JPS5862362A - Suction device for internal-combustion engine - Google Patents

Suction device for internal-combustion engine

Info

Publication number
JPS5862362A
JPS5862362A JP56161246A JP16124681A JPS5862362A JP S5862362 A JPS5862362 A JP S5862362A JP 56161246 A JP56161246 A JP 56161246A JP 16124681 A JP16124681 A JP 16124681A JP S5862362 A JPS5862362 A JP S5862362A
Authority
JP
Japan
Prior art keywords
fuel
chamber
blown
wall
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56161246A
Other languages
Japanese (ja)
Inventor
Nobuo Habu
土生 信男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56161246A priority Critical patent/JPS5862362A/en
Publication of JPS5862362A publication Critical patent/JPS5862362A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To improve the fuel consumption by providing a projection at the end of a spiral chamber of a suction device equipped with a herical suction port, then directing the central axis of an injection valve to the lower section of the outercircumferential wall in the spiral chamber thus dispersing the fuel on said wall and atomizing to prevent the incomplete combustion. CONSTITUTION:When the engine is under the cool condition, the fuel is injected from a fuel injection valve 9 toward W1 of the minimum throttle section 3a of a herical suction port 3, then it is mixed with the air to be blown from the direction of an inlet path section 4 to produce the mixture gas which will enter along the lower section 2a of the outercircumferential wall in the spiral chamber 2 into a combustion chamber 8. Since the temperature in the suction port 3 is low, the fuel will adhere in liquid to said portion 2a then blown to the edge (R) side of the projection 5 by the wind pressure of the mixture gas while furthermore the air flow is blown to disperse it and to atomize it and to be fed into the combustion chamber 8. When the engine is applied with the heavy load, large amount of fuel is fed into the fuel chamber 8 but the uniformly atomized mixture gas is fed through the similar function.

Description

【発明の詳細な説明】 本発明はヘリカル型吸気ボートを備えた内燃機関の吸気
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake system for an internal combustion engine equipped with a helical intake boat.

一般に、ヘリーカル型吸気ボートを備えた内燃機関の吸
気装置は、低温時でエンジンが冷機状態の下では吸気ボ
ートの温度が低いために、燃料噴射弁から吸気ボート内
に噴射される燃料が微粒化されないでシリンダ内の燃焼
室に吸収され易い。また、エンジンに高負荷がかかって
燃料の供給量が多い場合に、吸気バルブの背面に向け燃
料噴射弁の燃料噴射部が指向されている―係で、吸気バ
ルブの背面に燃料が噴出されるが、その際燃料の気化熱
によりヘリカル型吸気ボート内の温度が低下して効率よ
く均一に微粒化された燃料を含む混合気をシリンダ内の
燃焼室に供給する妨げとなっていた。
In general, in the intake system of an internal combustion engine equipped with a helical type intake boat, when the engine is cold and the temperature of the intake boat is low, the fuel injected from the fuel injection valve into the intake boat becomes atomized. It is easily absorbed into the combustion chamber in the cylinder without being absorbed. Also, when the engine is under high load and a large amount of fuel is supplied, the fuel injection part of the fuel injector is directed toward the back of the intake valve, and fuel is injected to the back of the intake valve. However, at this time, the temperature inside the helical intake boat decreased due to the heat of vaporization of the fuel, which hindered the efficient and uniform supply of an air-fuel mixture containing atomized fuel to the combustion chamber within the cylinder.

従って、シリンダ内の燃焼室の内壁に粒状または液状に
燃料が付着して成層化され、その分だけ点火プラグ付近
の燃料が希薄となって失火の原因となりたり、車を加速
する時の息つきの原因となったbする。
Therefore, fuel adheres to the inner wall of the combustion chamber in the cylinder in granular or liquid form and becomes stratified, which dilutes the fuel near the spark plug and causes misfires, or reduces the breath when accelerating the car. caused b.

この対策としては燃料を燃料噴射弁から余計にシリンダ
内の燃焼室に噴出させて失火等を防止する方法もあるが
、その場合には燃費効率を悪化させるばかりでなくより
一層の大粒または液状の燃料が燃焼室の内壁に付着し、
その付着した燃料が完全に燃焼されずにHC,COを大
量に含んだ状態で排気ガスとして排出されることになる
という問題がある。
As a countermeasure to this problem, there is a method to prevent misfires by injecting extra fuel from the fuel injection valve into the combustion chamber in the cylinder, but in that case, not only will fuel efficiency deteriorate, but also larger droplets or liquid particles will be generated. Fuel adheres to the inner wall of the combustion chamber,
There is a problem in that the adhering fuel is not completely combusted and is emitted as exhaust gas containing a large amount of HC and CO.

本発明は上述した問題を解消するためのもので、ヘリカ
ル型吸気ボートである渦巻室の終端部に突出部を設け、
前記ヘリカル型吸気ポートの渦巻室内の外周壁下部へ向
けて燃料噴射弁の中心軸を指向させて構成することによ
り、ヘリカル型吸気ボートの渦巻室内の外周壁に粒状あ
るいは液状に付着した燃料を前記突出部の終端部から飛
散させて微粒化し、かつ、その際燃料の気化熱により生
ずるヘリカル型吸気ポート内の温度低下を防ぎ、均一[
1%粒化した燃料をスムーズに燃焼室へ供給できるよう
にしたことを特徴とする。
The present invention is intended to solve the above-mentioned problems, and includes a protrusion provided at the end of the volute chamber, which is a helical intake boat.
By configuring the central axis of the fuel injection valve to be directed toward the lower part of the outer circumferential wall in the volute chamber of the helical intake port, the fuel attached in granular or liquid form to the outer circumferential wall in the volute chamber of the helical intake port can be removed from the The particles are dispersed from the end of the protruding part and atomized, and at the same time, the temperature inside the helical intake port, which is caused by the heat of vaporization of the fuel, is prevented from decreasing, and the temperature is uniformly [
It is characterized by being able to smoothly supply 1% granulated fuel to the combustion chamber.

以下、本発明の一実施例を図面に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図および第2図において、1はシリンダヘッドで、
シリンダヘッド1にはその出口側が渦巻室とされたヘリ
カル型吸気ボート3が形成さねでいる。ヘリカル型吸気
ボート3の入口側VC,id’ 、入口通路部4が形成
されており、渦巻室2ど入口通路部4の境界あたりには
最小紋り部6aが設けられている。その最小紋り部3a
け第3図および第4図に示すように点り、 M、 N、
 0で囲まれる平面、即ち台形状の空洞で形成されてい
る。また、ヘリカル型吸気ボート3である渦巻室2の終
端部には、第2図に示すように先端縁Rが鋭角にて形成
された突出部5が突設されている。更に、第2図に示す
ように、前記ヘリカル型吸気ボート3の最小紋妙部3a
を通り渦巻室2内の外周壁下部2aに向けて燃料噴射弁
9の中心軸Wを指向させ、燃料噴射弁9から噴出される
燃料を、その中心軸Wの延長線上にあるヘリカル型吸気
ボート3の最小紋り部3aのり、 M、 N、 0で画
成される平面内のWlを通り渦巻室2内の外周壁下部2
aに向けて噴出するように設定されている。第1図中6
は、渦巻室2内のほぼ中心に上下方向に摺動可能に設け
られたバルブステムで、その下端には吸気バルブ7が一
体に取付けられている。そして、渦巻室2内において、
燃料及び空気はバルブステム7を中心とした渦流状とな
って流れるようになっている。
In Figures 1 and 2, 1 is a cylinder head;
A helical intake boat 3 whose outlet side is a swirl chamber is formed in the cylinder head 1. An inlet side VC, id' of the helical intake boat 3 and an inlet passage portion 4 are formed, and a minimum ridge portion 6a is provided near the boundary between the swirl chamber 2 and the inlet passage portion 4. The smallest crest part 3a
As shown in Figures 3 and 4, the lights are on, M, N,
It is formed by a plane surrounded by 0, that is, a trapezoidal cavity. Further, at the terminal end of the spiral chamber 2, which is the helical intake boat 3, a protruding portion 5 having a tip edge R formed at an acute angle is provided in a protruding manner, as shown in FIG. Furthermore, as shown in FIG.
The central axis W of the fuel injection valve 9 is directed toward the lower part 2a of the outer circumferential wall inside the volute chamber 2, and the fuel injected from the fuel injection valve 9 is directed to a helical intake boat located on an extension of the central axis W. The smallest ridge part 3a of 3 passes through Wl in the plane defined by M, N, 0 and connects to the lower part 2 of the outer peripheral wall inside the spiral chamber 2.
It is set to eject toward a. 6 in Figure 1
1 is a valve stem which is provided substantially in the center of the swirl chamber 2 so as to be slidable in the vertical direction, and an intake valve 7 is integrally attached to the lower end of the valve stem. Then, inside the spiral chamber 2,
The fuel and air flow in a swirl around the valve stem 7.

なお、突出部5の終端部にの先端縁Rの曲率半径は2m
1以下に形成することが、後述する燃料のはく離(飛散
)を効率よく行う上で望ましい。また、第5図および第
4図に示したhは、ヘリカル型吸気ボート3の最小紋り
部3aの底辺からの高さを示しており、この高さhけ、
中心軸Wの延長線が渦巻室2内の外周壁下部2aに当接
する点の、バルブステム7軸心方向の位置を示している
The radius of curvature of the tip edge R at the end of the protrusion 5 is 2 m.
It is desirable to form the number of particles to be 1 or less in order to efficiently perform the peeling (scattering) of fuel, which will be described later. In addition, h shown in FIGS. 5 and 4 indicates the height from the bottom of the minimum ridge 3a of the helical intake boat 3, and this height h,
It shows the position of the point where the extension of the central axis W contacts the lower part 2a of the outer circumferential wall in the swirl chamber 2 in the axial direction of the valve stem 7.

上述した構成より、本発明は次のように作用する。まず
、低温時でエンジンが冷機状態にある場合に、燃焼室8
へ混合気を供給するにあたって入口通路部4とシリンダ
の燃焼室8との間に設けられているヘリカル型吸気ボー
ト6の最小紋り部3aのWlに向は燃料噴射弁9から燃
料が噴射されることになる。その噴射された燃料は、入
口通路部4方向より吹き付けられる空気により混合気と
なって渦巻室2内の外周壁下部。
With the above-described configuration, the present invention operates as follows. First, when the engine is in a cold state at low temperatures, the combustion chamber 8
In order to supply the air-fuel mixture to the cylinder, fuel is injected from the fuel injection valve 9 toward Wl of the smallest ridge 3a of the helical intake boat 6 provided between the inlet passage 4 and the combustion chamber 8 of the cylinder. That will happen. The injected fuel becomes a mixture by the air blown from the inlet passage 4 direction, and reaches the lower part of the outer circumferential wall in the swirl chamber 2.

2aに沿って燃焼室8内に流入していくことになる。そ
の際、ヘリカル型吸気ポート3内の温度が低いので、燃
料の一部が第2図に示すようにヘリカル型吸気ボート3
の渦巻終端部3b近傍、すなわち、渦巻室2内の外周壁
下部2aに液状に付着することになる。そうして、渦巻
室2内の外周壁下部2aに付着した燃料は、ヘリカル型
吸気ポート3内に吹き込まれる混合気の風圧で、ヘリカ
ル型吸気ポート3内の突出部5の先端縁R側に吹き寄せ
られ、その吹き寄せられた燃料に向は更に空気流が吹き
付けられると、突出部5の先端縁Rが鋭角に形成されて
いるので、液状化した燃料が突出部5の先端縁Rよりは
く離現象を起こして飛散することにより微粒化されて、
吸気バルブ7の側端局部を通り均一に微粒化された燃料
を含んだ混合気が燃焼室8内に供給されることになる。
It flows into the combustion chamber 8 along 2a. At that time, since the temperature inside the helical intake port 3 is low, a portion of the fuel is absorbed into the helical intake port 3 as shown in FIG.
The liquid adheres to the vicinity of the spiral terminal end 3b, that is, to the lower part 2a of the outer circumferential wall inside the spiral chamber 2. Then, the fuel adhering to the lower part 2a of the outer circumferential wall in the swirl chamber 2 is moved to the tip edge R side of the protrusion 5 in the helical intake port 3 due to the wind pressure of the air-fuel mixture blown into the helical intake port 3. When the blown fuel is further blown in the direction of the air flow, the liquefied fuel peels off from the tip edge R of the protrusion 5 because the tip edge R of the protrusion 5 is formed at an acute angle. It is atomized by causing and scattering,
The air-fuel mixture containing uniformly atomized fuel is supplied into the combustion chamber 8 through the local side end of the intake valve 7 .

次に、エンジンに高負荷がかかった場合には、大量の燃
料を燃焼^に供給することになるが、その際にも前述し
たのと同様な作用により均一に微粒化された燃料を含む
混合気を供給することになる。その際、ヘリカル型吸気
ボート3の最小紋り部3aのり、 M、 N、 Oで画
成される平面内のWlを通り渦巻室2内の外周壁下部2
aに向は燃料噴射弁9の中心軸Wを指向させたので、燃
料の気化熱により生ずるヘリカル型吸気ボートs内の温
度低下を防止し7、しかも、混合気が渦巻室2内の外周
壁下部2aに沿って流れるので、燃料がヘリカル型吸気
ボート3から燃料室8へ至る区間、十なわち、蒸発期間
を充分にとiすることになり〕一層燃料の微粒化が促進
されて吸気バルブ7の側端周部より燃焼室8内へ均一に
微粒化された大量の燃料を含んだ混合気が効率良く供給
されることになる。
Next, when a high load is applied to the engine, a large amount of fuel will be supplied for combustion, and in this case, a mixture containing uniformly atomized fuel will be produced by the same action as described above. It will supply energy. At that time, the smallest ridge 3a of the helical intake boat 3 passes through Wl in the plane defined by M, N, and O, and reaches the lower part 2 of the outer circumferential wall in the swirl chamber 2.
Since the central axis W of the fuel injection valve 9 is oriented in the direction a, a temperature drop inside the helical intake boat s caused by the heat of vaporization of the fuel is prevented 7, and the air-fuel mixture is prevented from flowing against the outer circumferential wall inside the swirl chamber 2. Since the fuel flows along the lower part 2a, the section from the helical intake boat 3 to the fuel chamber 8, that is, the evaporation period, is sufficiently long, and the atomization of the fuel is further promoted. The air-fuel mixture containing a large amount of uniformly atomized fuel is efficiently supplied into the combustion chamber 8 from the periphery of the side end of the combustion chamber 7 .

本発明は上述してきたことから明らかな如く、−、リカ
ル型吸気ボートである渦巻室の終端部に突出部を設け、
前記ヘリカル型吸気ポートの渦巻室内の外周壁下部に向
けて灯料噴射弁の中心4qlIを指向させて構成するこ
とにより、ヘリカル型吸気ポートの渦巻室内の外周壁下
部に粒状あるいけ液状に付着した燃料を前記突出部の終
端部から飛散させて微粒化し、かつ、その際燃料の気化
熱によるヘリカル型吸気ボート内の温度低下を防いで、
均一に微粒化した燃料をスムーズに燃焼室へ供給17、
不完全燃焼を防止するとともに燃費を向上させる等の効
果を奏する。
As is clear from the foregoing, the present invention has the following features: - Providing a protrusion at the end of the volute chamber, which is a recal-type intake boat;
By configuring the center 4qlI of the lamp injection valve to be directed toward the lower part of the outer circumferential wall in the volute chamber of the helical-type intake port, it is possible to prevent particles or liquid from adhering to the lower part of the outer circumferential wall in the volute chamber of the helical-type intake port. Atomizing the fuel by scattering it from the terminal end of the protrusion, and at the same time, preventing a temperature drop in the helical intake boat due to the heat of vaporization of the fuel,
Smoothly supplying uniformly atomized fuel to the combustion chamber 17,
This has effects such as preventing incomplete combustion and improving fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第2図は第
1図の1−■線に沿う断面図、第5図は本発明のヘリカ
ル型吸気ポートの概略斜視図、第4図は第1図の■−I
V線に沿う断面図である1、 2・・・渦巻室    2a・・・外周壁3・・・ヘリ
カル型吸気ポート
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view taken along the line 1-■ in FIG. 1, and FIG. Figure 4 shows ■-I in Figure 1.
1, which is a cross-sectional view along the V line 2... Volute chamber 2a... Outer peripheral wall 3... Helical intake port

Claims (1)

【特許請求の範囲】[Claims] (1)ヘリカル型吸気ポートを備えた内燃機関の吸気装
置において、ヘリカル型吸気ポートの渦巻室の終端部に
突出部を設け、前記ヘリカル型吸気ポートの渦巻室の外
周壁下部に向けて燃料噴射弁の中心軸を指向させたこと
を特徴とする内燃機関の吸気装置。
(1) In an intake system for an internal combustion engine equipped with a helical intake port, a protrusion is provided at the terminal end of the spiral chamber of the helical intake port, and fuel is injected toward the lower part of the outer peripheral wall of the spiral chamber of the helical intake port. An intake device for an internal combustion engine, characterized in that the central axis of the valve is oriented.
JP56161246A 1981-10-09 1981-10-09 Suction device for internal-combustion engine Pending JPS5862362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161246A JPS5862362A (en) 1981-10-09 1981-10-09 Suction device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161246A JPS5862362A (en) 1981-10-09 1981-10-09 Suction device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5862362A true JPS5862362A (en) 1983-04-13

Family

ID=15731424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161246A Pending JPS5862362A (en) 1981-10-09 1981-10-09 Suction device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5862362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539954A (en) * 1984-10-29 1985-09-10 General Motors Corporation Selective asymmetric swirl intake port

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539954A (en) * 1984-10-29 1985-09-10 General Motors Corporation Selective asymmetric swirl intake port

Similar Documents

Publication Publication Date Title
US6508236B2 (en) Fuel supply device and internal combustion engine mounting the same
JPH07133727A (en) Air intake device of internal combustion engine
JP3301013B2 (en) Spark ignition combustion method
CA1209428A (en) Diesel engine combination fuel vaporizer and air/fuel mixer
JPS5862362A (en) Suction device for internal-combustion engine
GB2088474A (en) I.C. engine cylinder head charge intake system
EP0828066B1 (en) Combustion chamber of diesel engine
JPH11141435A (en) Fuel injection device of internal combustion engine
JPH05106519A (en) Exhaust gas recirculation device for spark ignition engine
JPH11223127A (en) Spark ignition type internal combustion engine
JP2861496B2 (en) Intake device for double intake valve type internal combustion engine
JPS603311Y2 (en) Combustion chamber of direct injection diesel engine
US6045054A (en) Air shroud for air assist fuel injector
JPS603312Y2 (en) Combustion chamber of direct injection diesel engine
JPS633427Y2 (en)
US4150072A (en) Carburetor
JP2500944Y2 (en) Direct injection diesel engine combustion chamber structure
KR200252304Y1 (en) Air shroud injector with thread passages
JP2004346882A (en) Compression ignition type internal combustion engine
JPH08177498A (en) Direct injection and spark-ignition type internal combustion engine
JPH0134657Y2 (en)
JPH0988607A (en) Swirl chamber type combustion chamber for diesel engine
JPS61106914A (en) Combustion chamber in internal combustion engine
JPS61116026A (en) Intake-air device in internal-combustion engine
JPH0742653A (en) Fuel supply device for internal combustion engine