using direct energization method for ll11M material (Japanese Patent Application Laid-Open No. 55-48421),
- Descaling method and device using indirect energization method of wire (
Japanese Patent Application Laid-Open No. 55-48°422), and a method for descaling a single wire rod by adjusting the PR of the electrolyte to 3 or less (Japanese Patent Application No. 55-48-422).
6-47018). However, in the above method, JP-A No. 155-48421 and JP-A No. 55-4
842240811 In the case of indirect energization method and direct energization method in wire descaling method, NaoL,
5 with a metal chloride-based electrolyte such as KoL with a concentration of 1 to 30.
A/aW? When electrolyzing at a current density of ~500 mu/d-, add 1.04 to a concentration of 0.2 to saturated solution, and if necessary add 1.ds to a concentration of 1 to saturated solution). Also Ma11104, Kg! When electrolyzing at a current density of 5 μm/a to 500 μm/d− with a metal sulfate-based electrolyte solution such as 104 or the like having a concentration of 1 to 30 μm, a current density of 80 μm/d− is used. 0.2%
~ up to saturated solution concentration, and as necessary 1., (104
), is added from 1 s to a saturated solution concentration, but the electrolyte in this case is neutral, and in both cases, mill scale and red rust that are difficult to remove from the surface of the steel wire can be removed in a short time. In order to achieve this, it is necessary to increase the electrolysis current density or to lengthen the electrolysis time, which leads to an increase in the cost.

を九、特願昭56−47018(電解液のPliを5以
下に調整して行なう鋼線材の脱スケール方法)において
は、2価金属の流酸塩系の例えばN &l S 04 
* 4 SO4又は:c+t=soa oイずれかを1
〜50重量憾重量子含有液[7・BQ、をQ、2重量%
y飽和溶液濃度迄を添加し、必要に応じて1・、(SO
4)。
9. In Japanese Patent Application No. 56-47018 (method for descaling steel wire by adjusting Pli of electrolyte to 5 or less), divalent metal sulfuric acid salts such as N & l S 04
* 4 SO4 or: c + t = soa o 1
~50% by weight liquid containing heavy molecules [7・BQ, Q, 2% by weight
y up to a saturated solution concentration, and add 1., (SO
4).

を1重置襲〜飽和溶液濃度迄を添加した後、この溶液の
PHをH!804によって5以下に調整したものを電解
液とし、5ム/am’ 〜500ム/d−の電流密度で
電解脱スケ−〃を行なうものであシ、従来の約2倍の速
度で脱スケールを行ない得るものであるが、電解液の調
整に多大製労力及び時間がかかる欠点がある。
After adding from one layer to a saturated solution concentration, the pH of this solution is set to H! Electrolytic descaling is carried out at a current density of 5 μm/am' to 500 μm/d− using an electrolytic solution adjusted to 5 or less by 804, and descaling is performed at about twice the speed of conventional methods. However, it has the disadvantage that it takes a lot of labor and time to prepare the electrolyte.

本発明は、前記電解液のPliを5以下に調整して行な
う鋼線材の脱スケール方法(特1昭56−47018)
を更に改善し、従来方法での欠点を解消することは龜と
よシ、よ)簡易で且つ短時間で脱スケ−μを行なうこと
がで自る方法を提供するに至った1ので島9、酸洗法に
よる利点と電解法による利点とを各々取〕入れ、複合的
作用効果を有するものである。
The present invention provides a method for descaling a steel wire rod by adjusting Pli of the electrolytic solution to 5 or less (Patent No. 1, 1983-47018).
It is a matter of further improvement and eliminating the shortcomings of conventional methods. This method incorporates the advantages of the pickling method and the advantages of the electrolytic method, respectively, and has a composite effect.

すなわち、本発明の方法は2塩蕃の酸、例えばulso
4を1′jIL量憾〜飽和一度迄含有する溶液に1・S
O4を0.2重量襲〜飽和濃度迄を添加し、必要に応じ
て1・、(804)、を1重量憾〜飽和濃度迄を添加し
てこれを電解液とし、該電解液中で5ム/d−〜500
ム/aW?の電流密度で脱スケ−1&/を行なうもので
ある。
That is, the method of the present invention uses a dichloride acid, such as ulso
1.S in a solution containing 4 from 1'jIL amount to saturation.
Add O4 from 0.2 weight to saturation concentration, and if necessary add 1. (804) from 1 weight to saturation concentration to make this an electrolytic solution. m/d-~500
M/aW? Descaling 1&/ is carried out at a current density of .

本発明中において、2塩基酸の例えばH2BO3の使用
は、一般に鋼線材に付着しているスナーにのff5o 
、 ffe104を主体とするtA/スケ−Vや11軸
OtMe主体とする赤錆を酸洗によ〉剥離或いは還元す
ることを目的とし九ものであ〕、これらはそれぞれTe
のE自反応をする。
In the present invention, the use of a dibasic acid, such as H2BO3, is generally used to remove ff5o from the snar attached to the steel wire.
The purpose of these is to remove or reduce red rust mainly composed of tA/Ske-V mainly composed of ffe104 and 11-axis OtMe by pickling.
Do the E self-reaction.

ハo+2g+→ シー”+H,O(1)1610g +
 4H→211m”+2 HHO+’ OH↑(3)y
・+2−→y/’−+−a濡↑      −〔)尚、
スケール皮膜の剥離については、上記(4)式で発生す
る4ガスによるものである。
Hao+2g+→ Sea”+H,O(1)1610g+
4H→211m"+2 HHO+'OH↑(3)y
・+2-→y/'-+-a wet ↑ -[) Furthermore,
The peeling of the scale film is caused by the four gases generated by the above equation (4).

また1・SO4の添加は0.211以上で効果が顕著と
な9.最適には1.0憾以上添加するとよくその上限は
液の飽和溶液濃度としてよい。
In addition, the effect of adding 1.SO4 is significant when it is 0.211 or more.9. Optimally, it is preferable to add 1.0 or more, and the upper limit may be set to the saturated solution concentration of the liquid.

更に1記1・804の1−十が必須で′あるのに対し1
・、(804)、の1・叶は必ずしも必要でなく、この
1−+は特に高電解密度で操業する場合の金属1・の析
出を防止するために添加する亀のである。しかしてIF
−(8041gの添加量は少なくと411G以上とすれ
ば好適である。
Furthermore, 1-10 in 1, 1.804 is mandatory, but 1
(804), 1. is not necessarily necessary, and 1-+ is added to prevent precipitation of metal 1, particularly when operating at high electrolytic density. However, if
-(The amount of 8041g added is preferably at least 411G or more.

更にまた、電流密度は5ム/fLd未満では脱スケール
方法が小さく、完全に脱スケールするまでに長時−を要
し、500ム/adを1えるとアノーF電流が増加して
スケー*0@脱が促進される反面、整流器の容量の増大
など設備上や操秦上の安全性の面で好ましくない、よっ
て116操業上、5ム/a−〜500ム/a/の範囲が
好適である。
Furthermore, when the current density is less than 5 μm/fLd, the descaling method is small and it takes a long time to completely descale. @ Although desorption is promoted, it is unfavorable in terms of equipment and operational safety such as an increase in the capacity of the rectifier.Therefore, for 116 operation, a range of 5 μm/a to 500 μm/a/ is preferable. .

一般に、本発明の方法を使用することで脱スケ1町)C −ル効果が複合的に増大される事は下式よシ明らかであ
る。
In general, it is clear from the equation below that by using the method of the present invention, the effect of eliminating scale is compounded.

〈従来法〉 (1)中性塩溶液中の電解脱スケール反応量(2)2塩
基の酸溶液による脱スケール反応量、く本発明〉 2塩基酸溶液中の電解脱スケール反応量As=xChx
ixt、)+(k’xi’xt、’)As−説スケール
反応量 すなわち、ム1〉ムlで脱スケール時間短縮は著しいも
のである。
<Conventional method> (1) Amount of electrolytic descaling reaction in a neutral salt solution (2) Amount of descaling reaction with a dibasic acid solution (present invention) Amount of electrolytic descaling reaction in a dibasic acid solution As=xChx
ixt, )+(k'xi'xt,') As-the scale reaction amount, that is, the reduction in descaling time is remarkable.

またこれを’t%化学的威点から説明すれば脱スケール
速度の決定は腐食電流により左右されるものであシ、中
性溶液中及び酸性溶液中に流れる自然腐食・に流11及
び1黛を比較すれば酸性溶液中の流jtisがかな如大
となっている。故にこの酸性溶液中での電解電流や電解
電圧も従来の中性溶液中の電解法に比してはるかに小さ
くて済み、脱スケール作用度が大幅に早められる事が明
らかである。
Also, to explain this from a chemical point of view, the determination of the descaling rate is influenced by the corrosion current, and natural corrosion flowing in neutral and acidic solutions. Comparing these, the flow rate in an acidic solution is quite large. Therefore, it is clear that the electrolytic current and electrolytic voltage in this acidic solution are much smaller than in the conventional electrolytic method in a neutral solution, and the descaling effect is greatly accelerated.

以上のように本発明は酸による脱スケール作用と電解脱
スケールとを併用する方法において、電解液を2j基の
酸とするものであるから、電解時間の短縮およびコスト
の低減を図ることができ、経済的な脱スケールを行なう
ことができる。更に鰯脱スケーpylllI材であって
%−実に脱スケールを行なうことがで龜る1のである。
As described above, the present invention uses a 2j-group acid as the electrolyte in a method that uses acid descaling action and electrolytic descaling in combination, so that it is possible to shorten the electrolysis time and reduce costs. , economical descaling can be performed. Furthermore, since it is a sardine descaling material, it is very easy to descale it.

次に実施例を示し、本発明をさらに詳細に説明する。EXAMPLES Next, the present invention will be explained in further detail by way of examples.

実施例1 図面に示すよりなりt解装置を用いて、0.5襲炭素鋼
の電解脱スケ−〃を行なった。尚、電解装置は、後述の
電解槽(4)内部にある電解液(5)の温度管理をすべ
含水(2)を入れた恒温槽(1)と、該恒温槽(1)底
部に設置され、溶液攪拌をすべきマグネットスターラー
(3) ト、該マグネットスターラー(3)上部に載置
されるとともに、前記恒温槽【1)に内装されるガラス
製の電解槽(4)とを備え、該電解槽(4)に電解液(
6)を入れ、そこに内径50−ψの筒状の黒鉛電極(6
)を投入し、その内部に硬1g1mである鋼線材(γ)
を配置し、これと前記黒鉛電極(6)との間に電源(図
示せず)から整流器(8)及び極性自動切換装置(9)
を介して電解電流を与えるものである。この場合電解液
として、本発明では10%H=EIO= + 10 %
IF@304 ・7 HHO+ 11G ’I・IC8
O4)1’nH10を用い、従来法はこれを10!IN
aaA+5%IF 80 ts−mHl Oとして用い
、共に電解電流密度を10ム/直−1電解液温度を60
℃とし、鋼線材としては一説スナーp性の0.5−炭素
Il[−線を用い九、更に電解時間はe6秒+の3秒、
86秒十〇6秒、010秒十e10秒、020秒+e2
0秒、850秒十0δ0秒、e4″0秒+e40秒e6
0秒+e60秒。
Example 1 Electrolytic descalation of 0.5 carbon steel was carried out using the decomposition apparatus shown in the drawings. The electrolyzer is equipped with a constant temperature bath (1) containing water (2) and a constant temperature bath (1) installed at the bottom of the constant temperature bath (1) to control the temperature of the electrolyte (5) inside the electrolytic bath (4), which will be described later. , a magnetic stirrer (3) to stir the solution; and a glass electrolytic cell (4) placed on top of the magnetic stirrer (3) and housed in the constant temperature bath (1); Add electrolyte (
6) and a cylindrical graphite electrode (6) with an inner diameter of 50-ψ.
), and a steel wire rod (γ) with a hardness of 1 g and 1 m is placed inside it.
A rectifier (8) and an automatic polarity switching device (9) are connected between this and the graphite electrode (6) from a power source (not shown).
It provides an electrolytic current through the . In this case, the electrolyte is 10%H=EIO=+10% in the present invention.
IF@304 ・7 HHO+ 11G 'I・IC8
O4) 1'nH10 is used, and the conventional method uses this as 10! IN
aaA + 5% IF 80 ts-mHl O, both electrolytic current density 10 m/direction -1 electrolyte temperature 60
℃, and as the steel wire, a 0.5-carbon Il[- wire with Suner p property is used.9, and the electrolysis time is e6 seconds + 3 seconds,
86 seconds 106 seconds, 010 seconds 10 e10 seconds, 020 seconds + e2
0 seconds, 850 seconds 10 δ0 seconds, e4″0 seconds + e40 seconds e6
0 seconds + e60 seconds.

880秒+eao秒、8100秒+e100秒とし、こ
れを前記各電解液で脱スケールした時の状況を表1に示
す。
Table 1 shows the conditions when descaling was performed using each of the electrolytes described above for 880 seconds + eao seconds and 8100 seconds + e100 seconds.

C表  1) 表1よシ明らかなように従来法で使用される電解液の1
0 % Miot+ 5 S 7so44H10の場合
、脱スケール状況は電解時間が陰極80秒+陽極80秒
で良好な脱スケールを行なうのに対し、本発明での10
憾H,80,+10憾1@B04・7M10+1憾1・
1(804)1−nHloを電解液とした場合、脱スケ
ール状況は電解時間が陽極6抄+陽極6秒で良好な脱ス
ケール処理操業を行ない得るものである。従って本発明
実施例から電解時間は従来の#115に短縮でき得る事
は明らかである。
C Table 1) As is clear from Table 1, the number of electrolytes used in the conventional method is
In the case of 0% Miot+ 5S 7so44H10, good descaling was achieved when the electrolysis time was 80 seconds at the cathode + 80 seconds at the anode, whereas in the case of 10
Sorry H, 80, +10 Sorry 1@B04・7M10+1 Sorry 1・
When 1(804)1-nHlo is used as the electrolyte, a good descaling operation can be carried out when the electrolysis time is 6 slits for the anode + 6 seconds for the anode. Therefore, it is clear from the examples of the present invention that the electrolysis time can be shortened to the conventional #115.

実施例2 従来の酸洗における10囁H1804+ 0−2憾 イ
ビット600での脱スケール状況と、本発明での10 
s H*804 + 10 % Fe8Q4・7H10
+ 1 % ?el(li104)m・1llillo
溶液中の電解脱スケール法での脱スケール状況を表2に
示す、但し従来の酸洗の条件を酸洗温度:60℃、 1
111材;Q、5憾炭素鋼とし、本発明の電解条件を電
解電流密度;10ム/d−1電解液温度;60℃、鋼線
材“;0.5弧炭素鋼とした。
Example 2 Descaling situation with Ibit 600 in conventional pickling and 10 in the present invention
s H*804 + 10% Fe8Q4・7H10
+1%? el(li104)m・1llillo
Table 2 shows the descaling status by the electrolytic descaling method in solution, however, the conventional pickling conditions are pickling temperature: 60°C, 1
111 material: Q, 5mm carbon steel, and the electrolytic conditions of the present invention were electrolytic current density: 10 μm/d-1 electrolyte temperature: 60°C, steel wire material: 0.5 arc carbon steel.

(表 2) 表止で明らかなように従来の鹸洗法での脱スケール状況
は酸洗時間が60秒で良好な脱スケ−μを行なうのに対
し、本発明での10 ’II Hs80m+10sy@
so、 ・71116 + 1 %Fe1($04 )
1 mH10溶液中の電解脱スケー〃状況は電解時間が
陰極6秒+陽極6秒の電解時間で良好な脱スケール処理
操業を行ない得るものであすJ従ってこれに要する時1
4は従来の約91にでき得る事が明らかとなった。
(Table 2) As is clear from the surface finish, the descaling condition with the conventional soap washing method is good with a pickling time of 60 seconds, whereas in the present invention, 10'II Hs80m+10sy@
so, ・71116 + 1%Fe1 ($04)
Electrolytic descaling in a 1 mH10 solution The situation is such that a good descaling operation can be performed with an electrolysis time of 6 seconds at the cathode + 6 seconds at the anode. Therefore, the time required for this is 1
It became clear that 4 could be reduced to about 91, which is the conventional value.

以上のとおル、本発明は酸による脱スケール作用と電解
による脱スケー/L’作用とを複合すべく、2塩基の酸
に1・804 、7e雪(804)sを添加したる後、
電解脱スケールを行なう事によ)普遍鋼線材は−ちろん
、離脱スケ−A/1IIIiI材H1わめて良好に脱ス
ケールを行逢うことがで龜、しかもこの脱スケールに要
する電解時間を著しく短縮できると共にコスト低減を図
る事のできるすぐれた方法である。
As described above, in the present invention, in order to combine the descaling action by acid and the descaling/L' action by electrolysis, after adding 1.804, 7e snow (804) s to a dibasic acid,
By performing electrolytic descaling, universal steel wire rods can be descaled very well, as well as descaling scale A/1IIIiI material H1, and the electrolytic time required for descaling can be significantly reduced. This is an excellent method that can shorten the time and reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す装置の正面図。 (5)は電解液、(8)は整流器。 特許出願人  住友金属工業株式会社 FIG. 1 is a front view of an apparatus showing an embodiment of the present invention. (5) is an electrolyte, and (8) is a rectifier. Patent applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (I)2塩基の酸、例えばH,SO2の1重1%〜飽和
濃度溶液にFe8Cjの0.2重量憾〜飽和濃度、必要
に応じてwe、(so4)sの1重量囁〜飽和1度を含
有すべく添加せしめて電解液を輌し、該電解液中で鋼線
材を5ム/dぜ〜500ム/d−の電流密度にて脱スケ
ールを荷なう事を特徴とする鋼線材の酸性電解脱スケー
ル方法。
(I) A dibasic acid, for example, H,SO2 in 1% to saturated solution with 0.2% by weight of Fe8Cj to saturated concentration, if necessary we, (so4)s 1% to saturated. A steel wire characterized in that the steel wire is descaled by adding an electrolyte to the electrolyte and descaling the steel wire in the electrolyte at a current density of 5 m/d to 500 m/d. Acidic electrolytic descaling method for wire rods.
JP16484781A 1981-10-14 1981-10-14 Acidic electrolytic descaling method for steel wire rod Granted JPS5864399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16484781A JPS5864399A (en) 1981-10-14 1981-10-14 Acidic electrolytic descaling method for steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16484781A JPS5864399A (en) 1981-10-14 1981-10-14 Acidic electrolytic descaling method for steel wire rod

Publications (2)

Publication Number Publication Date
JPS5864399A true JPS5864399A (en) 1983-04-16
JPS639039B2 JPS639039B2 (en) 1988-02-25

Family

ID=15801046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16484781A Granted JPS5864399A (en) 1981-10-14 1981-10-14 Acidic electrolytic descaling method for steel wire rod

Country Status (1)

Country Link
JP (1) JPS5864399A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015880A1 (en) * 1998-09-11 2000-03-23 Henkel Kommanditgesellschaft Auf Aktien Process for electrolytic pickling using nitric acid-free solutions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015880A1 (en) * 1998-09-11 2000-03-23 Henkel Kommanditgesellschaft Auf Aktien Process for electrolytic pickling using nitric acid-free solutions
US6565735B1 (en) 1998-09-11 2003-05-20 Henkel Kommanditgesellschaft Auf Aktien Process for electrolytic pickling using nitric acid-free solutions

Also Published As

Publication number Publication date
JPS639039B2 (en) 1988-02-25

Similar Documents

Publication Publication Date Title
US3761369A (en) Process for the electrolytic reclamation of spent etching fluids
JP4451445B2 (en) Method and apparatus for electrowinning copper using ferrous / ferric anode reactions
GB794368A (en) Electrolytic treatment of waste sulfate pickle liquor
JPS63111193A (en) Production of adiponitrile
IL157582A (en) Method and device for recovering metals with pulsating cathode currents also combined with anode coupling processes
US3853724A (en) Process for electrowinning of copper values from solid particles in a sulfuric acid electrolyte
JPS5864399A (en) Acidic electrolytic descaling method for steel wire rod
US1260830A (en) Electrolytic deposition of copper from acid solutions.
JP2009024186A (en) Method and apparatus for regenerating chromium plating solution
JPH04500540A (en) Conversion of manganate to permanganate
SU1058511A3 (en) Method for recovering hexavalent uranium
JP3282829B2 (en) Method for pickling alloy products in the absence of nitric acid, method for collecting pickling waste liquid, and apparatus therefor
JPS639040B2 (en)
US1365032A (en) Electrolytic apparatus
JPH0762280B2 (en) Electrolytic polishing of titanium or titanium alloy
US1314742A (en) Electrolytic process
Jiricny et al. Copper electrowinning using spouted-bed electrodes: Part II. Copper electrowinning with ferrous ion oxidation as the anodic reaction
US3756931A (en) Electrolytic cleaning and corrosi on removal process
SU1382882A1 (en) Method of regenerating spent solutions
US3759814A (en) Electrolytic apparatus for producing hydrated iron oxide
FR2314274A1 (en) Electrolytically pickling carbon or low alloy steels - cathodically and anodically in aq soln of iron sulphate
SU558970A1 (en) Method for electrochemical reduction of hexavalent chromium compounds
US1789523A (en) Method of electrolytically depositing chromium
Bannard The effect of a surface-active additive on the dissolution efficiency and surface finish in ECM
SU389831A1 (en) B&#39;SHLIOGEKAKOL affiliate of the USSR Academy of Sciences