JPS5863300A - Multifrequency oscillator - Google Patents

Multifrequency oscillator

Info

Publication number
JPS5863300A
JPS5863300A JP16248381A JP16248381A JPS5863300A JP S5863300 A JPS5863300 A JP S5863300A JP 16248381 A JP16248381 A JP 16248381A JP 16248381 A JP16248381 A JP 16248381A JP S5863300 A JPS5863300 A JP S5863300A
Authority
JP
Japan
Prior art keywords
terminals
driven
parallel
series
different frequencies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16248381A
Other languages
Japanese (ja)
Inventor
Keisuke Honda
本多 敬介
Takeo Shindo
神藤 猛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16248381A priority Critical patent/JPS5863300A/en
Publication of JPS5863300A publication Critical patent/JPS5863300A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • B06B1/0614Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile for generating several frequencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

PURPOSE:To extract the ultrasonic outputs of many different frequencies, by laminating the piezoelectric elements, leading a terminal out of each surface and using simultaneously plural terminals in series or in parallel. CONSTITUTION:The piezoelectric oscillators 1 and 2 are laminated together, and terminals 6, 7 and 8 are led out of an intermediate electrode 3, upper and lower electrodes 4, 5 respectively. The terminals 6 and 7 are connected to a variable frequency power supply and driven. Otherwise the terminals 6, 7 and 8 are driven in parallel, or the terminals 6 and 8 are driven in series. Thus the resonances of different frequencies can be obtained in accordance with the method of driving. As a result, it is possible to transmit and receive many ultrasonic waves of different frequencies. When this oscillator is used to a transducer of a fish detector, the frequency is switched in order to avoid the interference to other fish detectors.

Description

【発明の詳細な説明】 を出力するマルチ周波数振動子に関するものである。[Detailed description of the invention] This relates to a multi-frequency oscillator that outputs .

近年は、殆どの魚船が魚群探知機を装備して魚獲曖が向
上しているが、更に一船で魚種の異なる魚骨を行なうた
めに、1台の魚群探知機で複数の周波数を作動できるも
のも用いられている。しかし、何れにしても、使用され
る周波数は魚種によって略同一となるため、多数の魚船
が操業する急場では、混信によって魚群探知機が、本来
の性・能を十分に発揮できないという問題も起っている
In recent years, most fish boats have been equipped with fish finders, which has improved the accuracy of catching fish. Some devices that can operate are also used. However, in any case, the frequency used is almost the same depending on the fish species, so in urgent areas where many fishing boats are operating, there is a problem that the fish finder cannot fully demonstrate its original performance and performance due to interference. is also happening.

これらの問題を解決するために、同波数の異なる複数個
のトランスジューサーを装備したり、1つのトランスジ
ューサーに複数個の周波数の異なる振動子を収納したも
のが用いられているが、これらの方式では、トランスジ
ューサーが大型化し、また価格が大幅に高くなるという
欠点を有している。
To solve these problems, equipping multiple transducers with different wave numbers or housing multiple vibrators with different frequencies in one transducer are used, but these methods However, the disadvantage is that the transducer becomes larger and the price becomes significantly higher.

また、1つの方法として、円板形圧電振動子の厚み方向
の振動及び径方向の振動及びこれらの振動の高周波を使
用したり、1つのリング状圧電振動子の厚み方向、径方
向及びリングの幅方向の振動及びその高調波を使用した
トランスジューサーもある。
In addition, one method is to use vibrations in the thickness direction and radial direction of a disc-shaped piezoelectric vibrator and the high frequencies of these vibrations, or to use vibrations in the thickness direction, radial direction, and ring of a single ring-shaped piezoelectric vibrator. There are also transducers that use transverse vibrations and their harmonics.

しかし、圧電振動子の高量波振動は、その振動モードに
よって偶数次高調波か、奇数次高調波の何れかしか有効
に発生せず、またインピーダンス上、前述の方法におい
ても1つの振動子で有効に利用できる周波数は3らか、
4つである。
However, the high-volume vibration of a piezoelectric vibrator can only effectively generate either even-order harmonics or odd-number harmonics depending on its vibration mode, and due to impedance, even with the method described above, a single vibrator is required. There are three frequencies that can be used effectively.
There are four.

本発明は、上記従来例の欠点を解消するために、複数の
圧電素子を積層して一体化し、圧電素子のh而に端子を
設け、圧電素子の1つまたは複数を的列捷たは並列に作
動することによって、各周波数撮動及びこれらの結合振
動を有効利用することを4.17徴とし、その目的は多
数の異なった周波数の超)°1彼を出力することができ
るマルチ周波数振動子を提供するものである。以下、図
面により実施例を詳細に説明する。
In order to solve the drawbacks of the above-mentioned conventional example, the present invention stacks and integrates a plurality of piezoelectric elements, provides terminals on the piezoelectric elements, and connects one or more of the piezoelectric elements in series or in parallel. 4.17 The purpose is to make effective use of each frequency acquisition and their combined vibrations by operating on a multi-frequency vibration that can output a large number of different frequencies. It is something that provides children. Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は、本発明の実施例のマルチ周波数振動子の構成
図を示したもので、2つの圧電素子1゜2は電極3を介
して一体にされ、この電極3及び圧電素子1,2の両側
の電極4,5にそれぞれ端子6,7.8が接続されてい
る。
FIG. 1 shows a configuration diagram of a multi-frequency vibrator according to an embodiment of the present invention, in which two piezoelectric elements 1 and 2 are integrated through an electrode 3. Terminals 6, 7.8 are connected to electrodes 4, 5 on both sides of the terminal, respectively.

このように構成された振動子9において、一方の圧電素
子lの両端の端子6,7に可変周波数電源を接続して、
周波数を変えていくと、第2図に示したように、A (
65,48KHz、222Ω)、H(85,37KI2
% 640Ω)、C(156,09KH□、(j75Ω
)、I)(192,37KHz、750Ω)、E(23
9゜:31.KIlz、 413Ω)において共振が得
られるが、インピーダンスが低いへの周波数が使用でき
る。
In the vibrator 9 configured in this way, a variable frequency power source is connected to the terminals 6 and 7 at both ends of one piezoelectric element l,
As the frequency is changed, A (
65,48KHz, 222Ω), H(85,37KI2
% 640Ω), C(156,09KH□, (j75Ω
), I) (192,37KHz, 750Ω), E (23
9°: 31. KIlz, 413 Ω), but frequencies with lower impedances can be used.

また端子6,8と端子7を可変周波数電源に接続して圧
電素子1,2を並列駆動した場合には、第8図に示した
ように、A、 (66,62K Hz z 168Ω)
、B(92,62KH2,183Ω)、C(152,8
2に/I(z 。
Furthermore, when the piezoelectric elements 1 and 2 are driven in parallel by connecting the terminals 6, 8 and 7 to a variable frequency power supply, as shown in Fig. 8, A, (66,62K Hz 168Ω)
, B (92,62KH2,183Ω), C (152,8
2/I(z.

127Ω)、D(190,19KHz% 2220)、
E(214゜62KHz、 885.0)、F(2i、
18KH2X129Ω)において共振が得られるが、E
の周波数ではインピーダンスが高いので、AXB、%C
,D、 Fの周波数が使用できる。
127Ω), D (190,19KHz% 2220),
E (214°62KHz, 885.0), F (2i,
18KH2X129Ω), but E
Since the impedance is high at the frequency, AXB, %C
, D, and F frequencies can be used.

また圧電素子1.2の両端の端子6,8を可変周波数電
源に接続して、圧電素子1.2を直列駆動した場合には
、第4図に示したように、A(62゜70KH2,25
8Ω)において共振が祷られ、インピーダンスが低くな
る。
Furthermore, when the terminals 6 and 8 at both ends of the piezoelectric element 1.2 are connected to a variable frequency power source and the piezoelectric element 1.2 is driven in series, as shown in FIG. 25
Resonance is expected at 8Ω), resulting in low impedance.

しかしながら、単体の圧電素子を駆動した場合は、第5
図に示したように、A(78,2KHz、97Ω)、B
(148,84KHz、4750)、C(202,12
KHz、1420)、D(288,49KH2,395
n)、E(251,92KHz % 7250)におい
て共振が得られるが、インピーダンスが低いA、Cの周
波数でしか1す21月できない。
However, when driving a single piezoelectric element, the fifth
As shown in the figure, A (78.2KHz, 97Ω), B
(148,84KHz, 4750), C (202,12
KHz, 1420), D (288,49KH2,395
Resonance can be obtained at frequencies A and C, which have low impedance, although resonance can be obtained at frequencies N) and E (251,92 KHz % 7250).

このように、本発明の実施例のマルチ周波数振動子は、
従来の単体の圧電振動子に比べて非常に多くの異なった
周波数の超音波を送受波するととがてきる。
In this way, the multi-frequency vibrator according to the embodiment of the present invention is
Compared to a conventional single piezoelectric vibrator, it is difficult to transmit and receive ultrasonic waves of many different frequencies.

第6図は、本発明の他の実施例のマルチ周波数振動子の
構成図を示したもので、10.11.12は圧電素子、
18.14.15.16 は電極、17.18.19.
20は端子である。
FIG. 6 shows a configuration diagram of a multi-frequency vibrator according to another embodiment of the present invention, in which 10.11.12 are piezoelectric elements;
18.14.15.16 are electrodes, 17.18.19.
20 is a terminal.

このように構成した本実施例のマルチ周波数振動子にお
いても、端子17.18または端子19゜20を可変周
波数電源に接続して圧電素子10または12を作動する
と、第7図に示したようにA50、(14KH2,26
5Ω)、B(70,01KHz、419Ω)において共
振が得られるが、インピーダンスが低いへの川波数が使
用できる。
Even in the multi-frequency vibrator of this embodiment configured in this way, when the terminals 17, 18 or 19.degree. 20 are connected to the variable frequency power source and the piezoelectric element 10 or 12 is operated, as shown in FIG. A50, (14KH2,26
5Ω), B (70.01KHz, 419Ω), but a wave number with lower impedance can be used.

次に、端子18.19を可変周波数電源に接続して、圧
電素子11を駆動すると、第8図に示したように、A 
(50、96K Hz 、 218 n )、B’(9
8,24Kllz、 IKn)、C(157,91KI
Iz、750Ω)、1)(202,09KI−1,81
0Ω)、E(246,45KIlz。
Next, when the terminals 18 and 19 are connected to a variable frequency power source to drive the piezoelectric element 11, as shown in FIG.
(50, 96K Hz, 218 n), B'(9
8,24Kllz, IKn), C(157,91KI
Iz, 750Ω), 1) (202,09KI-1,81
0Ω), E(246,45KIlz.

625Ω)の周波数で共振が得られるが、インピーダン
スが低いへの同波数);使用できる。
Resonance can be obtained at a frequency of 625 Ω), but it can be used at the same wave number where the impedance is low.

次に、端子17.19を可変周波数電源の一端に、端子
18を他端に接続して、圧電素子10゜11を並列に駆
動すると、第9図に示したように、A(71,55KH
2X285Ω)、B (81,57KH2,4100)
、C(96,03に、H2% 215Ω) 、D (1
55−40K”zz190Ω)において共振が得られ、
これらの周波数の全てを使用することができる。
Next, by connecting the terminals 17 and 19 to one end of the variable frequency power supply and the terminal 18 to the other end, and driving the piezoelectric elements 10 and 11 in parallel, as shown in FIG.
2X285Ω), B (81,57KH2,4100)
, C (96,03, H2% 215Ω), D (1
Resonance was obtained at 55-40K"zz190Ω),
All of these frequencies can be used.

また、端子17と20を接続し、端子18.19に可変
周波数電源を接続して、圧電素子10.12を直列駆動
し、圧電素子11を並列駆動すると、第1θ図に示した
ように、A(72゜88KH2,370Ω)、B(93
,88KHz、195ΩL、C(158、42KHz1
196Ω) 、D(197、52K Hz z 210
 Ω)において共振が得られ、これらの周波数を全て使
用することができる。
In addition, when terminals 17 and 20 are connected, a variable frequency power supply is connected to terminals 18 and 19, and piezoelectric elements 10 and 12 are driven in series and piezoelectric elements 11 are driven in parallel, as shown in Fig. 1θ, A (72°88KH2,370Ω), B (93
, 88KHz, 195ΩL, C (158, 42KHz1
196Ω), D (197, 52KHz Hz 210
Ω), and all these frequencies can be used.

更に、端子17.19を可変周波数電源の一端に接続し
、他端に端子18.20を接続して、圧電車子]、0.
11.12を並列駆動すると、第11図に示したように
、A (72−88KHz % 138Ω)、B(93
,77KH2% 91.5Ω)、C(1,58,19K
Hzs 81Ω)、I)(197,39KHzs 10
0Ω)、E(2B5.69KH2,182Ω)において
共振が得られ、これらの川波数の全てを使用することが
できる。
Furthermore, the terminals 17.19 are connected to one end of the variable frequency power supply, and the terminals 18.20 are connected to the other end of the piezoelectric element], 0.
11. When 12 are driven in parallel, A (72-88KHz % 138Ω), B (93
,77KH2% 91.5Ω), C(1,58,19K
Hzs 81Ω), I) (197,39KHzs 10
0Ω), E (2B5.69KH2, 182Ω), and all of these wave numbers can be used.

このように圧電素子を積層して、各圧電素子を直列また
は並列あるいは直並列で駆動することにより、多数の異
なった周波数の超音波を送受波することができる。
By stacking piezoelectric elements in this way and driving each piezoelectric element in series, in parallel, or in series and parallel, it is possible to transmit and receive ultrasonic waves of a large number of different frequencies.

以上の実施例の説明では、2個または8個の圧電素子を
積層した例について説明したが、4個以上の圧電素子を
積層しても、前述の実施例と同様に多数の周波数の超音
波を送受波することができる。
In the above description of the embodiment, an example was explained in which two or eight piezoelectric elements were laminated. However, even if four or more piezoelectric elements are laminated, ultrasonic waves of many frequencies can be generated as in the previous embodiment. can transmit and receive waves.

以上説明したように1、本発明によれば、21固以上の
圧電素子を積層して一体化し、そのうちの1個以上の圧
電素子を直列、並列、直並列で駆動することにより、各
周波数の振動及びこれらの結合振動を有効に利用するこ
とができ、多数の異なつた周波数の超音波を送受波する
ことができる、。
As explained above, 1. According to the present invention, 21 or more piezoelectric elements are stacked and integrated, and one or more of the piezoelectric elements is driven in series, in parallel, or in series-parallel. Vibrations and their combined vibrations can be used effectively, and ultrasonic waves of many different frequencies can be transmitted and received.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、゛本発明の一実施例のマルチ闇′e、数保勤
子の構成図、第2図〜第4図は、第1図の各圧電素子を
駆動した状態における同波数とインピーダンスの関係を
示した図、第5図は、従来の単体の圧電素子を駆動した
状態における周波数とインピーダンスの関係を示した図
、第6図は、本発明の他の実施例のマルチ周波数振動子
の構成図、第7図〜第11図は、第6図の各圧電素子を
駆動した状態における(4)波数とインピーダンスの関
係を示した図である。 1、2.10〜12・・・振動子、8〜5,13〜1(
5・・・電極、6〜8,17〜20・・・端子、9.2
1 ・・・マルチ周波数撮動子。 特許出願人  本  多  敬  介
FIG. 1 is a block diagram of a multi-dimensional circuit according to an embodiment of the present invention, and FIGS. 2 to 4 show the same wave number when each piezoelectric element in FIG. 1 is driven. Figure 5 is a diagram showing the relationship between impedance, and Figure 5 is a diagram showing the relationship between frequency and impedance when a conventional single piezoelectric element is driven. Figure 6 is a diagram showing the multi-frequency vibration of another embodiment of the present invention. The configuration diagrams of FIGS. 7 to 11 are diagrams showing the relationship between (4) wave number and impedance when each piezoelectric element in FIG. 6 is driven. 1, 2.10-12... vibrator, 8-5, 13-1 (
5... Electrode, 6-8, 17-20... Terminal, 9.2
1...Multi-frequency camera. Patent applicant: Keisuke Honta

Claims (1)

【特許請求の範囲】[Claims] 複数の圧電素子を積層して一体化し、該圧電素子の各面
から端子を出し、前記圧電素子の1つまたは複数個を直
列または並列あるいは直並列で駆動することを特徴とす
るマルチ周波数振動子。
A multi-frequency vibrator characterized in that a plurality of piezoelectric elements are stacked and integrated, terminals are brought out from each side of the piezoelectric elements, and one or more of the piezoelectric elements are driven in series, in parallel, or in series and parallel. .
JP16248381A 1981-10-12 1981-10-12 Multifrequency oscillator Pending JPS5863300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16248381A JPS5863300A (en) 1981-10-12 1981-10-12 Multifrequency oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16248381A JPS5863300A (en) 1981-10-12 1981-10-12 Multifrequency oscillator

Publications (1)

Publication Number Publication Date
JPS5863300A true JPS5863300A (en) 1983-04-15

Family

ID=15755467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16248381A Pending JPS5863300A (en) 1981-10-12 1981-10-12 Multifrequency oscillator

Country Status (1)

Country Link
JP (1) JPS5863300A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028821U (en) * 1983-08-04 1985-02-27 ヤンマー農機株式会社 Vegetable transplanter seedling feeding device
JPS61278297A (en) * 1985-06-04 1986-12-09 Toshiba Corp Ultrasonic probe
EP0451984A2 (en) * 1990-03-28 1991-10-16 Kabushiki Kaisha Toshiba Ultrasonic probe system
EP0589648A1 (en) * 1992-09-21 1994-03-30 Ngk Insulators, Ltd. Ultrasonic transducers
US5410205A (en) * 1993-02-11 1995-04-25 Hewlett-Packard Company Ultrasonic transducer having two or more resonance frequencies
WO2003030754A1 (en) * 2001-10-11 2003-04-17 Tyco Healthcare Group Lp Long ultrasonic cutting blade formed of laminated smaller blades

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028821U (en) * 1983-08-04 1985-02-27 ヤンマー農機株式会社 Vegetable transplanter seedling feeding device
JPH0229844Y2 (en) * 1983-08-04 1990-08-10
JPS61278297A (en) * 1985-06-04 1986-12-09 Toshiba Corp Ultrasonic probe
EP0451984A2 (en) * 1990-03-28 1991-10-16 Kabushiki Kaisha Toshiba Ultrasonic probe system
US5163436A (en) * 1990-03-28 1992-11-17 Kabushiki Kaisha Toshiba Ultrasonic probe system
EP0589648A1 (en) * 1992-09-21 1994-03-30 Ngk Insulators, Ltd. Ultrasonic transducers
US5446333A (en) * 1992-09-21 1995-08-29 Ngk Insulators, Ltd. Ultrasonic transducers
US5410205A (en) * 1993-02-11 1995-04-25 Hewlett-Packard Company Ultrasonic transducer having two or more resonance frequencies
WO2003030754A1 (en) * 2001-10-11 2003-04-17 Tyco Healthcare Group Lp Long ultrasonic cutting blade formed of laminated smaller blades
AU2002351481B2 (en) * 2001-10-11 2008-05-08 Covidien Lp Long ultrasonic cutting blade formed of laminated smaller blades
US8137371B2 (en) 2001-10-11 2012-03-20 Tyco Healthcare Group Lp Long ultrasonic cutting blade formed of laminated smaller blades
US8328833B2 (en) 2001-10-11 2012-12-11 Covidien Lp Long ultrasonic cutting blade formed of laminated smaller blades

Similar Documents

Publication Publication Date Title
CA2157652A1 (en) Method of Operating an Ultrasonic Piezoelectric Transducer and Circuit Arrangement for Performing the Method
KR930015319A (en) Surface acoustic wave filter
US4490640A (en) Multi-frequency ultrasonic transducer
GB2083695A (en) Ultrasonic transducer
CA2233835A1 (en) Surface wave device balun resonator filters
EP0219182A2 (en) Staggered saw resonator differential detection
JPS5863300A (en) Multifrequency oscillator
US3521089A (en) Piezoelectric feedthrough device
US4799265A (en) Electrostatic transducer unit
JPS55115799A (en) Macromolecular piezoelectric film transducer of multiplex constitution
US4559418A (en) Ceramic microphone
JPS58117798A (en) Multifrequency oscillator
EP1324490A3 (en) Surface acoustic wave device
JPS62107686A (en) Driving circuit for vibration wave motor
JPS60236312A (en) Unidirectional surface acoustic wave converter of floating electrode internal reflection type
SU547975A1 (en) Piezoelectric transducer
JPH0560320B2 (en)
JP2505863B2 (en) Surface acoustic wave convolver
JPS5928466Y2 (en) Drive circuit for piezoelectric acoustic device
JPH06112765A (en) Surface acoustic wave element
JPS6130338Y2 (en)
JPS60201249A (en) Wide-band ultrasonic wave transducer
RU2087081C1 (en) Electroacoustic transducer
JPH0413672B2 (en)
JPS5933920A (en) Surface acoustic wave band pass filter