JPS5862455A - Solar energy collector - Google Patents

Solar energy collector

Info

Publication number
JPS5862455A
JPS5862455A JP56159724A JP15972481A JPS5862455A JP S5862455 A JPS5862455 A JP S5862455A JP 56159724 A JP56159724 A JP 56159724A JP 15972481 A JP15972481 A JP 15972481A JP S5862455 A JPS5862455 A JP S5862455A
Authority
JP
Japan
Prior art keywords
solar
inner tube
solar battery
energy
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56159724A
Other languages
Japanese (ja)
Other versions
JPS6122217B2 (en
Inventor
Hiroshi Haruki
春木 弘
Izumi Azuma
東 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP56159724A priority Critical patent/JPS5862455A/en
Publication of JPS5862455A publication Critical patent/JPS5862455A/en
Publication of JPS6122217B2 publication Critical patent/JPS6122217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To enable to convert infrared rays efficiently into heat energy, by interposing a layer made of a material having a higher absorptivity of infrared rays than a semiconductor constituting a solar battery between the outer surface of an inner tube and the solar battery. CONSTITUTION:A solar heat collector is constituted by disposing an inner tube 2 for passing a heat transfer medium in an outer tube 1 made of a light-transmitting material and evacuating the space formed between the inner tube 2 and the outer tube 1. Further, a solar battery layer 4 is formed on the outside of the inner tube 2. In such a solar energy collector, a layer 3 made of a material (for instance, amorphous germanium, blacked anodized aluminum, iron oxide or the like) having a higher absorptivity of infrared rays than a semicondutor (for instance, silicon) constituting a solar battery is interposed between the solar battery and the outer surface of the inner tube 2. With such an arangement, solar energy in the range of infrared rays that cannot be converted into electric energy by the use of the solar battery because of the forbidden band-width of the semiconductor can be converted into heat energy by the use of the absorption film 3 having a high absorptivity of rays in the above-mentioned range.

Description

【発明の詳細な説明】 本発明は光透過性の外管の中に熱媒を通流させるための
内管を配置し、その内、外管の間の空間全真空状態にし
て太陽熱集熱器を形成するとともに、内管の外側に太陽
電池を形成した太陽エネルギコレクタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention arranges an inner tube for passing a heat medium inside a light-transmissive outer tube, and makes the space between the inner and outer tubes completely vacuum to collect solar heat. The present invention relates to a solar energy collector in which a solar cell is formed on the outside of an inner tube.

このようなエネルギコレクタは太陽エネルギを熱および
電気の双方の形で効率よく回収できるものとして、既に
本出願人の一人によって特願昭55−59663として
特許出願さ扛ている。この場合の太陽電池としては製造
の容易なアモルファスシリコン(a−8i)太陽電池が
最も望ましい。しかしa−8i太陽電池による光発電に
有効な太陽光線は0.3μm〜0.7μmの波長領域で
あり、0.7μm以上の波長領域は太陽電池による電気
エネルギへの変換には有効に利用できない。0,7μm
以下の波長領域で電気エネルギに変換できない太陽エネ
ルギは多くはa−8i層において熱に変換され、集熱器
に伝搬されて熱エネルギとして利用できる。−万券外線
に対してはa−8iの吸収率は低いので熱として取シ出
すことも望めない。
Such an energy collector is capable of efficiently recovering solar energy in the form of both heat and electricity, and one of the present applicants has already filed a patent application in Japanese Patent Application No. 55-59663. The most desirable solar cell in this case is an amorphous silicon (a-8i) solar cell, which is easy to manufacture. However, sunlight that is effective for photovoltaic power generation by A-8I solar cells has a wavelength range of 0.3 μm to 0.7 μm, and the wavelength range of 0.7 μm or more cannot be effectively used for conversion into electrical energy by solar cells. . 0.7μm
Most of the solar energy that cannot be converted into electrical energy in the following wavelength range is converted into heat in the a-8i layer, propagated to a heat collector, and used as thermal energy. - Since the absorption rate of A-8i is low for the outside wires of ten thousand notes, it cannot be expected to be extracted as heat.

本発明はこのような電気エネルギに変換できない赤外線
をできるだけ効率工く熱エネルギとして利用する太陽エ
ネルギコレクタを提供することを目的とする◎ この目的は最初に挙げ九エネルギーコレクタの太陽電池
を構成する半導体よシ赤外線の吸収率の大きい材料から
なる層が内管の外表面と太陽電池の間に介在することに
よって達成される。シリコン太陽電池に対してはこのよ
うな介在層の材料としてSi より禁制帯幅の小さいア
モルファスゲルマニウムあるいは黒化アルマイト、酸化
鉄、ブラッククロムのような金属化合物が有効に用いる
ことができる。
The purpose of the present invention is to provide a solar energy collector that utilizes such infrared rays, which cannot be converted into electrical energy, as thermal energy as efficiently as possible. This is achieved by interposing a layer made of a material with a high absorption rate of infrared rays between the outer surface of the inner tube and the solar cell. For silicon solar cells, amorphous germanium, which has a narrower band gap than Si, or a metal compound such as black alumite, iron oxide, or black chromium can be effectively used as the material for such an intervening layer.

以下図全引用して本発明を実施例について説明する。第
1図(a)において曲Iti111は太陽熱放射強度を
示し、0.5μmにピークを有する。この内シリコンの
禁制帯幅に対応する約0.7μm以下の波長においてハ
ツチングしない領域12に対応するエネルギはa−8i
太陽電池により電気エネルギに変換され、ハンチングし
次領域13に対応するエネルギは熱に変換される。残っ
た約0.7μm以上の赤外領域14の太陽光線をできる
だけ有効に利用するために、例えば第1図(b)に示す
ような吸収率特性を有する熱吸収膜を用いて熱として吸
収する。熱吸収膜としてはアモルファスゲルマニウム(
a−Ge )膜あるいは下地金属がアルミニウムの場合
には黒化アルマイト、鉄の場合には酸化鉄、銅の場合に
は黒色クロムを用いることができ、第1図(C)に示す
a−8iに比して赤外領域で高い吸収率を示す。着た赤
外放射率も0.2以下の低い値を有する。第2図、第3
図はこのような熱吸収膜を備えた太陽エネルギコレクタ
を示し、透明な外管1の内部に設けられたガラスまたは
金属からなる内管2の外表面には太陽光線の約0.7μ
m以上の波長を良く吸収する前記の熱吸収膜3を被着し
、その上面にa−8iからなる太陽電池層4を形成する
@内管2がガラス製の場合には、熱吸収膜3の上に導電
膜を設け、その上に太陽電池層4を形成する。
The present invention will be described below with reference to all the drawings. In FIG. 1(a), the song Iti111 shows the solar radiation intensity, which has a peak at 0.5 μm. Among these, the energy corresponding to the non-hatched region 12 at a wavelength of about 0.7 μm or less, which corresponds to the forbidden band width of silicon, is a-8i.
It is converted into electrical energy by the solar cell, and the energy corresponding to the hunting area 13 is converted into heat. In order to utilize the remaining sunlight in the infrared region 14 of approximately 0.7 μm or more as effectively as possible, it is absorbed as heat using a heat absorption film having absorption characteristics as shown in FIG. 1(b), for example. . Amorphous germanium (
a-Ge) When the film or base metal is aluminum, black alumite can be used, when it is iron, iron oxide, and when it is copper, black chromium can be used. It shows a high absorption rate in the infrared region compared to The infrared emissivity also has a low value of 0.2 or less. Figures 2 and 3
The figure shows a solar energy collector equipped with such a heat-absorbing film, and the outer surface of the inner tube 2 made of glass or metal provided inside the transparent outer tube 1 absorbs about 0.7μ of sunlight.
The above heat absorbing film 3 that absorbs wavelengths of m or more is deposited, and the solar cell layer 4 made of a-8i is formed on the upper surface.@If the inner tube 2 is made of glass, the heat absorbing film 3 A conductive film is provided thereon, and a solar cell layer 4 is formed thereon.

a−8i太陽電池は単数でも直列または並列に接続され
る複数でもよい。外管1は端部6において内管2と封着
し、内管2の開音断熱のために必要な程度の真空度まで
排気して排気ロア全真空封止する。
The a-8i solar cell may be a single solar cell or a plurality of solar cells connected in series or parallel. The outer tube 1 is sealed with the inner tube 2 at the end 6, and the inner tube 2 is evacuated to a degree of vacuum necessary for open sound insulation, and the exhaust lower part is completely vacuum-sealed.

このエネルギコレクタに外’lfl全通して入射する太
陽光線に工9太陽電池F@ 4において発電が行われ、
その出力はリード線8、端子9工ク外部圧取シ出される
。太陽電池層4において回収された熱エネルギおよび熱
吸収$3において回収された熱エネルギは内管2の内側
10を流れる熱媒に伝達される。
Electricity is generated in the solar cell F@4 by the sunlight that enters this energy collector all the way through the outside.
The output is taken out through the lead wire 8 and the terminal 9. The thermal energy recovered in the solar cell layer 4 and the thermal energy recovered in the heat absorption $3 are transferred to the heat medium flowing inside the inner tube 2 .

金属化合物からなる熱吸収膜はめつきあるいは熱酸化に
よって容易に形成される。iたa−Ge膜はGe化合物
ガスのグロー放電分解により内管上に形成しつづいて反
応ガスの切替えにエリ連続的にa−8iNIi成長させ
ることができるので、低コストで高効率のエネルギコレ
クタを構成することができる。
A heat absorbing film made of a metal compound is easily formed by plating or thermal oxidation. The a-Ge film is formed on the inner tube by glow discharge decomposition of the Ge compound gas, and the a-8iNIi film can be continuously grown when the reaction gas is changed, making it possible to create a low-cost, high-efficiency energy collector. can be configured.

以上述べたように本発明は半導体の禁制帯幅に起因して
太陽電池により電気エネルギに変換することのできない
赤外領域の太陽エネルギを5その領域の光の吸収率の高
い吸収膜を用いて熱エネルギに変換し、太陽電池の下側
に設けた集熱管に工 5 一 つて取シ出すものであり、太陽エネルギを全波長領域に
わたって利用できるため、太陽エネルギの高効率のコレ
クタとしてエネルギ対策の上で極めて有効に適用できる
As described above, the present invention utilizes solar energy in the infrared region, which cannot be converted into electrical energy by solar cells due to the forbidden band width of semiconductors, by using an absorbing film that has a high absorption rate for light in that region. It converts it into thermal energy and extracts it from the heat collecting tube installed under the solar cell.Since solar energy can be used over the entire wavelength range, it can be used as a highly efficient solar energy collector for energy countermeasures. It can be applied very effectively above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は太陽熱放射強度およびその太陽電池によ
る利用分、第1図(b)は本発明による熱吸収膜の吸収
率ならびに第1図(C)はa−8tの吸収率のそれぞれ
の波長分布曲線を示し、第2図は本発明による太陽エネ
ルギコレクタの一実施例の縦断面図、第3図は同じく横
断面図である。 1・・・外管、2・・・内管、3・・・熱吸収膜、4・
・・太陽電池層。  6−
Figure 1 (a) shows the solar heat radiation intensity and its utilization by the solar cell, Figure 1 (b) shows the absorption rate of the heat absorbing film according to the present invention, and Figure 1 (C) shows the absorption rate of a-8t. FIG. 2 is a longitudinal cross-sectional view of an embodiment of the solar energy collector according to the present invention, and FIG. 3 is a cross-sectional view thereof. 1... Outer tube, 2... Inner tube, 3... Heat absorption membrane, 4...
...Solar cell layer. 6-

Claims (1)

【特許請求の範囲】 1)光透過性の外管の中に熱媒を通流させるための内管
全配置し、前記内、外管の間の空間を真空状態にした太
陽熱集熱器を形成するとともに、内管の外側に太陽電池
を形成するものにおいて、太陽電池を構成する半導体よ
り赤外線の吸収率の大きい材料からなる層が内管の外表
面と太陽電池、の間に介在することを特徴とする太陽エ
ネルギコレクタ。 2、特許請求の範囲第1項記載のコレクタにおいて、太
陽電池を構成する半導体がシリコンであって赤外線吸収
率の大きい材料がアモルファスゲルマニウム、黒化アル
マイト、酸化鉄あるいは黒色クロムであることを特徴と
する太陽エネルギコレクタ。
[Claims] 1) A solar heat collector in which all inner tubes for passing a heat medium are arranged inside a light-transmissive outer tube, and the space between the inner and outer tubes is evacuated. In addition to forming a solar cell on the outside of the inner tube, a layer made of a material having a higher absorption rate of infrared rays than the semiconductor constituting the solar cell is interposed between the outer surface of the inner tube and the solar cell. A solar energy collector featuring: 2. The collector according to claim 1, characterized in that the semiconductor constituting the solar cell is silicon, and the material with a high infrared absorption rate is amorphous germanium, blackened alumite, iron oxide, or black chromium. solar energy collector.
JP56159724A 1981-10-07 1981-10-07 Solar energy collector Granted JPS5862455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159724A JPS5862455A (en) 1981-10-07 1981-10-07 Solar energy collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159724A JPS5862455A (en) 1981-10-07 1981-10-07 Solar energy collector

Publications (2)

Publication Number Publication Date
JPS5862455A true JPS5862455A (en) 1983-04-13
JPS6122217B2 JPS6122217B2 (en) 1986-05-30

Family

ID=15699889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159724A Granted JPS5862455A (en) 1981-10-07 1981-10-07 Solar energy collector

Country Status (1)

Country Link
JP (1) JPS5862455A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587376A (en) * 1983-09-13 1986-05-06 Sanyo Electric Co., Ltd. Sunlight-into-energy conversion apparatus
JPS61106362U (en) * 1984-12-19 1986-07-05
WO2010037607A2 (en) * 2008-09-30 2010-04-08 Aeteba Gmbh Solar refrigeration unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376061B2 (en) 2008-11-11 2022-07-05 Covidien Lp Energy delivery device and methods of use
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587376A (en) * 1983-09-13 1986-05-06 Sanyo Electric Co., Ltd. Sunlight-into-energy conversion apparatus
JPS61106362U (en) * 1984-12-19 1986-07-05
JPH0121012Y2 (en) * 1984-12-19 1989-06-23
WO2010037607A2 (en) * 2008-09-30 2010-04-08 Aeteba Gmbh Solar refrigeration unit
EP2169331A3 (en) * 2008-09-30 2010-07-28 Aeteba GmbH Solar cooling unit
WO2010037607A3 (en) * 2008-09-30 2010-08-12 Aeteba Gmbh Collective collector and solar refrigeration unit

Also Published As

Publication number Publication date
JPS6122217B2 (en) 1986-05-30

Similar Documents

Publication Publication Date Title
US4234352A (en) Thermophotovoltaic converter and cell for use therein
US4002031A (en) Solar energy converter with waste heat engine
US4746370A (en) Photothermophotovoltaic converter
US20020011590A1 (en) Photovoltaic conversion device for thermophotovoltaic power generation apparatus
JPS5939661B2 (en) solar heat collector
GB2299448A (en) Thermovoltaic in-situ mirror cell
JPS63503256A (en) Thermophotovoltaic energy conversion device
US4140142A (en) Semiconductor photoelectric generator
US20090235985A1 (en) Concentrators for solar power generating systems
JPH10110670A (en) Solar light and heat compound generation device
JPS5862455A (en) Solar energy collector
JPH0340293B2 (en)
JPS6230714B2 (en)
KR101001328B1 (en) Compound generator using solar energy
JP2001196622A (en) Power generator
RU2399118C1 (en) Photoelectric converter based on nonplanar semiconductor structure
Xiao et al. The maximum efficiency and parametric optimum selection of a solar-driven thermionic-photovoltaic integrated device
JPS59167648A (en) Solar energy collector
JPS5831253A (en) Solar-heat collecting cylinder with solar cell
JPH02140556A (en) Solar light energy converter
US20090178705A1 (en) Multi-cores stack solar thermal electric generator
JPH0523554U (en) Power generator using sunlight
JPS60242683A (en) Solar heat-electric transducer
JPS6050339A (en) Vacuum tube type solar heat collecting device
KR101385493B1 (en) Solar energy thermoelectric generator