JPS5864212A - Modified zeolite - Google Patents

Modified zeolite

Info

Publication number
JPS5864212A
JPS5864212A JP16367281A JP16367281A JPS5864212A JP S5864212 A JPS5864212 A JP S5864212A JP 16367281 A JP16367281 A JP 16367281A JP 16367281 A JP16367281 A JP 16367281A JP S5864212 A JPS5864212 A JP S5864212A
Authority
JP
Japan
Prior art keywords
adsorption
oxygen
binder
zeolite
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16367281A
Other languages
Japanese (ja)
Inventor
Kazutaka Mori
一剛 森
Masato Suwa
諏訪 征人
Jun Izumi
順 泉
Hiroyuki Tsutaya
博之 蔦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16367281A priority Critical patent/JPS5864212A/en
Publication of JPS5864212A publication Critical patent/JPS5864212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Glanulating (AREA)

Abstract

PURPOSE:To obtain modified zeoilite capable of considerably reducing the consumption of power in the separation of oxygen and nitrogen from air by granulating zeolite with a binder contg. dissolved iron. CONSTITUTION:''Linde Molecular Sieve 4A '' is mixed with a binder prepared by dissolving ferrous chloride in commercially available silica sol, and the mixture is extrusion-molded to form pellets. The pellets are dried in a through-flow drier and calcined at 500 deg.C to prepare the desired modified zeolite. This modified zeolite shows superior characteristics in the adsorption of oxygen as compared to Linde Molecular Sieve 4A prepared by the same method using silica sol contg. no ferric chloride as a binder. When ferrous chloride is used in place of said ferric chloride, similar results are obtd. This modified zeolite is much superior to conventional N2 adsorption type molecular sieves in adsorption performance, and the size of an apparatus for concentrating oxygen and the concentrating cost can be reduced.

Description

【発明の詳細な説明】 縮するだめの酸素の選択的吸着剤に関する。[Detailed description of the invention] The present invention relates to a selective adsorbent for oxygen in a shrinkage tank.

ゼオライトがイオノ交換能やガス吸着能を41し混合物
の分離に利用されることは占〈からマクペインら(J 
、WMcHain, ”The Sorption o
r OaSes bySol ids ″ Chapt
er  V,  Itoutlcdge  & Keg
an  l’aul,  London(1932))
によりまとめられ硬水軟化剤等として用いられてきた。
Zeolite has ion exchange capacity and gas adsorption capacity41, and its use for separating mixtures has been reported by Shima and McPayne et al. (J.
, W. McHain, “The Sorption o.
rOaSes bySolids''Chapt
er V, Itoutlcdge & Keg
an l'aul, London (1932))
It has been used as a water softener etc.

日本においても鮫島ら(J 、 SamcshimaB
ull.Chem.Soc 4, 96(1929))
によりゼオライトの特異な吸着性能が発表されている。
In Japan, Sameshima et al.
ull. Chem. Soc 4, 96 (1929))
announced the unique adsorption performance of zeolite.

その後パーラ−ら(R.M.BarrerlProc.
 Roy. Soc. A, 167, 392(19
38))により有機化合物や各種炭化水素の分離に利用
できることが確肚され、さらに人工的をもった製品が市
販されるようにな一ったのは衆知の事実である。上記の
ゼオライトのうちり/デ モレキュラー/−ブスは化学
式Na20・At2(J32SiO2・nHz□で示さ
れる物質であり、柚々の特異な性質を有することが知ら
れている。ゼオライトは、例えば均一な有効細孔径を有
し、それより不埒い分子だけを吸着するという性質をボ
す。また、極性分子、分極性分子および不飽牙ロ炭化水
素を選択的に吸着し、更に低分圧(低濃度)または比較
的高温度下における吸着能力が高い等の性5J!をポす
。つまり、リ/デ モレキュラ−7−プス4Aにおいて
は4人の均一な細孔をイJし、これより小さな有効分子
径を有する分子は吸着するが、これより大きな有効分子
径の分子は吸着されない。
After that, Parler et al. (R. M. Barrerl Proc.
Roy. Soc. A, 167, 392 (19
It is a well-known fact that 38)) has confirmed that it can be used for the separation of organic compounds and various hydrocarbons, and that products with artificial properties have become commercially available. The above-mentioned zeolite dust/demolecular/-bus is a substance represented by the chemical formula Na20.At2 (J32SiO2.nHz□), and is known to have the unique properties of yuzu. Zeolite, for example, has a uniform It has an effective pore size and has the property of adsorbing only more unfavorable molecules.It also selectively adsorbs polar molecules, polarizable molecules, and unsaturated halogen hydrocarbons, and has a low partial pressure (low partial pressure). concentration) or high adsorption capacity under relatively high temperatures.In other words, Re/De Molecular 7-Ps 4A has four uniform pores, and smaller Molecules with an effective molecular diameter are adsorbed, but molecules with a larger effective molecular diameter are not adsorbed.

H2S, (30tあるいはNH3といった分子はモレ
キュラ−7−プス4Aにより吸着されるが02+14あ
るいはC5Hsという分子は吸着きれない。極性・分極
性分子、不飽和炭化水素等の選択的吸着については吸着
速度や吸着エネルギーは他の吸着剤よりはるかに大きい
1とされている。この理由は結構造中に含まれている陽
イオ/と被吸着物との間に静電的な結合が形成されるた
めであると呂われている。この結果、細孔を通−って吸
着−,31Lる分子同志でも極性等の差によって選択性
を生じ、流体の分離、精製を口f能とする。例えばり/
デ モレキュラー7−ブス5Aに対する吸着において極
性分子である一酸化炭素とこれとほぼ等しい分子径と沸
点を有する非極性分子であるアルゴンの場合について述
べる。圧力400mm1g、−75℃におけるり/デ 
モレキュラー7−ブス5Aへの吸着バー酸化炭素145
%であるのに比ベアルゴ/け55チである。また、ゼオ
ライトは他の吸着剤(例えばシリカゲル、活性アルミナ
等)に比べ温度るるいは濃度(分圧)の影響が極めて少
ない。
Molecules such as H2S, (30t or NH3) are adsorbed by Molecular-7-Pus4A, but molecules such as 02+14 or C5Hs cannot be adsorbed. Regarding the selective adsorption of polar/polarizable molecules and unsaturated hydrocarbons, the adsorption rate and The adsorption energy is said to be much higher than that of other adsorbents1.The reason for this is that electrostatic bonds are formed between the cations contained in the crystalline structure and the adsorbed material. As a result, even molecules adsorbed through the pores exhibit selectivity due to differences in polarity, etc., making separation and purification of fluids easier.For example,
A case will be described in which carbon monoxide, which is a polar molecule, and argon, which is a non-polar molecule having approximately the same molecular diameter and boiling point, are adsorbed onto DeMolecular 7-Bus 5A. Pressure 400mm 1g, -75℃
Adsorption bar carbon oxide 145 on Molecular 7-Bus 5A
%, but it is 55 cm compared to the average price. Furthermore, compared to other adsorbents (eg, silica gel, activated alumina, etc.), zeolite is significantly less affected by temperature or concentration (partial pressure).

特に極性分子、分極性分子、不飽和炭化水素等の場合は
顕著であり、その吸着等温線は一般には典型的なう/グ
ミュア型を示す。以上述べたことは一般的なゼオライト
の特性でるるか、本発明者等(へ)鋭意、ゼオライトの
改質という問題について研究を行った結果特異な性質を
廟するゼオライトを発明するに到−った。
This is particularly noticeable in the case of polar molecules, polarizable molecules, unsaturated hydrocarbons, etc., and their adsorption isotherms generally exhibit a typical U/Gmuir type. Whether the above-mentioned characteristics are typical of zeolites or not, the inventors of the present invention have conducted extensive research into the problem of modifying zeolites, and as a result have come up with a zeolite with unique properties. Ta.

本発明ではり/デ モレキュラー7−ブス4A f使用
し、特殊な処理を行うことにより、一般のり/デ モレ
キュラー/−プ4A と異なる酸素選択吸着剤を得た。
In the present invention, Glue/De Molecular 7-Bus 4Af was used and a special treatment was performed to obtain an oxygen selective adsorbent different from general Glue/De Molecular/-P4A.

す/デ モレキュラーン−ブス4Aは衆知の如く、酸素
の吸着の場合には高温になるほど吸着量が減少するのに
対し、窒素の吸着は約−100℃に極大を示す。そのた
め、す/デモレキュラー/−ブス4Aは約−100℃よ
り高温においては窒素の吸着量が酸素の吸着量を上まわ
り、見掛は上窒素選択吸着剤のような挙動を示す。この
ような窒素選択型吸着剤を使用して、空気から酸素、窒
素を分離する装置は実用化されているが、空気中1トg
o%含′まれている窒素全吸着させるため消費動力原単
位が大となる欠点かり一つだ。本発明酸素選択型吸着剤
を使用す几ば空気からの酸素、窒素の分離を行う際に消
費動力原単位の大きな低減を可能ならしめることができ
る。つまり、空気中の酸素、窒素分離装置において高圧
ガスをモレキュラー7−ブスの充填された吸着塔内を流
過させるが、本発明吸着剤を使用した場合には酸素選択
吸着剤であるため、空気中の80%を占める窒素が流過
し、これを動力回収装置、例えばターピノ等に連結すれ
ば動力を回収することが口■能となり、消費動力原単位
を低Mcさせることができる。
As is well known, in the case of oxygen adsorption, the amount of adsorption decreases as the temperature increases, while nitrogen adsorption reaches a maximum at about -100°C. Therefore, at temperatures higher than about -100° C., the amount of nitrogen adsorbed exceeds the amount of oxygen adsorbed in Su/Demolecular/-Bus 4A, and it appears to behave like a highly selective adsorbent for nitrogen. Devices that use such nitrogen-selective adsorbents to separate oxygen and nitrogen from air have been put into practical use;
One of the drawbacks is that the unit power consumption is high because all of the nitrogen contained in 0% is adsorbed. By using the oxygen selective adsorbent of the present invention, it is possible to greatly reduce the unit power consumption when separating oxygen and nitrogen from air. In other words, in a device for separating oxygen and nitrogen from the air, high-pressure gas is passed through an adsorption column filled with molecular 7-bus. Nitrogen, which accounts for 80% of the content, flows through, and if this is connected to a power recovery device, such as a terpino, it becomes possible to recover the power, and the unit power consumption can be reduced to a low Mc.

以下本発明について実施例により詳細に説明する。The present invention will be explained in detail below using examples.

実施例1 市販のシリカゲル(コロイダルシリカ)に塩化第2鉄を
溶解させたもの全バイ/ダーとして混合したり/デモレ
・キュラーン−ジス4A’5ペレタイザーを使用して2
m+nφV(押し出し成形した。
Example 1 A solution of ferric chloride in commercially available silica gel (colloidal silica) was mixed as a total binder/demolition silica using a DeMore-Curan-DiS 4A'5 pelletizer.
m+nφV (extrusion molded.

この場合、ノリカ/ル中の/リカ分をり/デモレキュラ
ーシーブス4Aに対して20%、塩化第2鉄をり/デモ
レキュラー7−ブス4Aに対して鉄として05%加わる
ように7す力ゾル溶液を調製した。押し出し成形後、ペ
レ/トを通風乾燥器中で乾燥させた後、500℃におい
て1時間焼成した。又同様にして塩化第2鉄を全く含ま
ないシリカゲルをバイ/ダとして使用したり/デモレキ
ーラ=7−プス4Aも試作した。この2者について第1
図に示す吸着試験機を使用して、空気からの酸素と窒素
の吸着分離試験を行った。第1図は本発明者等が吸着剤
による空気分離特性を計測するために試作した装置の概
略説明図である。lは高圧の空気ポ/べである。、ボ/
べ1を出た高圧空気は減圧器2を経てパルプ3に至る。
In this case, the force applied is 20% to the liquid in the Norika/liquid/Demolecular sieves 4A, and 05% as iron to the ferric chloride/Demolecular sieves 4A. A sol solution was prepared. After extrusion, the pellets were dried in a ventilated dryer and then calcined at 500° C. for 1 hour. Similarly, a prototype of Demolekira 7-Pus 4A was also produced using silica gel containing no ferric chloride as the binder. Regarding these two parties, the first
An adsorption separation test of oxygen and nitrogen from air was conducted using the adsorption tester shown in the figure. FIG. 1 is a schematic explanatory diagram of a device prototyped by the present inventors to measure the air separation characteristics of an adsorbent. 1 is a high pressure air pump/vehicle. , Bo/
The high-pressure air leaving the chamber 1 passes through a pressure reducer 2 and reaches the pulp 3.

減圧器2とバルブ3の間にブルドン管式圧力4↑4が設
置され圧力び)測定が+=J龍であり、本試験では減圧
器2とプルドア管式圧力計4により人口圧力を5 al
aに設定した。吸着塔6は内i10wnφ長さ300.
のステ/レス製であり、7は吸着剤である。温度調節浴
8は一70℃〜700℃に温度調節iff能であり、父
、真空ボ/ブlOは(101torrまで減圧が可能で
ある。温度調節浴8と真空ボ/グ10及び3.5.9の
操作により真空熱処理が可能である。空気分離特性の計
測e1パルプ3及び5を開にして高圧空気を流過させ)
U−ト式流量計11で流量を測定した後、酸素#度計1
2に全景流入させて出口酸素濃度を計測し、更にデータ
は自記式記録計13により記録した。試験結果を第2図
に示す。第2図において横軸は経過時間であり、l目盛
は1分である。縦軸は#1素濃度であり、単位は容量チ
である。なお、入口側酸素濃度を示すため空気中酸素濃
度208チのところに基準線αを記した。又第2図は室
温(20℃)における出口酸素濃度の経時変化を不すも
ので1は本発明改質す/デモレキュラーノーブス4Aの
吸着曲線2は鉄を含−まない/す力ゾルをバイ/ダとし
たリンデモレキュラ−7−ブス4Aの吸着曲線である。
A Bourdon tube type pressure gauge 4↑4 is installed between the pressure reducer 2 and the valve 3, and the pressure measurement is +=J dragon, and in this test, the population pressure is 5 al
It was set to a. The adsorption tower 6 has an internal diameter of 10 mm and a length of 300 mm.
7 is an adsorbent. The temperature control bath 8 has a temperature control capacity of -70°C to 700°C, and the vacuum valve 10 can reduce the pressure to (101 torr). Vacuum heat treatment is possible by the operation in step 9.Measurement of air separation characteristics e1 Pulp 3 and 5 are opened and high pressure air is allowed to flow through)
After measuring the flow rate with the U-t type flowmeter 11, the oxygen #degree meter 1
2, the outlet oxygen concentration was measured, and the data was further recorded by a self-recording recorder 13. The test results are shown in Figure 2. In FIG. 2, the horizontal axis represents elapsed time, and the l scale is one minute. The vertical axis is #1 elementary concentration, and the unit is capacitance. Note that a reference line α was drawn at the air oxygen concentration of 208 cm to indicate the oxygen concentration on the inlet side. In addition, Figure 2 shows the case where the outlet oxygen concentration does not change over time at room temperature (20°C), and 1 shows the adsorption curve 2 of the modified resin according to the present invention/Demolecular Novus 4A, which does not contain iron. It is an adsorption curve of Lindemolecular-7-Bus 4A as Bi/Da.

本試験の結果から鉄を含まない/す力ゾルをバイ7ダー
としたりンデモレキュラー7−ブス4Aは窒素選択吸着
性を有し、−力木発明の如く処理して得られたり/デモ
レキュラーンープス4A (改質り/デモレキュラーシ
ーブス4A)は酸素選択吸着性を有することが明らかと
な−、〕た。
From the results of this test, it is clear that iron-free/Ndemolecular 7-Bus 4A, which does not contain iron, is used as a binder 7, and that Ndemolecular 7-Bus 4A has nitrogen selective adsorption properties. It was revealed that Noops 4A (modified/demolecular sieves 4A) has oxygen selective adsorption properties.

本試験の結果は室温(20℃)におけるものであり、本
発明改質リップモレキュラー/−プス4Aは酸素選択吸
着剤として利用が一+3J能であると考えられる。
The results of this test were at room temperature (20° C.), and it is believed that the modified lip molecular/pus 4A of the present invention has a 1+3J ability to be used as an oxygen selective adsorbent.

実施例2 次に500℃において1時間焼成した本発明改質り/デ
モレキュラノープス4At第1図に示す装置tを使用し
て、500℃(11torrの条件で1時間真空熱処理
を行い、室温(20℃)に冷却した後、空気中の酸素、
窒素吸着分離試験を実施した。試験結果を第3図に示す
。第3図は第2図と同様用[」酸素濃度の経時変化を示
すもので、横軸、縦軸および基準線αは第2図と同義で
ある。第3図において、1は第2図の1と同一の吸着曲
線を示すものでありl′はJk、受熱処理を打った改質
り/デモレキュラシーブス4Aの吸着曲線2′は鉄を含
まない7リカゾルを7(イ/ダーとしたり/デモレキュ
ラー7−プス4Aを真空熱処理したものの吸着曲線であ
る。試験結果から判断すると直空熱処理を行うことによ
り、鉄を含まないシリカゾルをバイ7ダーとしたリノデ
モレキーラーンーブス4Aは吸着性能にあまり変化は認
められなかったが不発明に係る改i 1Jンデモレキュ
ラ/−プス4Aで−は酸素吸着性能に格段の向]−が認
められた。
Example 2 Next, using the apparatus t shown in FIG. 1, the modified resin of the present invention/Demoleculanops 4At, which was fired at 500°C for 1 hour, was subjected to vacuum heat treatment at 500°C (11 torr) for 1 hour. After cooling to room temperature (20°C), oxygen in the air,
A nitrogen adsorption separation test was conducted. The test results are shown in Figure 3. Similar to FIG. 2, FIG. 3 shows the change in oxygen concentration over time, and the horizontal axis, vertical axis, and reference line α have the same meanings as in FIG. 2. In Fig. 3, 1 shows the same adsorption curve as 1 in Fig. 2, l' is Jk, and adsorption curve 2' of reformed/demolecular sieves 4A subjected to heat receiving treatment does not contain iron. This is an adsorption curve for silica sol containing no iron as 7 (I/D) and Demolecular 7-Pus 4A subjected to vacuum heat treatment. Judging from the test results, by performing direct air heat treatment, iron-free silica sol can be converted into B/7D. No significant change was observed in the adsorption performance of Rhinode Molecule Rubber 4A, but a marked improvement in oxygen adsorption performance was observed in the uninvented Modified I 1J Nde Molecule Rubber 4A.

実施例3 次に500℃において1時間焼成した本発明改質り/デ
モレキュラ/−ブス4Aを第1図に示す装置Itを使用
し、吸着塔を一20℃(で冷却して仝気中Z)酸素窒素
分離試験を実施した。試験結果を第1図に示す。第4図
は第2図と同様出口酸素濃度の経時変化を示すもので横
軸、縦軸および基準線ぼけ第2図と同義でるる。第4図
において点線で示す1は第2図の1と同一の吸着曲線で
ある。1″は本発明改質リンデモレキュラ7−ブス4A
の吸着曲線、2″は鉄を含まない/リカゾルをバイ7ダ
ーとしたモレキュラー7−ブス4Aの吸着曲線である。
Example 3 Next, the reformer/demolecular/-bus 4A of the present invention, which had been calcined at 500°C for 1 hour, was cooled in an adsorption tower at -20°C (Z) using the apparatus shown in FIG. ) An oxygen nitrogen separation test was conducted. The test results are shown in Figure 1. Similar to FIG. 2, FIG. 4 shows the change over time in the outlet oxygen concentration, and the horizontal axis, vertical axis, and reference line blur are synonymous with FIG. 2. 1 indicated by a dotted line in FIG. 4 is the same adsorption curve as 1 in FIG. 2. 1″ is the modified Lindo Molecule 7-Bus 4A of the present invention
2'' is the adsorption curve of Molecular 7-Bus 4A which does not contain iron/using Lycasol as the binder.

試験結果から判断すると、低温吸着(−20℃)を行う
ことにより鉄を含まないノリ力ゾルをバイ7ダーとした
モレキュラー7−ブス4Aでは少し窒素吸着量が減少し
ただけであるが、本発明に係る改質り/デモレキュラー
シーブス4Aでは酸素吸着性能に格段の向上が認められ
た。
Judging from the test results, the amount of nitrogen adsorbed by Molecular 7-Bus 4A, which uses iron-free Noriyoku sol as the binder 7, was only slightly reduced by performing low-temperature adsorption (-20°C), but the amount of nitrogen adsorbed by the present invention was only slightly reduced. In the modified/demolecular sieves 4A, a marked improvement in oxygen adsorption performance was observed.

実施例4 次に、500℃において1時間焼成した本発明改質す/
デモレキュラシープス4Aを第1図に示す装置を使用し
て500℃Ql tour  という条件で1時間真空
熱処理を行った後、低温(−20℃)に冷却し、空気中
の酸素、窒素吸着分離試験を実施した。
Example 4 Next, the modified steel of the present invention was fired at 500°C for 1 hour.
Demolecula Sheeps 4A was subjected to vacuum heat treatment for 1 hour at 500°C using the apparatus shown in Figure 1, and then cooled to a low temperature (-20°C) to adsorb oxygen and nitrogen in the air. A separation test was conducted.

試験結果を第5図に示す。第5図は第2図と同様出口酸
素#度の経時変化を示すもので横軸、縦軸および基準線
αは第2図と同義である。第5図において点線で示すl
は第2図の1と同一の吸着曲線である。1″′は真空熱
処理を行った本発明改質り/デモレキュラーンーブス4
Aの吸着曲線、2″′は真空熱処理を行−った鉄を含ま
ないシリカゾルをバインダーとしたモレキュラーンーブ
ス4Aの吸着曲線である。試験結果から判断すると、真
空熱処理を行い、吸着塔温度を低温(−20℃)に冷却
した場合、鉄を含まない/リカノ′ルをバインダーとし
たり/デモレキュラー7−ブス4Aでは吸着性能にあま
り変化は認められなかったが、本発明に係る改質り/デ
モレキュラーンーブス4Aでは格段の酸素吸着性能の同
」二が認められ、その割合は、真空熱処理及び低温伶却
のどちらか一方の処理の場合よりも大でメツた。
The test results are shown in Figure 5. Similar to FIG. 2, FIG. 5 shows the change over time in the outlet oxygen #degree, and the horizontal axis, vertical axis, and reference line α have the same meanings as in FIG. 2. l indicated by the dotted line in Figure 5
is the same adsorption curve as 1 in FIG. 1″′ is the modified product of the present invention/demolecular cubes 4 which was subjected to vacuum heat treatment.
The adsorption curve of A, 2''' is the adsorption curve of Molecular Lubes 4A using vacuum heat-treated iron-free silica sol as a binder.Judging from the test results, vacuum heat treatment was performed and the adsorption tower temperature was lowered. When cooled to a low temperature (-20°C), no significant change in adsorption performance was observed for demolecular 7-bus 4A, which does not contain iron or uses licanol as a binder; /Demonolecular Cubes 4A showed a remarkable level of oxygen adsorption performance, and the rate was greater than that of either vacuum heat treatment or low-temperature cooling.

実施例5 アルミナゾルに塩化第1鉄を溶解でせ、す/デモレキュ
ラー7−プス4Aと混合しペレタイザーを使用してhl
に押し出し成形した。この場合アルミナゾル中のアルミ
ナ分をり/デモレキュラーンーブス4Aに対して15%
、塩化第1鉄をり/デモレキュラーシープス4Aに対し
て鉄として1.0%加わるようにアルミナゾルを調製し
ておいた。ペレットは押し出し成形の後、乾燥器中にお
いて乾燥し、650℃において1時間焼成した。
Example 5 Ferrous chloride was dissolved in alumina sol, mixed with Su/Demolecular 7-Pus 4A, and made into HL using a pelletizer.
Extrusion molded. In this case, the alumina content in the alumina sol is 15% with respect to demolecular lube 4A.
An alumina sol was prepared so that 1.0% iron was added to ferrous chloride paste/Demolecular Sheeps 4A. After extrusion, the pellets were dried in an oven and calcined at 650° C. for 1 hour.

父、同様にして塩化第1鉄を全く含まないアルミナゾル
をバインダーとして使用したり/デモレキュラー7−プ
ス4Aも試作した。この2者について第1図に示す吸着
試験機を使用して空気からの酸素と窒素の吸着分離試験
を行った。吸着試験結果を第す図に示す。第6図は第2
図と同様出口酸素濃度の経時変化を示すもので、横軸、
縦軸および基準線ぼけ第2図と同義である。
In the same way, my father also made a prototype of Demolecular 7-Pus 4A using alumina sol, which does not contain any ferrous chloride, as a binder. An adsorption/separation test of oxygen and nitrogen from air was conducted on these two materials using the adsorption tester shown in FIG. The adsorption test results are shown in Figure 2. Figure 6 is the second
Similar to the figure, it shows the change in outlet oxygen concentration over time, with the horizontal axis
The vertical axis and reference line blur are synonymous with those in FIG.

第6図において3は本発明の鉄含有アルミナゾルを用い
た改質りンデモレキュラ−7−ブス4Aの吸着曲線、4
は鉄を含まないアルミナゾルをバインダーとしたり/デ
モレキュラー7−ブス4Aの吸着曲線である。本試験の
結果から判断して、バインダーをシリカゾルからアルミ
ナゾルに変えた場合にも/す力ゾルと同様の挙動(!−
/ICしており、バインダーとしてアルミナゾルの1史
川も可能であることがわかる。
In FIG. 6, 3 is the adsorption curve of modified phosphorous molecular-7-bus 4A using the iron-containing alumina sol of the present invention;
is an adsorption curve of Demolecular 7-Bus 4A using iron-free alumina sol as a binder. Judging from the results of this test, even when the binder is changed from silica sol to alumina sol, the behavior is similar to that of silica sol (!-
/IC, indicating that alumina sol is also possible as a binder.

実施例6 本実施例では皿型造粒機を使用してり/デ七しキュラー
7−ブス4Aの造粒を行一つだ。つまり、硫酸第2鉄を
溶解させたシリカゾルを皿型造粒機の一端からスプレー
として吹き出させながら、又他の一端から皿上にモレキ
ュラーフーブスを供給し、約h1のり/デモレキーラー
/−プス4Aのピードを得た。この時、/リカ分をり/
デモレキュラ=7−プス4Aに対して20%、#L酸第
2鉄を鉄としてり/デモレキュラーンーブス4Aに対し
て05%となるように/す力ゾル溶液を調製して使用し
た。造粒体ピードは100℃において5時間乾燥した後
、550℃において2時間焼成した。このようにして得
たビードを第1図に示す試験装置を使用して、空気から
の酸素と窒素の吸着分離試験を行った。吸着分離試験の
結果は、実施例1に示した結果とほぼ同一でめった。以
上説明したように本発明改質ゼオライトは、従来の既文
献にいかなる示唆もされていない酸素選択型の全く新し
い吸着剤でりる。
Example 6 In this example, a dish-type granulator was used to granulate De-7-Cular 7-Bus 4A in one row. In other words, while spraying silica sol containing ferric sulfate dissolved therein from one end of the dish-shaped granulator, Molecular Hooves was supplied onto the dish from the other end, and approximately I got a speed of . At this time, /Rikaminori/
A sol solution was prepared and used in such a manner that it was 20% based on Demolecula 7-Pus 4A and #L ferric acid was used as iron/05% based on Demolecula Novus 4A. The granulated peas were dried at 100°C for 5 hours and then fired at 550°C for 2 hours. Using the test apparatus shown in FIG. 1, the beads thus obtained were subjected to an adsorption/separation test for oxygen and nitrogen from air. The results of the adsorption separation test were almost the same as those shown in Example 1 and were unsuccessful. As explained above, the modified zeolite of the present invention is a completely new oxygen-selective adsorbent that has not been suggested in any conventional literature.

本発明改質ゼオライトは、その適用する範囲が極めて広
く例えばモレキュラー/−ブスを利用した酸素濃縮装置
に適用する場合、温度スイ/グ、圧カスイ/グ方式のい
ずれにも適用01能でめり、従来り〕N2吸着型モレキ
ーラ−7−ブスの吸着性能をはるかに4:篤し装置の小
型化、酸素濃縮の低廉化へ大きく寄与するものでめる。
The modified zeolite of the present invention has an extremely wide range of applications, for example, when applied to an oxygen concentrator using a molecular bus, it can be applied to both temperature swing and pressure switch systems. The adsorption performance of the conventional N2 adsorption type Molequilla-7-Bus has been significantly improved by 4:0, which greatly contributes to the miniaturization of the device and the cost reduction of oxygen concentration.

父、本発明改質ゼオライトを他成分ガスからの酸素除去
に利用するならば極めて安価な酸素吸着除去剤を提供す
ることとなる。
If the modified zeolite of the present invention is used to remove oxygen from other component gases, it will provide an extremely inexpensive oxygen adsorption removal agent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に関し、その効果を確認するために使用
した試験装置のフロー。第2図、第3図、第4図、およ
び第5図は鉄台イf /′’)カッ゛ルを用いた改質り
/デモレキュラーシーブス・IA1鉄を含まない/リカ
ゾルを用いたり/デモレキュラー7−ブス4Aおよびそ
れらの真望熱処理したものの20℃、および−20℃の
温度下の動的吸着量を示すグラフ。第6図は、鉄含有ア
ルミナゾルを用いた改質り/デモレキュラー/−ブス4
A、および鉄を含まないアルミナゾルを用いたり/デモ
レキュラーシーブス4Aの20℃温度下の動的吸着量を
示すグラフ。 第2図 θ/2345tり 振止r8剥(仔) 第3図 滝通綺肩(分ン 第4g 確ill鰐朋(介) 直直綺盾(介)
FIG. 1 is a flowchart of the test equipment used to confirm the effects of the present invention. Figure 2, Figure 3, Figure 4, and Figure 5 show the results of reforming using iron stand f/'') cup/Demolecular sieves/IA1 iron-free/using Lycasol/ Graph showing the dynamic adsorption amounts of Demolecular 7-Bus 4A and those subjected to heat treatment at temperatures of 20°C and -20°C. Figure 6 shows the modification using iron-containing alumina sol/demolecular/-Bus 4
A, and a graph showing the dynamic adsorption amount of Demolecular Sieves 4A using iron-free alumina sol at a temperature of 20°C. Figure 2 θ/2345t steady rest r8 stripped (Child) Figure 3 Takimichi Kimishata (Bunun 4th g) Ill Wanitomo (Intermediate) Nao Nao Kitan (Intermediate)

Claims (1)

【特許請求の範囲】[Claims] 鉄を溶解させたバイ7ダーを使用して造粒したことを特
徴とする改質ゼオライト。
A modified zeolite characterized by being granulated using a binder containing dissolved iron.
JP16367281A 1981-10-14 1981-10-14 Modified zeolite Pending JPS5864212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16367281A JPS5864212A (en) 1981-10-14 1981-10-14 Modified zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16367281A JPS5864212A (en) 1981-10-14 1981-10-14 Modified zeolite

Publications (1)

Publication Number Publication Date
JPS5864212A true JPS5864212A (en) 1983-04-16

Family

ID=15778393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16367281A Pending JPS5864212A (en) 1981-10-14 1981-10-14 Modified zeolite

Country Status (1)

Country Link
JP (1) JPS5864212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449054B2 (en) 2001-10-31 2008-11-11 Saes Pure Gas, Inc. Air purification system with regenerative purification units
CN102557063A (en) * 2012-01-16 2012-07-11 中国环境科学研究院 Method for preparing molecular sieve by using power plant coal ash as raw materials and molecular sieve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449054B2 (en) 2001-10-31 2008-11-11 Saes Pure Gas, Inc. Air purification system with regenerative purification units
CN102557063A (en) * 2012-01-16 2012-07-11 中国环境科学研究院 Method for preparing molecular sieve by using power plant coal ash as raw materials and molecular sieve

Similar Documents

Publication Publication Date Title
CA1042365A (en) Process for removing carbon dioxide from gas streams
JP5608184B2 (en) Zeolite adsorbent, process for obtaining it and use for removing carbonate from gas streams
US4743276A (en) Method of separating carbon monoxide and carbon monoxide adsorbent used in this method
US3024867A (en) Drying of natural gas by adsorption
TW555587B (en) Process for the decarbonation of gas flows using zeolite adsorbents
JPH01160816A (en) Method for selectively adsorpting co2 by zeolite
JPH10323527A (en) Gas purity device and method
CN1059267C (en) Production of ultrahigh purity nitrogen
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
US4453952A (en) Oxygen absorbent and process for the separation of oxygen and nitrogen using the same
JPH01104342A (en) Absorbent for refining of gas and refining method
JP2002204917A (en) Method for separating raw material gas
JPS5864212A (en) Modified zeolite
JPH08224468A (en) Cylindrically pelletized carbon based adsorbent
US3893827A (en) Selective removal of constituents from fluids
JPH062575B2 (en) Clinoptilolite-type zeolite and method for producing the same
JPH0739752A (en) Adsorbent of carbon dioxide and manufacture thereof
JPH0275318A (en) Removal of carbon dioxide
JPH02153818A (en) Production of zeolite moldings
JPH05168839A (en) Separation of gaseous oxygen
JPS59115740A (en) Manufacture of oxygen-selective adsorbent
JPS58223613A (en) Modification of molecular sieve
JP3062759B2 (en) Manufacturing method of carbon dioxide adsorbent
JPH0255203A (en) Production of high-purity oxygen
JP2000202281A (en) Selective nitrogen adsorbent and separation of air using same