JPS5864197A - Denitrification of waste water - Google Patents

Denitrification of waste water

Info

Publication number
JPS5864197A
JPS5864197A JP56162542A JP16254281A JPS5864197A JP S5864197 A JPS5864197 A JP S5864197A JP 56162542 A JP56162542 A JP 56162542A JP 16254281 A JP16254281 A JP 16254281A JP S5864197 A JPS5864197 A JP S5864197A
Authority
JP
Japan
Prior art keywords
wastewater
nitrogen
load
bod
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56162542A
Other languages
Japanese (ja)
Other versions
JPH0237240B2 (en
Inventor
Yasuhisa Yoda
与田 豈久
Takao Azuma
東 貴夫
Takeshi Shimazu
島津 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP56162542A priority Critical patent/JPS5864197A/en
Publication of JPS5864197A publication Critical patent/JPS5864197A/en
Publication of JPH0237240B2 publication Critical patent/JPH0237240B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To perform denitrification without using any special equipment, by treating waste water having specified concentration of nitrogen with active sludge in an aerating cell whose temperature, MLSS load at the irreducible necessary minimum and amount of dissolved oxygen are specified. CONSTITUTION:Waste water having concentration of nitrogen defined by N/ BOD<=5/100[N = total content of nitrogen (organic nitrogen + ammoniac nitrogen + nitrous nitrogen + nitric nitrogen)]is introduced into an aerating cell and treated therein with active sludge comprising microbes. The condition of treatment with the active sludge in the aerating cell is hence determined so that its MLSS loads (kg-BOD/kg-MLSS/day) at the irreducible necessary minimum at the temperatures of water in the aerating cell below 25 deg.C, 25-30 deg.C, 30-35 deg.C and above 35 deg.C are 0.021, 0.042, 0.056 and 0.084, respectively, while an amount of dissolved oxygen is held above 1mg/l in any cases. Consequently, denitrification can be performed without the need to use any special equipment such as one used in nitrification-denitrification.

Description

【発明の詳細な説明】 CII発明の背景 技術分野 本発明は、活性汚泥法による排水の窒素除去法に関する
。さらに具体的には、本発明は、慣用のBOD低下用の
活性汚泥法の実施条件を管理することによって排水の脱
窒を行なう方法に関する。
DETAILED DESCRIPTION OF THE INVENTION CII BACKGROUND TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for removing nitrogen from wastewater by an activated sludge process. More specifically, the present invention relates to a method for denitrifying wastewater by controlling the operating conditions of conventional BOD lowering activated sludge processes.

従来より実用化されている排水の脱窒技術のうちでは生
物学処理による方法が最も一般的であり。
Among the wastewater denitrification technologies that have been put to practical use to date, biological treatment is the most common method.

その方法の一具体例として硝化−脱窒素性がある。One specific example of this method is nitrification-denitrification.

この硝化−脱窒素性は、排水中の窒素化合物をいったん
硝酸性窒素に酸化分解したのち、引続きこれを窒素ガス
に還元して大気中に逸散させることからなるものであり
、この酸化ないし硝化工程と還元ないし脱窒工程とをそ
れぞれ慣性好気性細菌(硝化菌)および通性嫌気性細菌
(脱窒菌)の生理作用を利用して行なうものである。
This nitrification-denitrification process consists of first oxidizing and decomposing nitrogen compounds in wastewater into nitrate nitrogen, and then reducing this to nitrogen gas and dissipating it into the atmosphere. The process and the reduction or denitrification process are carried out by utilizing the physiological effects of inertial aerobic bacteria (nitrifying bacteria) and facultative anaerobic bacteria (denitrifying bacteria), respectively.

この脱窒素方式は、BOI)除去のために広く普及して
いる活性汚泥法と共通性があって、BODの低下した排
水に対してさらに窒素化合物含量の低下をも要求された
ときに利用するのに有効であるようにみえる。しかし、
上記のように従来の硝化−脱窒素性は基本的に硝化工程
と脱窒工程とから構成されていて、この方法を実施する
には硝化設備に加えて脱窒設備が必要であり、従って硝
化設備としては既存のBOD除去用のものが利用できる
としても脱窒設備を少なからぬ費用を投じて新設しなけ
ればならないので、この方式は必ずしも実施容易のもの
ではない、事実、との脱窒方式の実用例は、窒素化合物
濃度の高いN旅排水等にみられるだけで、産業排水処理
九一般化したとはいえないのが現状である。
This denitrification method has commonality with the activated sludge method, which is widely used for BOI removal, and is used when it is required to further reduce the nitrogen compound content of wastewater with reduced BOD. It appears to be effective. but,
As mentioned above, the conventional nitrification-denitrification process basically consists of a nitrification process and a denitrification process, and in order to implement this method, denitrification equipment is required in addition to nitrification equipment. Even if existing equipment for BOD removal can be used, new denitrification equipment must be installed at considerable expense, so this method is not necessarily easy to implement. Practical examples of this are only seen in N wastewater with a high concentration of nitrogen compounds, and at present it cannot be said that it has become common in industrial wastewater treatment.

先行技術 従来の硝化−脱窒素性での硝化に及ぼす要因については
、多くの報告がある。゛たとえば、pHおよび温度と硝
化速度との関係(「水処理技術j、/4Cl)、qs3
(/97?)) 、硝化菌はBOD菌に比較して負荷量
や溶存酸素の影響を受けやすいこと(「用水と廃水」、
夕、  tou(tqqo))、硝化は水温と溶存酸素
に影響されること(「建設省土木研究所、下水道部研究
室so −sa年度」)、および硝散性窒素は負荷量の
増加に伴なって減少すること(「衛生化学」、苔−(1
)、/3− /I (/97?)) 、が見出されてい
る、 しかし、従来の硝化−脱窒素性の脱窒原塊からいって当
然のことながら、脱窒の観点から硝化を抑制しようとす
る考えに基く研究は非常に少なく、報告されているもの
は本発明者らの知る限りでは特開昭jJ −113(m
号および同3J−31344号各公報があるに過ぎない
。この先行発明はいずれも脱窒のために菌体を増殖させ
ることを目的としているものと解され、そのため排水中
の微生物濃度なSO〜二00 ppmと低く抑えて、高
負荷をかけて菌体の増殖を計っている。また、この先行
発明では、処追槽中の微生物重責当り一日当りの全有機
炭素処理重量(kgT00/kfic[,8B/日)が
3〜3となるように調節されている7 〔■〕発明の概要 要旨 今日における脱窒技術は前記のよ’5に硝化−脱窒法が
主流であって、これは脱窒のためKその前段階として完
全に硝化を行なわせることが必須であるが1本発明は1
排水中および菌体から漏出するアンモニア性窒素を再び
菌体合成に%利用させることで硝化を行なわせないよう
Kして脱窒な行なおうとするものである。
PRIOR ART There are many reports regarding the factors that affect nitrification in conventional nitrification-denitrification.゛For example, the relationship between pH and temperature and nitrification rate ("Water Treatment Technology J, /4Cl"), qs3
(/97?)), nitrifying bacteria are more susceptible to load and dissolved oxygen than BOD bacteria ("Water and wastewater",
In the evening, tou (tqqo)), nitrification is affected by water temperature and dissolved oxygen (``Ministry of Construction Civil Engineering Research Institute, Sewage Department Research Laboratory SO-SA''), and nitrile nitrogen increases as the load increases. to become and decrease ("hygiene chemistry", moss - (1
), /3- /I (/97?)) have been found. However, it is natural to consider the conventional nitrification-denitrification denitrification raw material, but it is difficult to treat nitrification from the viewpoint of denitrification. There are very few studies based on the idea of suppressing this, and the ones that have been reported are, to the best of the inventors' knowledge,
No. 3J-31344. It is understood that the purpose of all of these prior inventions is to propagate bacterial cells for denitrification, and for this reason, the concentration of microorganisms in wastewater is kept low at SO~200 ppm, and a high load is applied to grow bacterial cells. We are planning the growth of In addition, in this prior invention, the total organic carbon treatment weight per day per microbial burden in the treatment tank (kgT00/kfic [,8B/day) is adjusted to be 3 to 3.7 [■] Invention Overview of Denitrification Technology Today, as mentioned above, the mainstream of denitrification technology is the nitrification-denitrification method. Invention is 1
The aim is to denitrify the ammonia nitrogen leaking from the wastewater and from the bacterial cells by reusing them for bacterial cell synthesis, thereby preventing nitrification.

従って599本発明よる排水の脱窒法は、排水を、曝気
槽中での微生物からなる活性汚泥による処理からなる活
性汚泥法で処理するに当り、軍配の条件の下で活性汚泥
法を実施して、処理水中の硝酸性窒素の生成を抑制する
ことにより総窒素含廟1を低下させること、を特徴とす
るものである。
599 Therefore, in the wastewater denitrification method according to the present invention, when wastewater is treated by an activated sludge method consisting of treatment with activated sludge made of microorganisms in an aeration tank, the activated sludge method is carried out under favorable conditions. The present invention is characterized in that the total nitrogen content 1 is reduced by suppressing the production of nitrate nitrogen in the treated water.

(1)  処理すべき排水の窒素濃度が、N / BO
D≦s/looの関係を充足するものであること。
(1) The nitrogen concentration of the wastewater to be treated is N/BO
The relationship D≦s/loo must be satisfied.

(:1.)@気槽水温、最低必要MLS B負荷および
溶存酸素量が表−ノ記載の条件にあること。
(:1.) @Air tank water temperature, minimum required MLS B load, and dissolved oxygen amount must meet the conditions listed in Table 1.

表−ノ 曝気槽水温  最低必要ML8S負荷  溶存酸素量2
j未満      o、oユl     ≧l:l! 
−30未満     0.小幅      ≧130−
33未満     o、osb       ≧133
 以上      o、or蓼     ≧lたyし、 N =総窒素含有量(有機性窒素+アンモニア性窒素+
亜硝酸性窒素十硝酸性窒JR)〔Jより−KO10コに
よる〕 BOD−生物学的酸素要求量[:JxB−Kotoコに
よる]ML813負荷−ゆBOD /ゆML887日〔
「新訂 公害防止の技術と法規 水質編」(産業公害防
止協会)(昭和jj年4月j日発行)第77?頁による
〕 効果 本発明によれば慣用のBOD低下用の活性汚泥法を実施
する場合にその運転管理をしかるべく行なうだけで、硝
化−還元を行なう場合のような特別の装置を必要とせず
に脱窒な行なうことができる。
Table - Aeration tank water temperature Minimum required ML8S load Dissolved oxygen amount 2
Less than j o, oyul ≧l:l!
Less than -30 0. Narrow width ≧130−
Less than 33 o, osb ≧133
or more, and N = total nitrogen content (organic nitrogen + ammonia nitrogen +
Nitrite Nitrogen Tennitrate JR) [From J-KO10] BOD-Biological Oxygen Demand [:JxB-Koto-Ko] ML813 Load-YBOD/YUML887 days [
“Revised Pollution Prevention Technology and Laws, Water Quality Edition” (Industrial Pollution Control Association) (Published April 1939), No. 77? According to the page] Effects According to the present invention, when implementing the conventional activated sludge method for BOD reduction, just by properly managing the operation, there is no need for special equipment unlike when performing nitrification-reduction. Denitrification can be carried out.

処理すべき排水が所定の窒素濃度のものである場合には
特に然りである。
This is especially true when the wastewater to be treated has a predetermined nitrogen concentration.

本発明はまたその一実施態様において、処理すべき排水
の量の変動による影響を吸収して、特別な装置を必要と
せずに安定脱窒処理を行なうことを可能とするものであ
る。
In one embodiment of the present invention, it is possible to absorb the effects of fluctuations in the amount of wastewater to be treated and to perform stable denitrification treatment without the need for special equipment.

従って、本発明は活性汚泥法の運転管理方法として捉え
ることもできる。
Therefore, the present invention can also be regarded as an operation management method for an activated sludge method.

なお、硝化を抑制しようとする考えに基く研究のうち報
告されているものの唯一のものと解される前記公開公報
記載の発明と対比すると、本発明方法ではMLSB濃度
が! 、ooo 〜tt、ooo ppm程度と高く、
また有機物負荷はo、oot〜0.03/ゆT00/ゆ
・ML8B/日程度と極めて低い。
In addition, compared to the invention described in the above-mentioned publication, which is considered to be the only research reported based on the idea of suppressing nitrification, the method of the present invention shows that the MLSB concentration is! , ooo ~tt, as high as ooo ppm,
In addition, the organic matter load is extremely low at about o, oot~0.03/yuT00/yu・ML8B/day.

(IIT)発明の詳細な説明 ハ 1逸 本発明は、排水中の窒素化合物を硝酸イオン化してこれ
を還元して窒素ガスとして大気中へ放出させるという従
来の活性汚泥法脱窒とは異なり、1排水中および汚泥細
菌の菌体外へ漏出してくるアンモニア性窒素な菌体内に
取込ませることによって、このアンモニア性窒素の硝化
および還元という工程を省いたものである6 微生物の菌体外へのアンモニア性窒素の漏出およびその
取込みは既知の現象であって、]l1Ck8n−fel
der らによって生物学的排水処理忙おける窒素の循
環に関連して報告されている(岩井電久訳「Biolo
gioal Waste Treatment J、コ
ロナ社)、lすなわち、汚泥は好気条件下でアンモニア
性窒素を炭素源(BOD源)と共に摂取して筒体増殖を
行なうが、一方、内呼数段階では菌体の自己酸化がおこ
ってアンモニア性窒素が菌体から液中へ漏出してくる7
しかし、BOD源が存在する限り、漏出したアンモニア
性窒素は再び菌体合成に利用される。この場合に、 B
OD源が充分に存在しないと、すなわち、汚泥微生物に
負荷される排水量が充分でないと、曝気条件下で過剰分
のアンモニア性窒素は硝酸性窒素へと酸化されて液中に
残存するに到る(従来の脱窒原理では、この硝化を積極
的に行なった訳である)7 筒体増殖を計る上での栄養バランスとしてはN/ BO
Dがs−b/looであることが適当であるといわれて
いる(NおよびBODの定義は前記した通りである)6
窒素の比率がこれより下廻っている限り、菌体より漏出
したアンモニア性窒素はすべて菌体合成に再利用される
から、このような組成の排水であれば、BOD源の適当
な投与により硝酸性窒素の生成を防止することができる
ことになる。
(IIT) Detailed Description of the Invention C 1. The present invention differs from the conventional activated sludge method denitrification in which nitrogen compounds in wastewater are ionized with nitric acid, reduced, and released into the atmosphere as nitrogen gas. 1. The process of nitrification and reduction of ammonia nitrogen leaked from wastewater and sludge bacteria is taken into the microbial cells, thereby eliminating the process of nitrification and reduction of the ammonia nitrogen.6. The leakage of ammonia nitrogen and its uptake into ]l1Ck8n-fel is a known phenomenon;
reported on the nitrogen cycle during biological wastewater treatment (translated by Denhisa Iwai, "Biolo").
In other words, under aerobic conditions, sludge ingests ammonia nitrogen together with a carbon source (BOD source) to perform cylindrical multiplication, but at the internal respiration stage, bacterial cells Auto-oxidation occurs and ammonia nitrogen leaks from the bacterial cells into the liquid7
However, as long as a BOD source exists, the leaked ammonia nitrogen will be used again for bacterial cell synthesis. In this case, B
If there is not a sufficient OD source, that is, if the amount of wastewater loaded on sludge microorganisms is not sufficient, the excess ammonia nitrogen will be oxidized to nitrate nitrogen under aeration conditions and remain in the liquid. (According to the conventional denitrification principle, this nitrification was actively carried out.)7 The nutritional balance for measuring tube growth is N/BO.
It is said that it is appropriate for D to be s-b/loo (the definitions of N and BOD are as described above)6
As long as the nitrogen ratio is lower than this, all the ammonia nitrogen leaked from the bacterial cells will be reused for bacterial cell synthesis, so if the wastewater has such a composition, nitrate can be reduced by appropriately administering a BOD source. This means that the generation of nitrogen can be prevented.

ユ、処理すべ會排水 前記の条件(ハおよび(コ)で処理しうる限り、任意の
排水が対象となりうる。
Y. Wastewater to be treated Any wastewater can be treated as long as it can be treated under the conditions (c) and (g) above.

しかし、本発明で対象とするものに特に適した排水は、
既にN / BOD≦s/looの関係を充足する窒素
濃度のものである。活性汚泥性実施の際に前記(ハの条
件を充足させるべく配慮する必要がないからである。こ
のような排水は、醗造工場たとえばビール工場で発生す
ることが多いであろう。
However, wastewater particularly suitable for the purpose of the present invention is
The nitrogen concentration already satisfies the relationship of N/BOD≦s/loo. This is because there is no need to take care to satisfy the above-mentioned condition (c) when implementing the activated sludge process.Such waste water is likely to be generated in brewing factories, such as beer factories.

3、活性汚泥性設備 本発明で使用する活性汚泥法ないしその設備は、BOD
低下用の慣用のものと本質的には変らない、このような
慣用の活性汚泥法ないしその設備の具体例のいくつかを
模式的に示したものとして、「新訂 公害防止の技術と
法規 水質部」(昭和5j年6月X日産業公害防止協会
発行)第17’7− i’tt頁がある。
3. Activated sludge equipment The activated sludge method and equipment used in the present invention are BOD
Some specific examples of the conventional activated sludge method and its equipment, which are essentially the same as those conventionally used for water purification, are shown schematically in "Revised Pollution Prevention Technology and Regulations Water Quality 17'7-i'tt page (published by the Industrial Pollution Control Association on June 1977).

活性汚泥性設備で最も重要かつ本質的なものは、曝気槽
である。排水は、必要忙応じて予備沈殿その他の前処理
を受けたのち、@気4に導入され、曝気条件下に活性汚
泥中の微生物の作用を受けて含有有機物が除去される。
The most important and essential activated sludge facility is the aeration tank. The wastewater is subjected to pre-sedimentation and other pretreatments as necessary, and then introduced into @air 4, where the organic matter contained therein is removed by the action of microorganisms in the activated sludge under aeration conditions.

本発明で採用するのが好ましい曝気槽は、処理すべき排
水を複数の流入口から導入するよう処したものである。
The aeration tank preferably employed in the present invention is one in which the wastewater to be treated is introduced through a plurality of inlets.

すなわち、曝気槽は複数の流入口に臨んだ複数の単位区
分槽からなっており、単位区分槽の少なくともいつかを
順次に経由して(すなわち直列に)排水されるようにな
っている。このような曝気を行なう活性汚泥法は分注法
あるいはステップエアレージロン法といわれることがあ
るが1本発明では所謂完全混合法と称されている方式(
前記「新訂 公害防止の技術と法規 水質部」参照)を
も「排水が単位区分槽からなる曝気槽に分注される」方
式罠包含させるものとする。
That is, the aeration tank consists of a plurality of unit compartment tanks facing a plurality of inlets, and water is drained through at least some of the unit compartment tanks in sequence (ie, in series). The activated sludge method that performs such aeration is sometimes called the dispensing method or the step aeration method, but in the present invention, it is a method called the so-called complete mixing method (
(Refer to the above-mentioned "Revised Pollution Prevention Technology and Laws, Water Quality Department") shall also include the method trap in which "wastewater is distributed into an aeration tank consisting of unit compartment tanks."

本発明は慣用のBOD低下用の活性汚泥法の改変に係る
ものであるから、使用済み汚泥の返送を行なうことがふ
つうである。
Since the present invention relates to a modification of the conventional activated sludge process for lowering BOD, it is common practice to return the used sludge.

弘、活性汚泥法の運転管理 l)窒素濃度 処理すべき排水のN / BOD重量比は%!t/l 
oo以下でなければならない(NおよびBODの定義は
前記の通りである)。
Hiroshi, Operational management of activated sludge method l) Nitrogen concentration The N/BOD weight ratio of wastewater to be treated is %! t/l
Must be less than or equal to oo (definitions of N and BOD are as above).

N / BOD比が5乃00以下である排水が処理すぺ
き対象である場合(本発明の好ましい具体例である)は
この条件は既に実現されている訳であるが、この比が過
大である場合はBOD源を添加してN比率を下げなけれ
ばならない。
If wastewater with an N/BOD ratio of 5 to 00 or less is to be treated (which is a preferred embodiment of the present invention), this condition has already been achieved, but if this ratio is excessive In this case, a BOD source must be added to lower the N ratio.

N / BOD比をs/loo以下に維持するためK 
BOD源を多量に添加するのは好ましいことではないこ
とはいうまでもないから、本発明で対象とする排水はこ
の比がs/looをこえるものであったとしてもその超
過の程度が少ないものであることが好ましい。
K to maintain the N/BOD ratio below s/loo
It goes without saying that it is not preferable to add a large amount of BOD source, so even if the ratio of the wastewater targeted by the present invention exceeds s/loo, the extent of the excess is small. It is preferable that

NおよびBODの測定法は、下記の通りである。The methods for measuring N and BOD are as follows.

(ハ N値の測定 JI8 Kolo2による。(c) Measurement of N value Based on JI8 Kolo2.

(:1)  BOD値の測定 J工S Kotoユによる。(:1) Measurement of BOD value By J Engineering S Koto Yu.

なお、 BODとCODとの間には所与の排水について
一定の関係が交ることがふつうであるから、一般にS日
間もの長時間を要するBOD (lkの測定の代りにC
OD値を測定して、その値からBOD値を算出すること
も便利である( con値の測定法も、前記文献に記載
されている)7 コ〕 活性汚泥負荷および溶存酸素量 曝気槽水温に応じてML8B泥負荷を表−7記載の最低
必要値以上に維持すると共に溶存酸素量をiq/1以上
に維持しなければならない。
It should be noted that since there is usually a certain relationship between BOD and COD for a given wastewater, measuring BOD (instead of measuring C
It is also convenient to measure the OD value and calculate the BOD value from that value (the method for measuring the con value is also described in the above literature)7) Activated sludge load and dissolved oxygen amount Accordingly, the ML8B mud load must be maintained above the minimum required value listed in Table 7, and the amount of dissolved oxygen must be maintained above iq/1.

ML88負荷を所定値に維持するには、通常は曝気槽上
流建設けた貯槽ないし最初沈殿池の利用その他によって
これを行なえばよい。
Maintaining the ML88 load at a predetermined value is usually achieved by constructing an upstream aeration tank, using a storage tank or primary settling tank, or the like.

溶存酸素量は、吹込み空気量あるいは攪拌程度を調節す
るととKよって所定値に維持することができる。
The amount of dissolved oxygen can be maintained at a predetermined value by adjusting the amount of blown air or the degree of stirring.

ML8B負荷の詳細は「新訂 公害防止の技術と法規 
水質部」(産業公害防止協会発行)第1り7頁に記載さ
れている、 溶存酸素量は1.7I81DIOコの方法で測定される
For details on the ML8B load, please refer to "Revised Pollution Prevention Technology and Regulations"
The amount of dissolved oxygen is measured by the method of 1.7I81DIO, as described in "Water Quality Department" (published by the Industrial Pollution Control Association), page 1, page 7.

S、縮小運転 最低必要MLE1B負荷値の維持は比較的容易である。S, reduced operation Maintaining the minimum required MLE1B load value is relatively easy.

活性汚泥性設備が特定された排水に対して設計されてい
るからであり、排水発生量の多少の変動があっても貯槽
ないし最初沈殿池によってそれを吸収することができる
からである。
This is because activated sludge facilities are designed for specific wastewater, and even if there is some variation in the amount of wastewater generated, it can be absorbed by the storage tank or primary settling tank.

し゛かし、たとえば、排水源が日曜日毎に生産活動を停
止する場合では、その日に発生する排水量は少なく、従
って平日の排水tK基いて設計されている曝気槽部つい
て最低必要ML8B負荷を維持することができなくなる
ことがある。もっとも、曝気槽へ送る排水の量を週間を
通じて毎日同レベルであるよう忙することは不可能では
ないが、使用する貯槽等が過大となって実用的でしiな
い。
However, if, for example, a wastewater source stops its production activities every Sunday, the amount of wastewater generated on that day will be small, and therefore the minimum required ML8B load for the aeration tank section, which is designed based on weekday wastewater tK, will be maintained. You may become unable to do so. Although it is not impossible to keep the amount of wastewater sent to the aeration tank at the same level every day throughout the week, it is impractical because the storage tank used would be too large.

本発明は、この問題を「縮小運転」と名付けた活性汚泥
性設備の一部閉鎖によって解決しようとするものである
The present invention attempts to solve this problem by partially closing the activated sludge facility, which is termed "reduced operation."

縮小運転は、所謂「分注法」(所謂「完全混合法」を包
含することは前記したところ゛である)による曝気槽の
特徴を利用したものである。すなわち、分注法の場合は
、前記したように曝気槽は分注された排水に臨む単位区
分槽に区分されているから、そのうちのいくつかのみに
ついて排水を導入して活性汚泥処理を行なえば、使用す
る活性汚泥量が少ないので、排水量が少なくても最低必
要ML8B負荷値を所定レベル以上に維持することがで
會る。たとえば、曝気槽がS基の単位区分槽に区分され
ている場合には、排水量が24に減少したらコ基の単位
区分槽のみで運転すればMLBB負荷は排水量が平時の
ときのそれと変らないことになる。
The reduction operation utilizes the characteristics of the aeration tank based on the so-called "dispensing method" (which includes the so-called "complete mixing method" as described above). In other words, in the case of the dispensing method, as mentioned above, the aeration tank is divided into unit compartment tanks facing the dispensed wastewater, so if the activated sludge treatment is performed by introducing wastewater into only some of them, Since the amount of activated sludge used is small, the minimum required ML8B load value can be maintained at a predetermined level or higher even if the amount of drainage is small. For example, if the aeration tank is divided into S-group unit compartment tanks, and if the drainage volume decreases to 24, if you operate only with the C-group unit compartment tanks, the MLBB load will remain the same as when the drainage volume is normal. become.

このような縮小運転の場合の作動中の単位区分槽につい
てはMLBB負荷および溶存酸素量を表−/に示した条
件忙維持しなければならないが、休止中の単位区分槽(
すなわち、ML8B負荷はゼロである)については、溶
存酸素量をtq/lを越えないように維持して硝化が起
らないよう忙しなければならない。休止中の草位区分槽
では、活性汚泥の異常沈殿を防止するためにも適当な攪
拌を行ないあるいは僅かづつの空気吹込みを行なうこと
が好ましい。
In such a case of reduced operation, the unit compartment tanks in operation must maintain the MLBB load and dissolved oxygen amount under the conditions shown in the table, but the unit compartment tanks in operation (
In other words, for ML8B (the load is zero), it is necessary to maintain the amount of dissolved oxygen so as not to exceed tq/l to prevent nitrification from occurring. In the grass level division tank which is inactive, it is preferable to perform appropriate stirring or to blow air little by little in order to prevent abnormal precipitation of activated sludge.

6、実施例 1、試験の構成 活性汚泥試験装置を用いた試験(ムシリーズ)により■
曝気槽水温と硝化速度、@ML8B 濃度と硝化速度、
■溶存酸素と硝化速度、■OOD負荷とNo、−M生産
量、等の関係を調べて窒素制御に必要な諸元を設定した
6. Example 1, Test configuration Test using activated sludge testing device (Museries)
Aeration tank water temperature and nitrification rate, @ML8B concentration and nitrification rate,
We investigated the relationship between ① dissolved oxygen and nitrification rate, ② OOD load and No., -M production amount, etc., and set the specifications necessary for nitrogen control.

次いで、各諸元に基づいた現場試M(Bシリーズ)を実
施し、実プラント用の運転管理基準を作成した。
Next, field trials M (B series) were conducted based on each specification, and operational management standards for actual plants were created.

〔ム〕活性汚泥実験装置による試験 A−/)  無負荷運転における温度と硝化速度ムーコ
)  y   y   y   ML8Bと硝化速度ム
−3)III   溶存酸素と硝化速度 ムーリ 負荷運転による硝酸性窒素制御効果(g’c) ム−5) 同上            (に℃)ム−
6) 同上           (33’C)(E)
排水処理場における現場試験 B−/)  低負荷時における曝気槽縮小運転方法□゛
B−コ) 現場試験“112゛″ 〔l〕試験の方法 l)活性汚泥実験装置 曝気槽部として/’13 X /AOX Jり3mの空
間が、沈殿槽部としてりj X /AOX 3りSWS
の空間ができるように仕切板(底部までは達しない)で
仕切った排水容器に自動温度制御装置、空気流量計、エ
アレータ(気泡放出口は底部)および微量定量ポンプを
取付けたものを使用した、 コ)排水処理設備 調整槽:弘り00−1角型 曝気槽:り5oord+ステツプ工アレージ璽ン方式、
j流路 沈殿槽: 23oo rrl e丸型、2718φ汚泥
濃度: MLBE+ (ムve) # tooo % 
toooo my/g処造能カニ qooo FF//
日 汚泥返送比:1.0 3)実験に用いた負荷源 活性汚泥実験装置用の負荷源として、工場排水を用いた
[Mu] Test using activated sludge experimental equipment A-/) Temperature and nitrification rate in no-load operation (Muco) y y y ML8B and nitrification rate (Mu-3) III Dissolved oxygen and nitrification rate (Muco) Nitrate nitrogen control effect by load operation ( g'c) Mu-5) Same as above (ni℃) Mu-
6) Same as above (33'C) (E)
Field test at wastewater treatment plant B-/) Aeration tank reduction operation method at low load □゛B-ko) Field test “112゛” [l] Test method l) Activated sludge experimental equipment as aeration tank section /'13 A 3m space is used as the sedimentation tank section.
An automatic temperature control device, an air flow meter, an aerator (bubble outlet is at the bottom), and a micrometer metering pump are attached to a drainage container partitioned off with a partition plate (does not reach the bottom) to create a space for j) Wastewater treatment equipment adjustment tank: Hiroki 00-1 square aeration tank: 500 + step ullage system,
j Channel sedimentation tank: 23oo rrl e Round, 2718φ Sludge concentration: MLBE+ (MUVE) # toooo %
toooo my/g processing ability crab qooo FF//
Daily sludge return ratio: 1.0 3) Load source used in the experiment Factory wastewater was used as a load source for the activated sludge experimental device.

〔排水の性状〕[Characteristics of wastewater]

(400D Or、    ’t00〜1300CQ/
l )←)  BOD / OOD   約O,?(ハ
) pH4〜IO に)  T−N (ホ)栄養パラ7 スOOD : N : P、 10
o:ユ、q: O,tBOD: N :P−100: 
#、/ :0.9ψ)活性汚泥 曝気槽出口より採取したものを用いた。
(400D Or, 't00~1300CQ/
l )←) BOD / OOD approximately O,? (c) pH 4 to IO) T-N (e) Nutritional parameters OOD: N: P, 10
o: Yu, q: O, tBOD: N: P-100:
#, / : 0.9ψ) The material collected from the outlet of the activated sludge aeration tank was used.

(ハ  ML88        qooo −tto
oo my/1(2)    MLVSS      
  ψSOO〜  り000   #(J)    Y
eB/88        o、b!IS)分析方法 (7)  C!OD 、      JIB−KO10
2(2,)  BOD          #(3)有
機性窒素     I (弘) 硝酸性窒素     ′ け)溶存酸素       ′ (4)  ML8S、 MLVSS  下水試験法〔ユ
〕実験条件 ム、活性汚泥実験装置による試験 ム−l)無負荷運転におけう温度と硝化速度O,OSで
運転、(1日間) A−コ)無負荷運転におけるMLSB?1度と硝化速度
ム−3)無負荷運転における溶存酸素と硝化速度*)靜
&による。
(Ha ML88 qoooo-tto
oo my/1(2) MLVSS
ψSOO〜ri000 #(J) Y
eB/88 o, b! IS) Analysis method (7) C! OD, JIB-KO10
2 (2,) BOD # (3) Organic Nitrogen I (Hiro) Nitrate Nitrogen Dissolved Oxygen (4) ML8S, MLVSS Sewage Test Method [U] Experimental Conditions, Test Method Using Activated Sludge Experimental Apparatus l) Temperature and nitrification rate in no-load operation Operation at O, OS (1 day) A-C) MLSB in no-load operation? 1 degree and nitrification rate - 3) Dissolved oxygen and nitrification rate in no-load operation *) Depends on silence &.

B、排水処理Sにおける現場試験 B−/ 、) 低負荷時における曝気槽縮小運転方法(
ハ 曝気槽の縮小度計算 l)汚泥負荷計算 原排水のCOD濃度(o、my/l)、排水量(Q、?
F//l、汚泥濃度(Ml、13B 、η/d)、およ
び曝気槽容積(vl ?F? )hlらOOD汚泥負荷
を計算する。
B. Field test in wastewater treatment S B-/,) Aeration tank reduction operation method at low load (
C. Calculation of reduction degree of aeration tank l) Sludge load calculation COD concentration of raw wastewater (o, my/l), amount of wastewater (Q, ?)
Calculate the OOD sludge load such as F//l, sludge concentration (Ml, 13B, η/d), and aeration tank volume (vl ?F?).

コ)必要汚泥負荷との比較 00D汚泥負荷を計算したら、必要汚泥負荷(後述)と
比較する。
h) Comparison with the required sludge load After calculating the 00D sludge load, compare it with the required sludge load (described later).

(X)D汚泥負荷〉必要汚泥負荷の場合→平常運転II
<、II  の場合→縮小運転 3)縮小運転時の排水流路数(縮小度)の決定 算する。
(X) D sludge load> In case of required sludge load → Normal operation II
<, II → Reduction operation 3) Determine the number of drainage channels (reduction degree) during reduction operation.

使用流路数−8,L、/Iii、8.L、oc曝曝気槽
泥流路数注) S、L・−汚泥負荷、 K、8.L、−必要汚泥負荷、 C例) E3J−、−o、o3. i、s、L(xr’
) −o、oq、曝気槽全流路数−5,とすると、使用
流路数−o 、 o、v’o 、oり×S→ユ(パス)
故に曝気槽Sバスのうちユパスに排水をフィードする。
Number of channels used - 8, L, /Iiii, 8. L, OC aeration tank mud flow path number Note) S, L・-Sludge load, K, 8. L, -Required sludge load, C example) E3J-, -o, o3. i, s, L(xr'
) -o, oq, total number of channels in the aeration tank -5, then number of channels used -o, o, v'o, oori x S → yu (pass)
Therefore, the wastewater is fed to the Yupas out of the aeration tank S bus.

(m小度−シ含) リ 縮小運転の呼称 曝気槽Sパスのうちユパスのみで排水処理を行なわせる
運転法を「め縮小運転」と呼ぶ。
(Includes m small degree - shi) Name of reduced operation The operation method in which wastewater treatment is performed only in the U-pass of the aeration tank S-pass is called ``reduced operation''.

従って、曝気槽がSパスであれば、負荷量に応じてlh
、ユXs + 3/s +−4の縮小運転が考えられる
Therefore, if the aeration tank is S pass, lh
, YuXs + 3/s + -4 reduction operation is possible.

(2)縮小運転方法 l〕 曝気の基本 。(2) Reduction operation method l] Basics of aeration.

縮小運転は排水流入を行なう流路忙は有機物の酸化に充
分な溶存酸素を島え、排水を入れない流路は、曝気を弱
めて溶存酸素をはとんどolrtすることを運転基本と
する。
In reduced operation, the basic operation principle is to use channels that allow wastewater to flow in to collect enough dissolved oxygen to oxidize organic matter, and for channels that do not allow wastewater to enter, aeration is weakened to maximize dissolved oxygen. .

コン 縮小運転の条件 運転条件は下表の通り、排水流入量は縮小度に応じて変
更する。
Conditions for reduction operation The operating conditions are shown in the table below, and the amount of wastewater inflow will be changed depending on the degree of reduction.

(例)コ4縮小運転 り排水量が3000角の場合 1日の排水量5ooo tr?をコノくスに全部流入さ
せるからyooo td/2弘只−lコリ→tとなる。
(Example) If the displacement of ko4 reduction operation is 3000 squares, the daily displacement is 5ooo tr? Since all of will flow into Konokus, it becomes yooo td/2 Hirotada - l kori → t.

トコ)現場試験 現場試験は排水発生量に応じて、平常運転または縮小運
転を行なった。平常、縮小の選択は轟−3〜6で得た実
験結果(必要負荷)を用いた。現場試験の結果を踏まえ
てN制御の運転管理基準を作成する。
(Toko) On-site test The on-site test was conducted under normal operation or reduced operation depending on the amount of wastewater generated. Normally, the experimental results (required load) obtained with Todoroki-3 to 6 were used to select the reduction. Based on the results of field tests, we will create operational management standards for N control.

コ、試験の効果 活性汚泥試験装置による試験および現場試験を実施して
以下の結果を得た7 (ハ 硝化送度は曝気槽水温が高い程大きくなる(第1
図) 、3℃  l     l   ・・・・・・0@&k
l@コ    133℃I    #   ・・・・・
・1.3〜/、4    #(2)  MLBB濃度は
高いほどNO4−Hの生Fi2M−も多くなる。しかし
、単位菌体量あたりのNo、−N生成酸はML88濃度
にか〜わらずはy一定である6従ってmlvが高いとき
No、−Nも高いのは単KWi体量が多いから、という
理由による(第2図)(3)溶存酸素と硝化速度 /)  DOΦ0のとき 溶存酸素がほとんどない場合は硝化は進行せず、No、
−N生成量はt my/l以下(はro)となる。
J. Effect of the test We conducted a test using an activated sludge testing device and a field test, and obtained the following results.
Figure) , 3℃ l l ...0@&k
l@ko 133℃I #・・・・・・
・1.3~/, 4 #(2) The higher the MLBB concentration, the more raw Fi2M− of NO4−H. However, the No, -N produced acid per unit amount of bacterial cells remains constant regardless of the ML88 concentration.6 Therefore, when the mlv is high, the No, -N is also high because the amount of single KWi is large. Depends on the reason (Figure 2) (3) Dissolved oxygen and nitrification rate/) If there is almost no dissolved oxygen at DOΦ0, nitrification will not proceed;
-N production amount is less than t my/l (ro).

コ)DO>Oのとき 硝化は進行するが、DOtに比例した硝化量は得られな
かった。即ち、Do −3q/lの方がDo −q m
g/ lの場合より多かった。
f) When DO>O, nitrification progresses, but the amount of nitrification proportional to DOt was not obtained. In other words, Do -3q/l is better than Do -q m
g/l.

しかし、単位菌体量あたりでみると両者共はとんど同じ
であり、その硝化速度は約O0二g−No、−N、Ay
−ML8B・d  (atコo℃)であった。
However, in terms of unit bacterial mass, both are almost the same, and their nitrification rates are approximately O02g-No, -N,Ay.
-ML8B·d (at 0°C).

以上のことから窒素制御に関する限り、溶存酸素は/ 
Q/l以下の場合を除き、そのレベルにはあまり関係が
ないように思われた(第3図)($)  OOD負荷に
よるNo、−Hの制御l)硝化抑制効果は水温に大きな
影響を受け、一定負荷をかけた場合、No、−Hの減少
速度は低温はと速く、高温はど遅くなる(第S、t。
From the above, as far as nitrogen control is concerned, dissolved oxygen is
Except for cases below Q/l, there seemed to be little relationship with the level (Figure 3) ($) Control of No, -H by OOD load l) The nitrification suppression effect has a large influence on water temperature. When a constant load is applied, the rate of decrease of No and -H is fast at low temperatures and slow at high temperatures (No. S, t).

10図) コ)  No、−Hの減少速度は負荷を高めるほど速く
なる(第3.’I、10図) 3)  No、−N抑制に必要な負荷は水温毎に異なり
、低温はと小さくてすみ、高温はど大きくする必要があ
る(第3.’l、10図) リ No 、−Nを生成させないための最小必要負荷量
は次のとおりである。
(Fig. 10) e) The rate of decrease in No and -H becomes faster as the load increases (Fig. 3.'I, Fig. 10) 3) The load required to suppress No and -N differs depending on the water temperature, and is very small at low temperatures. However, it is necessary to increase the high temperature (Figures 3 and 10).The minimum required load amount to prevent the generation of -N is as follows.

(最小必要負荷) CraIA、b、r、to、u図、第1表)(5)  
現場試験 り小規模試験の結果得られた最小必要負荷を実プラント
に応用して同様の効果のあることが確認できた。
(Minimum required load) CraIA, b, r, to, u diagram, Table 1) (5)
We applied the minimum required load obtained from the field test and small-scale test to an actual plant and confirmed that it had similar effects.

ユ)縮小運転は一週間連続でも処理の悪化を招くことは
なかった。
Y) Reduced operation did not cause any deterioration in processing even for one week in a row.

3)小規模試験および現場試験の結果を踏まえて「硝酸
性窒素制御のための運転管理基準」(1例)を作成した
3) Based on the results of small-scale tests and field tests, we created "Operation Management Standards for Nitrate Nitrogen Control" (one example).

この運転管理基準設定に用いた基準となる負荷は、最小
必要負荷量と現場の通常運転時のNo、−Mと負荷の関
係を参考として、以下の如く設定した。この負荷はやへ
安全率を含ませたものである(第1表、第1コ図)。
The reference load used in setting the operation management standard was set as follows, with reference to the minimum required load amount, the relationship between No., -M, and load during normal operation at the site. This load includes a safety factor (Table 1, Figure 1).

〔運転管理基準作成のための最小必要負荷〕険があるの
でこれ以下で管理する。0.1以上は注意を要する。
[Minimum required load for creating operation management standards] Due to the risk, it should be managed below this. Caution is required when the value is 0.1 or more.

4L) l!プラント運転記録も考慮して[No、−N
制御のための運転管理基準J(xパス用)を作成した(
第13図(1)〜(弘)、第二表)。
4L) l! Considering the plant operation record [No, -N
Created operation management standards J (for x-pass) for control (
Figure 13 (1) - (Hiroshi), Table 2).

(第1表)各水温におけるCOD負荷とNo、−N生成
の関係())))/j以上、(什) 10−/j 、 
(+) ! −10、(±)/−s。
(Table 1) Relationship between COD load and No, -N generation at each water temperature ())))/j or more, (ten) 10-/j,
(+)! −10, (±)/−s.

(−)l以下 (1g/l )(-)L or less (1g/L)

【図面の簡単な説明】[Brief explanation of drawings]

第1−13図は、実験結果を示すグラフである。 出願人代理人   猪 股    清 図面の11′弓1:(内?i’tこ変更なし)壓1図 
    篤2図 篤3図 経壜日敗(日) 料過日数(日) 紛巻l:l鉄(田 皐り向日数(日) 単7図 7°77 糸拠日す×(日) 第10図 NI’)’tl員f勺[hgcoo/に9MLS、S・
日]単1 1980年 手続補正書(方式) 1.事件の表示 昭和56年特許願第162542号 2、発明の名称 排水脱窒法 3、補正をする者 事件との関係特許出願人 図面 8、補正の内容 S面の浄書(内容に変更なし) 手続補正書 1、事件の表示 昭和56年特許願第162542号 2、発明の名称 排水脱窒法 3、補正をする者 事件との関係 特許出願人 願麟麦酒株式会社 7、補正の対象 明細書の「発明の詳細な説明」および「図面の簡単な説
明」の欄 8、補正の内容 明細*V、下記の通りに補正する。 (1)第y頁上段の表の上K、「(第1表)」を加入。 (2)第9頁中段の表の上に1 「(第2表)」を加入
。 (3)第加頁下段の表を、下記の通りに補正。 「 (第3表) (4)第4頁の表の上Kr(第4表)」を加入。 (5)  第U頁の表の上に「(第5表)」を加入。 (6)第5頁第4行「硝化送度」を、「硝化速度」と補
正。 (η @25頁の表の上に「(第6表)」を加入。 (81@27頁の表の上K r(@7表)」ヲ加入。 (91@27頁の表の下の「第1表」を、「第9表」と
補正。 (10)第公頁@5行「第1表」を、「第9表」と補正
。 (11)第Z頁の表の上に、「(第8表)」を加入。 021@昂頁最終行「(第13図(ll−(4)、第2
表)」を、「(第13図(Al−(B)、第10表)」
と補正。 0争第9頁第1行「(第1表)」を、「(第9表)」と
補正。 (14)  第30頁第1行「(w、2表)」ヲ、r(
第10fi)Jと補正。 05;l  1R3tjj@t〜2行の図面の簡単な説
明の項を、下記の通りに補正する。 [図面の簡単な説明 第1〜13図は、前記した実験結果を示すグラフである
。 各図の内容ヲ1、それぞれ下記の通りである。 図番      内  容 1   第1表の条件による実験結果。 経過日数を示す横軸の上段は馴養日数、下段は所定温度
での経過日数。 2   第2表の条件による実験結果。 横軸は経過日数。 3   第3表の条件による実験結果。 4   第4表の項目A−4の1の条件による験結果。 経過日数を示す横軸の上段は空曝気時 すなわち汚泥負荷0の場合の日数、下 段は汚泥装入時の経過日数。 6    第4表の項目A−5の1の条件による実験結
果。 7    第4表の項目A−5の2の条件による実験結
果。 経過日数を示す横軸の上段は空曝気時 すなわち汚泥負荷0の場合の日数、下 段は汚泥装入時の経過日数。 8   1M4表の項目A−6の1の条件による実験結
果。 図中、折線の添字は汚泥負荷。 9    m4表の項目A−6の2の条件による実験結
果。 図中、折線の添字は汚泥負荷。 10    第8図および第9図に示した結果を汚泥負
荷の関数として書きかえたもので ある。 1回目は第8図に、2回目は第9図に 対応。 n    @4〜9図に示した結果を汚泥負荷の関数と
して書きか夾たものである。 6℃の曲l/IMは第4−5図に、30’Cの曲線は第
6−7図に、あ℃の曲線は第8 −9図に、それぞれ示した結果に対応 する。 12冥プラントにおける汚泥負荷とNo、−N生成量と
の関係。 図中の曲線は、第11図から転配したものである。 13    実プラントにおける処理水中のNO3−N
濃度に及ぼす縮少運転の効果。 (A)  通常運転 (B)  縮少運転
Figures 1-13 are graphs showing experimental results. Applicant's representative Kiyoshi Inomata Drawing 11' Bow 1: (I'm not changing) Figure 1
Atsushi 2 drawing Atsushi 3 drawing Sutra day loss (day) Number of days for payment (day) Misaki l:l iron (Tagori muko number of days (day) Single 7 figure 7°77 Ito base day × (day) 10th 9MLS, S.
[Japanese] Unit 1 1980 Procedural Amendment (Method) 1. Display of the case 1982 Patent Application No. 162542 2 Name of the invention Waste water denitrification method 3 Person making the amendment Relationship to the case Patent applicant Drawing 8 Contents of the amendment Engraving of side S (no change in content) Procedural amendment Document 1, Indication of the case 1982 Patent Application No. 162542 2, Name of the invention Wastewater denitrification method 3, Relationship with the case by the person making the amendment Patent applicant Applicant Rin Beer Co., Ltd. 7, Invention of the specification subject to amendment Column 8 of ``Detailed explanation of the drawings'' and ``Brief explanation of the drawings,'' details of amendment *V, amended as follows. (1) Add "(Table 1)" to the top K of the table at the top of page y. (2) Added 1 “(Table 2)” above the table in the middle of page 9. (3) The table at the bottom of the added page has been amended as follows. Added "(Table 3) (4) Kr above the table on page 4 (Table 4)". (5) Added “(Table 5)” above the table on page U. (6) On page 5, line 4, "Nitrification Feed Rate" was corrected to "Nitrification Rate." (η @ Added “(Table 6)” above the table on page 25. (81 @ Added “K r (@Table 7)” above the table on page 27. (91 @ below the table on page 27) "Table 1" is corrected as "Table 9." (10) Public page @ line 5 "Table 1" is corrected as "Table 9." (11) Above the table on page Z , added "(Table 8)". 021@Long page last line "(Figure 13 (ll-(4), 2
Table)” to “(Figure 13 (Al-(B), Table 10)”
and correction. 0, page 9, line 1, "(Table 1)" was amended to "(Table 9)". (14) Page 30, line 1 “(w, table 2)” wo, r(
10th fi) J and correction. 05;l 1R3tjj@t~2 lines of the brief description of the drawings are corrected as follows. [BRIEF DESCRIPTION OF THE DRAWINGS Figures 1 to 13 are graphs showing the experimental results described above. The contents of each figure are as follows. Figure number Contents 1 Experimental results under the conditions shown in Table 1. The upper row of the horizontal axis showing the number of days elapsed is the number of acclimatization days, and the lower row is the number of days elapsed at the specified temperature. 2 Experimental results under the conditions shown in Table 2. The horizontal axis is the number of days that have passed. 3 Experimental results under the conditions shown in Table 3. 4 Test results under condition 1 of item A-4 in Table 4. The upper row of the horizontal axis showing the number of elapsed days is the number of days during dry aeration, that is, when the sludge load is 0, and the lower row is the number of days elapsed at the time of sludge charging. 6 Experimental results under the conditions of item A-5 1 in Table 4. 7 Experimental results under the conditions of item A-5, 2 in Table 4. The upper row of the horizontal axis showing the number of elapsed days is the number of days during dry aeration, that is, when the sludge load is 0, and the lower row is the number of days elapsed at the time of sludge charging. 8 Experimental results under condition 1 of item A-6 of Table 1M4. In the figure, the subscript of the broken line is the sludge load. 9 Experimental results under the conditions of item A-6, 2 in the m4 table. In the figure, the subscript of the broken line is the sludge load. 10 The results shown in Figures 8 and 9 have been rewritten as a function of sludge load. The first time corresponds to Figure 8, and the second time corresponds to Figure 9. n @ The results shown in Figures 4 to 9 are written as a function of sludge load. The curve l/IM at 6°C corresponds to the results shown in Figures 4-5, the curve at 30'C in Figures 6-7, and the curve at A°C in Figures 8-9. Relationship between the sludge load and the amount of No and -N produced in the 12 Mei Plant. The curves in the figure are rearranged from FIG. 13 NO3-N in treated water in an actual plant
Effect of reduced operation on concentration. (A) Normal operation (B) Reduced operation

Claims (1)

【特許請求の範囲】 !、排水を、曝気槽中での微生物からなる活性汚泥によ
る処理からなる活性汚泥法で処理するに当り、下記の条
件の下で活性汚泥法実施して、処理済水中の硝酸性窒素
の生成を抑制することKより総窒素含有量を低下させる
ことを特徴とする、排水の脱窒法、 (1)  処理すべき排水の窒素濃度が、N/BOD(
重量比)≦j/looの関係を充足するものであること
。 (2)曝気槽水温、最低必要M188負荷および溶存酸
素量が表−1記載の条件にあること。 表−1 曝気槽水温  最低必要MLss負荷  溶存酸素量コ
S未満      0.021       ≧Iユ!
t −30未満     o、o←コ      ≧1
30−.73未満     o、o九      ≧7
3j以上      o、otu       ≧lた
yし、 H−総窒素含有量(有機性窒素+アンモニア性窒素+亜
硝酸性窒素十硝酸性窒素) 〔Jより−KOIOコによる〕 BOD−生物学的酸素要求量 (JI8−KO)O二による〕 ML8B負荷−klIBOD /kIiMl、887日
〔「新訂 公害防止の技術と法規 水質編」(産業公害
防止協会)(昭和SS年り月j日発行)第77り頁によ
る〕 コ、排水が単位区分槽からなる曝気槽に分注されるよう
になっており、処理すべき排水の童が減少してML8B
負荷値(ゆBOD/ゆML887日)が表−7記載の最
低必要値に達しないときに、単位区分槽の一部忙のみ排
水を投入して下記の条件で活性汚泥法を特徴する特許請
求の範囲第7項記載の脱窒法。 表−コ 単位区分槽  ML8B負荷    溶存酸素量排水投
入区  各水温における辰−7左に同じ記載の値 排水非投入区      O<1 9、処理すべき排水がN/BOD≦j乃00の関係全0
0する窒素濃度のものである、特許請求の範囲第1−一
項のいずれかに記載の脱窒法。
[Claims]! When treating wastewater using the activated sludge method, which consists of treatment with activated sludge made of microorganisms in an aeration tank, the activated sludge method was carried out under the following conditions to reduce the generation of nitrate nitrogen in the treated water. A method for denitrifying wastewater, characterized by reducing the total nitrogen content by suppressing K. (1) The nitrogen concentration of the wastewater to be treated is reduced to N/BOD
weight ratio)≦j/loo. (2) The aeration tank water temperature, minimum required M188 load, and amount of dissolved oxygen must meet the conditions listed in Table-1. Table-1 Aeration tank water temperature Minimum required MLss load Dissolved oxygen amount less than S 0.021 ≧Iyu!
t Less than -30 o, o←ko ≧1
30-. Less than 73 o, o9 ≧7
3j or more o, otu ≧l, H - total nitrogen content (organic nitrogen + ammonia nitrogen + nitrite nitrogen deca-nitrate nitrogen) [from J - KOIO] BOD - biological oxygen demand Quantity (JI8-KO) According to O2] ML8B load - klIBOD /kIiMl, 887 days ["Newly revised pollution prevention technology and laws and regulations, water quality edition" (Industrial Pollution Control Association) (published on Showa SS year month j date) No. 77 (according to the page) Drainage is now dispensed into an aeration tank consisting of unit compartment tanks, reducing the amount of wastewater to be treated and achieving ML8B.
A patent claim that features an activated sludge method under the following conditions, in which when the load value (YBOD/YYML 887 days) does not reach the minimum required value listed in Table 7, wastewater is input only to a part of the unit division tank. The denitrification method according to item 7. Table - Unit classification tank ML8B load Dissolved oxygen amount Wastewater input area Tatsu-7 at each water temperature The same value on the left No wastewater input area O<1 9, All relationships where the wastewater to be treated is N/BOD≦jno00 0
The denitrification method according to any one of claims 1-1, wherein the nitrogen concentration is 0.
JP56162542A 1981-10-12 1981-10-12 Denitrification of waste water Granted JPS5864197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56162542A JPS5864197A (en) 1981-10-12 1981-10-12 Denitrification of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56162542A JPS5864197A (en) 1981-10-12 1981-10-12 Denitrification of waste water

Publications (2)

Publication Number Publication Date
JPS5864197A true JPS5864197A (en) 1983-04-16
JPH0237240B2 JPH0237240B2 (en) 1990-08-23

Family

ID=15756577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56162542A Granted JPS5864197A (en) 1981-10-12 1981-10-12 Denitrification of waste water

Country Status (1)

Country Link
JP (1) JPS5864197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754081B2 (en) * 2004-07-16 2010-07-13 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754081B2 (en) * 2004-07-16 2010-07-13 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced

Also Published As

Publication number Publication date
JPH0237240B2 (en) 1990-08-23

Similar Documents

Publication Publication Date Title
Neufeld et al. Phenol and free ammonia inhibition to Nitrosomonas activity
Kruit et al. Bulking sludge solved?!
Downing et al. Nitrogen Removal from Wastewater Using a Hybrid Membrane‐Biofilm Process: Pilot‐Scale Studies
Gardoni et al. Long-term effects of the ozonation of the sludge recycling stream on excess sludge reduction and biomass activity at full-scale
Austin et al. Nitrification and total nitrogen removal in a super-oxygenated wetland
Guglielmi et al. Full-scale application of MABR technology for upgrading and retrofitting an existing WWTP: performances and process modelling
JP4367037B2 (en) Water quality information processing unit
CN104986854B (en) Sludge reflux control system, method and sewage disposal system
Cole et al. Hydrogen peroxide cures filamentous growth in activated sludge
Nakajima et al. Practical performance of nitrogen removal in small-scale sewage treatment plants operated in intermittent aeration mode
JPS5864197A (en) Denitrification of waste water
US20180273408A1 (en) Wastewater denitrification method utilizing recycling of nitrified treated effluent
JPH1015590A (en) Removal of nitrogen of waste water and apparatus therefor
KR100481885B1 (en) Advanced treatment apparaters and method of sewage water by flow distribution ratio use of NO3 and NH4-N.
KR20040031359A (en) Advanced treatment apparaters and method for removal of nitrogen and phosphorus inf sewage water
Goronszy et al. Biological phosphorus removal in a fed-batch reactor without anoxic mixing sequences
KR100467336B1 (en) Advanced treatment apparaters and method of sewage water by flow distribution ratio.
Rosén et al. The ScanDeNi® process could turn an existing under-performing activated sludge plant into an asset
JPH1157778A (en) Waste water treating device and treatment
KR20040017193A (en) Advanced treatment apparaters and method of sewage water .
JP5801506B1 (en) Operation method of biological denitrification equipment
KR20150088496A (en) Method for maintaining activity of sludge in mbr process
la Cour Jansen et al. Handling of anaerobic digester supernatant combined with full nitrogen removal
Cooper et al. The treatment of run-off from a fertiliser plant for nitrification, denitrification and phosphorus removal by use of constructed wetlands: a demonstration study
GÓMEZ MONSALVE Nitrogen removal in MBBRs The effect of low temperatures