JPS5861225A - Unidirectional electrical steel plate of extra low watt loss - Google Patents

Unidirectional electrical steel plate of extra low watt loss

Info

Publication number
JPS5861225A
JPS5861225A JP57087651A JP8765182A JPS5861225A JP S5861225 A JPS5861225 A JP S5861225A JP 57087651 A JP57087651 A JP 57087651A JP 8765182 A JP8765182 A JP 8765182A JP S5861225 A JPS5861225 A JP S5861225A
Authority
JP
Japan
Prior art keywords
steel plate
strain
electrical steel
unidirectional electrical
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57087651A
Other languages
Japanese (ja)
Inventor
Katsuro Kuroki
黒木 克郎
Osamu Tanaka
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57087651A priority Critical patent/JPS5861225A/en
Publication of JPS5861225A publication Critical patent/JPS5861225A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain a unidirectional electrical steel plate of extremely low watt loss which can be used by lamination on actual machines by applying linear microstrains of specific spacing, depth and width on the surface of the base iron of the unidirectional electrical steel plate which is subjected to finish annealing. CONSTITUTION:A titled steel plate wherein microstrains of 1-15mm. linear spacing, <=5mu depth and 10-100mu width are applied on the surface of the base iron of a unidirectional electrical steel plate where inorg. films exist or do not exist and which is subjected to finish annealing. Said plate is manufactured by exerting load upon rotors consisting of small balls of, for example, hard materials, rotating the balls while pressing the same to the surface of the steel plate and drawing the steel plate. The suitable diameters of the balls are about 0.2-10mm.. It is equally well to draw the steel plate with discs or other round objects without flawing said plate. The quantity of strain effective for decreasing watt loss is about such at which the strains can be observed as dislocation bits and the strains above these causes locally large ruggedness, fail to provide prescribed magnetism to laminated iron cores and lead to decreased space factors, etc.

Description

【発明の詳細な説明】 本発明は微小な線状の変形領域(以下微小歪と称する)
を有する、きわめて鉄損の低い一方向性電磁鋼板に関す
るものである。
[Detailed Description of the Invention] The present invention provides a microscopic linear deformation area (hereinafter referred to as microstrain).
The present invention relates to a unidirectional electrical steel sheet with extremely low iron loss.

すべての結晶粒を(110)[0011理想方位に近づ
けることにより、一方向性電磁鋼板の励磁特性が向上し
、一般にはそれにともない鉄損も減少するから、従来、
上記組織の集積度を高める努力が数々なされてきた。こ
の結果今日では板厚0.30%のとき、W 17150
が1.03 wattAqI前後の低い鉄損値を示す電
磁銅板が工業的に生産されるようになった。ここでW1
7150は、磁束密度1.7丁における鉄損である。又
T電磁束密度の単位でTsslaの略、Teala=w
b/−である。
By bringing all the crystal grains closer to the (110)[0011 ideal orientation, the excitation characteristics of the unidirectional electrical steel sheet improve, and generally the iron loss decreases accordingly.
Many efforts have been made to increase the degree of integration of the above organizations. As a result, today when the plate thickness is 0.30%, W 17150
Electromagnetic copper plates that exhibit a low iron loss value of around 1.03 wattAqI have come to be industrially produced. Here W1
7150 is the iron loss at a magnetic flux density of 1.7 tons. Also, the unit of T electromagnetic flux density is abbreviation of Tssla, Teala=w
b/-.

しかしながらこれ以上鉄t′jit−飛躍的に下げるた
めには、理想方位に近づけるだけで祉困難であることが
次第に明らかになってきた。一般に鉄損は励磁特性以外
の結晶粒度にも依存する。励磁特性を高める努力は一般
には結晶粒を大きくすることになり、励磁特性向上によ
る鉄損減少分を相殺してしまうことがあるからである。
However, it has gradually become clear that in order to dramatically lower the iron t'jit even further, it is difficult to simply bring it closer to the ideal orientation. In general, iron loss depends not only on excitation characteristics but also on crystal grain size. This is because efforts to improve excitation characteristics generally result in larger crystal grains, which may offset the reduction in core loss due to improved excitation characteristics.

  ゛したがって現状の最高特性よりさらに鉄損を下げ
るためには、他の手段′t−講じる必要がある。この目
的のために、鋼板に張力を与える方法が知られている。
Therefore, in order to lower the iron loss further than the current maximum characteristics, it is necessary to take other measures. For this purpose, methods of applying tension to steel plates are known.

工業的には絶縁被膜によって張力を付与する方法が提案
されている。しかしながら被膜の与える張力には限界が
あり、それによって改善される鉄損にも限界があるため
、被膜の張力を効果を加味して得られる最高特性が前述
の1.03 W/に#程度であった。
Industrially, a method of applying tension using an insulating film has been proposed. However, there is a limit to the tension that the film can give, and there is also a limit to the iron loss that can be improved by it, so the best properties that can be obtained by taking into account the effect of the tension of the film are about 1.03 W/# as mentioned above. there were.

また鉄損を下げる他の方法が知られている。それは鋼板
の表面にキズを入れる方法である。キズO導入はナイフ
中力2ソリの刃先や、金剛砂、金タワシなどきわめて硬
い物質で鋼板の表面をひりかいたり、強くこすることに
よりて行なわれている。この方法は鉄損の低下は期待で
きるが、キズの周辺の表面の拡げしい凹凸によりて、鋼
板を積層したとき占積率が大巾に劣化するだけでなく、
磁歪が大巾に増加する。tたキズを付与された鋼板は積
層したとき、所定の鉄損値が得られないという致命的欠
陥がある。即ちキズを入れたものではエデスタイ/II
I定値がli8?測定値より高くでる(ここで811’
rと紘単板測定器をいう、以下ggテと略す)。
Other methods of reducing iron loss are also known. It is a method of making scratches on the surface of steel plates. Introducing scratches is carried out by scratching or strongly rubbing the surface of the steel plate with an extremely hard substance such as the cutting edge of a knife, diamond sand, or a metal scrubbing brush. This method can be expected to reduce iron loss, but due to the extensive unevenness of the surface around the scratches, not only will the space factor deteriorate significantly when steel plates are stacked, but
Magnetostriction increases significantly. Steel plates with such scratches have a fatal defect in that when they are laminated, a predetermined core loss value cannot be obtained. In other words, the one with scratches is Edestai/II.
I constant value is li8? It is higher than the measured value (here 811'
(hereinafter abbreviated as ggte).

この理由は次のように推定される。キズの入った凹部社
板厚が局部的に薄くなっているため、磁束の一部が鋼板
の外に逃げる。この結果JIi?測定では鉄損の低下が
みとめられるが、積層すると、この磁束が上下のIn合
った鋼板にうつる結果、銅板に垂直の磁化成分が生じ鉄
損を劣化させることになる。
The reason for this is presumed to be as follows. Because the thickness of the steel plate is locally thinner in the recessed areas where the scratches are present, some of the magnetic flux escapes to the outside of the steel plate. This result JIi? Although a decrease in iron loss was observed in the measurements, when stacked, this magnetic flux is transferred to the upper and lower In matching steel plates, resulting in a magnetization component perpendicular to the copper plates, which deteriorates iron loss.

以上の理由でキズの導入は、積層して使用されるトラン
スや巻きコアなどの鉄心にとって致命的な欠陥を有する
ため実機に使用されたこと鉱なかった・ 本発明の目的は上記の欠点が全くなく、実機に使用でき
る5、きわめて低い鉄損の一方向性電磁鋼板を提供する
ことにある。
For the above reasons, the introduction of scratches is a fatal defect for iron cores such as transformers and wound cores that are used in a laminated manner, so it was impossible for them to be used in actual equipment.The purpose of the present invention is to completely eliminate the above drawbacks. The object of the present invention is to provide a unidirectional electrical steel sheet with an extremely low iron loss that can be used in actual equipment.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は4.0−以下の81を含有する一方向性電磁銅
板に適用される。si含有量が4.0−を越えると鋼板
の冷間加工性が極端に劣化するため、現在の技術では工
業的に方向性電磁鋼板の製造が困難であるからである。
The present invention is applied to a unidirectional electromagnetic copper plate containing 4.0-81 or less. This is because if the Si content exceeds 4.0-, the cold workability of the steel sheet will be extremely degraded, making it difficult to industrially produce grain-oriented electrical steel sheets using current technology.

本発明の一方向性電磁銅板の第一の特徴は2次再結晶を
目的とする仕上焼鈍中、鋼板表面に形成されたMgOe
 B j 02を主成分とする無機質被膜あるいはガラ
ス質被膜を介して例えば押圧により線状のへこみを形成
して線状の微小な歪(以下線状歪、あるいは微小歪と略
す)を付与してなることである。該微小歪の付与はたと
えば10%以下の小さな径の球状の回転子を鋼板表面に
接して、荷重をかけながら、回転させて線引する方法に
よって達成できる@しかしキズを残さずに、巾10〜1
00μの線状歪を付与することができるならば上記の方
法に限定しない。
The first feature of the unidirectional electromagnetic copper sheet of the present invention is that MgOe formed on the surface of the steel sheet during finish annealing for the purpose of secondary recrystallization.
By forming a linear indentation through an inorganic coating or a glassy coating containing B j 02 as a main component, for example by pressing, a linear minute strain (hereinafter abbreviated as linear strain or minute strain) is imparted. It is what happens. The application of such micro-strain can be achieved, for example, by a method in which a spherical rotor with a small diameter of 10% or less is brought into contact with the surface of the steel plate, and while a load is applied, the wire is drawn by rotating it. ~1
The method is not limited to the above method as long as a linear strain of 00 μ can be applied.

本発明の微小歪の顕微鏡写真を第1図(、)に示す。A microscopic photograph of the microstrain of the present invention is shown in FIG. 1 (,).

比較に従来の方法の1つ、ナイフの刃先で導入したキズ
を同図(b)に示す。いずれも線の方向に対して直角な
断面である。ナイフで導入したキズは地鉄に溝をつけ、
その両側にかえりを生じている。
For comparison, one of the conventional methods, scratches introduced with the edge of a knife, is shown in Fig. 1(b). Both are cross sections perpendicular to the direction of the line. The scratches introduced with the knife create grooves in the base metal,
It has burrs on both sides.

一方、本発明の鋼板の微小歪は地鉄の変形を全く生じて
いないように見えるほど微小である。また変形を生じた
としてもゆるやかなへこみが融微鏡的に観察される程度
である。このように微小な歪であるが、歪導入後ガラス
質被膜を剥いだ後、転位ビット法(後述)で観察すると
、転位の存在を示す点が連なり間隔が50μ位の、2列
の平行線をなしている。(第2図(、) ) 、一方ナ
イフで導入した線状中ズでは変形量が大きいため斜線状
のすペシ線が密に表われている。すべり線の発生は強い
剪断力が加わったことを意味する。このように本発明の
微小歪は、従来の方法によって付与されたキズに比べて
、塑性変形量は桁違いに小さく、その性状は全く異なる
ものである。
On the other hand, the micro-strain in the steel sheet of the present invention is so small that it appears that the base metal is not deformed at all. Furthermore, even if deformation occurs, it is only a gentle dent that can be observed under a fusion microscope. Although the strain is very small, when the glassy film is peeled off after the strain is introduced and observed using the dislocation bit method (described later), two rows of parallel lines with an interval of approximately 50μ are observed, indicating the presence of dislocations. is doing. (Fig. 2(, )) On the other hand, in the case of a linear medium introduced with a knife, the amount of deformation is large, so that diagonal lines appear densely. The occurrence of slip lines means that a strong shearing force has been applied. As described above, the micro-strain of the present invention has an amount of plastic deformation that is orders of magnitude smaller than that of scratches imparted by conventional methods, and its properties are completely different.

本発明に従った線状の微小歪を有する一方向性電磁銅板
を製造するため具体的な方法の例を挙げる0例えば、硬
い物質でつくられた小さな球からなる回転子に荷重をか
けて、鋼板表面に押しつけながら、球を回転させて線引
きする方法である。
An example of a specific method for manufacturing a unidirectional electromagnetic copper plate having linear microstrain according to the present invention is given below. For example, by applying a load to a rotor made of small balls made of a hard material, This method draws a line by rotating a ball while pressing it against the surface of a steel plate.

小球を回転させるためガラス質被膜を含め鋼板の表面に
キズをつけずに地鉄に歪を付与することができる。球の
直径は0,2〜10%位が適当である。
Because the small balls are rotated, strain can be applied to the steel base without damaging the surface of the steel plate, including the glassy coating. The appropriate diameter of the sphere is about 0.2 to 10%.

これによって導入される歪の巾は10〜300μmであ
る。これより大きすぎると歪の領域(第2図(a)の平
行線の内部の面積)が広くな)すぎて好ましくない、小
さすぎると表面にキズを付けやすくなる0本発明に従っ
た歪の導入によって生ずる表面のへζみは高々5μ、通
常は1μ程度である。
The width of the strain introduced by this is 10 to 300 μm. If it is too large, the strain area (area inside the parallel lines in Figure 2 (a)) will be too wide, which is undesirable; if it is too small, the surface will be easily scratched. The surface shrinkage caused by the introduction is at most 5μ, usually about 1μ.

以上は微小歪を付与する手段の一例でありて、九とえば
厚みの小さな円盤を荷重をかけて回転させながら線引き
することによっても目的を達することができる。まえ、
上記の球中円盤あるいは丸い物体を鋼板に中ズを付けず
Kすべらせて線引きしてもよい。
The above is an example of a means for imparting minute strain, and the purpose can also be achieved by, for example, drawing a thin disk while rotating it under a load. front,
It is also possible to draw a line by sliding the above-mentioned ball-in-disc or round object onto a steel plate without attaching a center hole.

鉄損を下ける丸めに有効な歪量は、転位ビットとして観
察で龜る程度であって、それ以上の歪は局部的なはけし
い凹凸を生ずるため、積層した鉄心では所定の磁性が得
られなかったり、占積車の劣化をもたらすものである。
The amount of strain that is effective for rounding to reduce iron loss is the amount that can be observed as a dislocated bit, and more strain causes severe local unevenness, so it is difficult to obtain a specified magnetic property in a laminated core. This may result in the vehicle not being fully loaded or the vehicle being unloaded.

ま良歪の付与紘鋼板の片面両面いずれで亀よい。Good distortion can be applied to either one or both sides of the steel plate.

要するに本発明においては鋼板の地鉄表面に線状の微小
歪を付与した点に**があシ、歪を付与する鋼板には、
以下に説明するようなガラス質被膜、或Fi2次被膜が
存在していても支障なく、又はこれらの被Il[の存在
しない鋼板上に直接歪を与えてもよいこと状勿論である
In short, in the present invention, there is a ** in the point where a linear minute strain is applied to the surface of the steel plate, and the steel plate to which the strain is applied is
Of course, there is no problem even if a glassy coating or a certain Fi secondary coating as described below exists, or strain may be directly applied to a steel sheet in which these coatings do not exist.

ガラス質被膜線主として仕上焼鈍前に塗布され、  九
MgOと鋼板が含有する81などから形成されており、
仕上焼鈍中の焼付防止のほか、鋼板表面に張力を与え鉄
損を下げる役割をする。ifガラス質被膜除去はフッ酸
や塩酸など強い酸を用い長時間の酸洗によって行なわれ
るが工業的に一工程増える欠点のほか、張力効果消失と
酸洗による鋼板表面の肌荒れによって磁気特性が劣化す
るため、微小歪付与による効果を減殺する。
The glassy coating wire is mainly applied before final annealing, and is formed from 9MgO and 81 containing steel plate.
In addition to preventing seizure during finish annealing, it also serves to reduce iron loss by applying tension to the surface of the steel plate. If the glassy film is removed by pickling for a long time using a strong acid such as hydrofluoric acid or hydrochloric acid, it has the drawback of adding one more step in the industrial process, as well as degrading the magnetic properties due to loss of tension effect and roughening of the steel plate surface due to pickling. Therefore, the effect of applying minute strain is reduced.

従来の方法、即ちキズの導入は鋼板の地肌に直接性なわ
れたため、被膜除去前の特性を基準にとるとき、その効
果は本発明のそれに比べて小さい(第3図)。しかしな
がらMgOなど焼鈍分離剤を必要としない仕上焼鈍法、
たとえば連続焼鈍炉などで仕上焼鈍した鋼板では酸洗す
ることなく直接表面に微小歪を付与することができる。
Since the conventional method, that is, the introduction of scratches, directly affected the surface of the steel sheet, its effect is smaller than that of the present invention when the characteristics before the coating is removed are taken as a standard (FIG. 3). However, a finish annealing method that does not require an annealing separator such as MgO,
For example, in the case of a steel plate that has been finish annealed in a continuous annealing furnace or the like, micro-strain can be directly imparted to the surface without pickling.

次に線状の微小歪の線の方向について述べる。Next, the direction of the linear minute strain will be described.

第4図(a’)はガラス質被膜の上から鋼板の片面に微
小歪を付与したとき、線の方向と圧延方向のなす角αに
対する圧延方向(L方向)K磁化したときの鉄損(W1
715G)の変化を示す。α< 10@では鉄損社かえ
って劣化するが、αの増加とともに減少しα≧30”で
は511以上、α≧45拳では1゜−以上の向上率を示
した。したがって鉄損の大巾な向上を図るためには、α
は30@以上好ましくはαは45@以上が適当である0
巻鉄心の場合はL方向の鉄損を考慮すれば充分であるが
用途によっては圧延方向に直角な方向(C方向)K磁化
したときの鉄損も重要となる。
Figure 4 (a') shows the iron loss when magnetized in the rolling direction (L direction) with respect to the angle α between the wire direction and the rolling direction when a small strain is applied to one side of the steel sheet from above the glassy coating. W1
715G). When α < 10, the iron loss actually deteriorates, but it decreases as α increases, and when α≧30”, the improvement rate is more than 511, and when α≧45, the improvement rate is more than 1°. In order to improve
is 30@ or more, preferably α is 45@ or more.0
In the case of a wound core, it is sufficient to consider the iron loss in the L direction, but depending on the application, the iron loss when magnetized in the direction perpendicular to the rolling direction (C direction) in the K direction is also important.

C方向の鉄損はL方向とは逆にαを小さくすることによ
って向上させることが出来る。第4図すよシL、C両方
向の特性向上を考慮したときは例えば30°〜80°の
方向に引くのが適当である仁とが分る。また線の形状は
直線である必要は必ずしもなく、曲線状、ジグザグ状、
波線状あるいは線が交差しても本発明の目的を達成でき
る。
The iron loss in the C direction can be improved by decreasing α, contrary to the L direction. When considering the improvement of the characteristics in both the L and C directions, it can be seen that it is appropriate to draw in the direction of, for example, 30° to 80°. Also, the shape of the line does not necessarily have to be straight; it can be curved, zigzag, etc.
Even if the lines are wavy or intersect, the object of the present invention can be achieved.

次に微小歪の適正間隔について述べる。第5図は約1#
厚のがラス質被膜の上から直径が0.7m/mの球を、
荷重2001をかけなからC方向に転がして線状歪を付
与したとき、線の間隔と鉄損の関保を示す。最適間隔は
200.fのとを2.5〜5Nであることが分る。また
最適間隔は荷重によって変わシ、球の径が0.7朋の場
合、第6図に示すように、荷重が大きくなると最適間隔
はひろまる。
Next, we will discuss the appropriate spacing for minute distortions. Figure 5 is approximately 1#
A sphere with a diameter of 0.7 m/m is placed on top of the thick, rusty coating.
When a linear strain is applied by rolling in the C direction without applying a load 2001, the relationship between the line spacing and iron loss is shown. The optimal spacing is 200. It can be seen that the value of f is 2.5 to 5N. Further, the optimum spacing changes depending on the load, and when the diameter of the ball is 0.7mm, as shown in FIG. 6, the optimum spacing increases as the load increases.

このように最適間隔は歪の大きさによって変動するから
、導入方法あるいはガラス質被膜の厚みなどによってそ
の都度法めるべきで、上記の例に限定されない、しかし
ながらキズを残さない本発明の方法による微小歪の場合
いずれも最適間隔はl寵以上である。この点、キズを残
す従来の歪の適正間隔0.1〜1m+と比較して、少な
い密度で済むから、導入の手間が省叶ることはもとより
、従来法では′0.02T位あ−)友歪付与にともなう
励磁特性(B1)の劣化を最小限(0,003T程度)
に抑えることができる。ここでBs ii800 A/
mにおける磁束密度を表わす。
Since the optimum spacing varies depending on the magnitude of strain, it should be determined on a case-by-case basis depending on the method of introduction or the thickness of the glassy coating, and is not limited to the above example. In all cases of minute strain, the optimum spacing is more than 1 minute. In this respect, compared to the conventional method, which leaves scratches at an appropriate distance of 0.1 to 1 m+, it requires less density, which not only saves the labor of introducing it, but also the conventional method, which requires about 0.02 T. Minimize the deterioration of excitation characteristics (B1) due to strain application (approximately 0,003T)
can be suppressed to Here Bs ii800 A/
represents the magnetic flux density at m.

微小歪の付与を連続ラインで行々うために、鋼板(帯)
Kは張力を加えておく方がよい。これは鋼板に歪を与え
るために必要な荷重を支えるためだけでなく、歪付与の
効果を助長するためである。
In order to apply micro-strain in a continuous line, steel plates (strips)
It is better to apply tension to K. This is not only to support the load necessary to apply strain to the steel plate, but also to promote the effect of applying strain.

仕上焼鈍で形成されたガラス質被膜は通常、片面の厚み
が1〜3声であって、この程度の厚みが微小歪の導入に
最も適している。しかし5声以下であれば被膜に損傷を
与えずに地鉄に歪を与えることができる。
The glassy coating formed by final annealing usually has a thickness of 1 to 3 tones on one side, and this thickness is most suitable for introducing minute strain. However, if it is less than 5 tones, it is possible to apply distortion to the base metal without damaging the coating.

ガラス質被膜の形成を目的として、仕上焼鈍前に塗布さ
れる塗布液の組成はMgOを主成分とするもので密着性
や磁性向上のために添加される物質たとえばTlO2、
ホウ素化合物、硫化物、アンチモン化合物などが含まれ
ていてもよい。
The composition of the coating solution applied before final annealing for the purpose of forming a glassy film is mainly MgO, and other substances are added to improve adhesion and magnetism, such as TlO2,
It may also contain boron compounds, sulfides, antimony compounds, and the like.

本発明を8口が1.90T以上の高磁束密度を有する電
磁鋼板に適用すると、その効果は一段と顕著に表われる
。第7図はBIと微小歪導入前後の鉄損値W17150
を示している。微小歪導入前Bsの増加は鉄損を下げる
が、その勾配は次第にゆるやかになり、lls>1.9
3↑では飽和に近づくようにみえる。一方、微小歪導入
後の鉄損のBlによる変化は、導入前のそれに比べて勾
配(の絶対値)が大きく、しかも、高いBs  (〜1
.95 T )まで直線・的に低下し、飽和の傾向を示
さない。即ちBSが高くなるほど歪導入の効果が顕著に
表われることが分る。従来は、’B虐の増加が鉄損の改
良に充分に反映されてい々かったが、本発明の方法を採
用することにより、Bsの向上を、そのまま鉄損の低下
につなげることが可能となった。このようにしてB$≧
1.90 ?ではW17150≦1.03v/ky、 
 B@≧1.92TではWl 7/ 50 < 0.9
6 v/kf 。
When the present invention is applied to an electromagnetic steel sheet having eight openings having a high magnetic flux density of 1.90T or more, the effect becomes even more remarkable. Figure 7 shows the iron loss value W17150 before and after introducing BI and minute strain.
It shows. An increase in Bs before the introduction of minute strain lowers the iron loss, but the slope gradually becomes gentler, and lls > 1.9.
At 3↑, it appears to be approaching saturation. On the other hand, the change in iron loss due to Bl after introducing microstrain has a larger gradient (absolute value) than that before introduction, and also has a high Bs (~1
.. 95 T), showing no tendency to saturation. That is, it can be seen that the higher the BS, the more pronounced the effect of introducing distortion becomes. In the past, the increase in Bs was not fully reflected in the improvement of iron loss, but by adopting the method of the present invention, it is possible to directly link the improvement in Bs to a reduction in iron loss. became. In this way, B$≧
1.90? Then W17150≦1.03v/ky,
When B@≧1.92T, Wl 7/50 < 0.9
6 v/kf.

8口>1.94Tの場合ではW17150≦0.90 
w/kgという驚異的な低鉄損値が得られる。
In the case of 8 ports > 1.94T, W17150≦0.90
An amazingly low iron loss value of w/kg can be obtained.

W17150が0.90 v/IqF以下の超低鉄損材
を変圧器など電気機器に使用すると、従来の最高級品に
比べて1〇−以上電力の損失を軽減することになシ、省
エネルギーが世界的に叫ばれている現在、本発明の効用
は計シ知れない。
If ultra-low iron loss material with W17150 of 0.90 v/IqF or less is used in electrical equipment such as transformers, it will reduce power loss by more than 10 times compared to conventional top-grade products, resulting in energy savings. Nowadays, the benefits of the present invention are immeasurable as it is being called out worldwide.

微小歪を付与する工fiiu、2次再結晶を完了した後
であれば、後工程のいずれに挿入してもよい。
It may be inserted in any of the post-processes as long as it is after the process for imparting minute strain and the secondary recrystallization have been completed.

例えば仕上焼鈍直後でもよいし、ヒートツラ、ト二ング
工程の後に行々っでもよい。また連続仕上焼鈍方式を採
用する場合はその冷却過程で行なってもよい。ただし8
00℃以下好ましくa700℃以下で付与すべきである
For example, it may be performed immediately after final annealing, or after heat rolling and toning steps. Further, when a continuous finish annealing method is adopted, the annealing may be performed during the cooling process. However, 8
It should be applied at a temperature of 00°C or lower, preferably 700°C or lower.

歪を付与された鋼板はこの11製品となし得るが通常は
2次被膜としてリン酸系あるいは有機系化合物をコーテ
ィングして絶縁性を高めた上で最終製品とする。コーテ
ィングのとき、鋼板の温度は800℃以下、望ましくは
700℃以下で行なわれるのが好ましい、この目的には
紫外線硬化樹脂の使用が適している。
The strained steel sheet can be made into these 11 products, but it is usually coated with a phosphoric acid-based or organic compound as a secondary coating to improve insulation before making it into a final product. During coating, the temperature of the steel plate is preferably 800° C. or lower, preferably 700° C. or lower. For this purpose, the use of ultraviolet curing resins is suitable.

2次被膜形成後或いは打抜稜に歪を付与する場合には、
次の事を配慮しなければならない、2次被膜の上からの
歪付与はガラス質被膜の上から付与する場合に比べて大
きな荷重を必要とする・従うて2次被膜を損傷しないよ
うに注意する必要がある。しかし、薄くて丈夫な実質の
被膜が形成されている時は2次被膜の上から付与しても
、絶縁性を横わずに鉄損を下げることが可能である。
After forming the secondary coating or when applying strain to the punching edge,
The following must be taken into consideration: Applying strain from above the secondary coating requires a larger load than applying strain from above the glassy coating. Therefore, be careful not to damage the secondary coating. There is a need to. However, when a thin and strong substantial film has been formed, even if it is applied over the secondary film, it is possible to lower the iron loss without compromising the insulation properties.

以下実施例にもとづき説明する。The following will be explained based on examples.

実施例1 si3%を含有する板厚0.30ルiのプラス質被膜付
高磁束密度一方向性珪素鋼板の片面に該被膜上から地鉄
表面に、深さ1μ、巾86声の線状微小歪をC方向に間
隔10 mumで付与した。
Example 1 On one side of a high magnetic flux density unidirectional silicon steel plate with a positive coating having a thickness of 0.30 l and containing 3% Si, a line with a depth of 1μ and a width of 86 pitches was applied from the coating to the surface of the base steel. Microstrains were applied in the C direction at intervals of 10 μm.

歪付与前後の鋼板の圧延方向の磁性は、歪付与前 BI
 = 1.935 ’l’ 、 W11′5a −1,
03w/kg歪付与後 Bs 〜1.933 T 、 
w1V5o=1=0.97v/kgであった。鉄損の大
巾な改善がVめられた一6実施例2 813%を含有する板厚0.27 mumのガラス質被
膜付高磁束密度一方向性珪素鋼板の片面に被膜上から地
鉄表面に深さ1μ、巾50μの線状微小歪をC方向に間
隔8rfi/nで付与した。
The magnetic properties of the steel sheet in the rolling direction before and after applying strain are as follows: BI
= 1.935 'l', W11'5a -1,
After applying 03w/kg strain Bs ~1.933T,
w1V5o=1=0.97v/kg. Significant improvement in iron loss was observed Example 2 A high magnetic flux density unidirectional silicon steel plate with a glassy coating of 0.27 mm thick containing 813% was coated on one side from above the coating to the base steel surface. A linear microstrain with a depth of 1 μm and a width of 50 μm was applied in the C direction at an interval of 8 rfi/n.

歪付与前後の鋼板の圧延方向の磁性は 歪付与前 Ba = 1.940 T 、 W /5o
−Q。98 v/に8g歪付与後 B、冨1.938T
、W’鴇=0゜90マ/ゆであったO 実施例3 8%3−を含有する板厚0.30m/hの仕上焼鈍済一
方向性電磁鋼板の地鉄表面の片憫に、探さ1声。
The magnetic properties of the steel sheet in the rolling direction before and after applying strain are as follows: Ba = 1.940 T, W/5o
-Q. After applying 8g strain to 98v/B, thickness 1.938T
, W' = 0゜90mm/boiled O 1 voice.

巾80声の線状微小歪をC方向に間隔8 m/rsて付
与した後、表面にリン酸とクロム酸を主成分とする液を
塗布し、500℃で短時間焼付した。
After applying a linear microstrain with a width of 80 tones at intervals of 8 m/rs in the C direction, a liquid containing phosphoric acid and chromic acid as main components was applied to the surface and baked at 500° C. for a short time.

歪付与前後の鋼板の圧延方向の磁性は 歪付与前 !Is −L 942 T r W 1go
 ” 1−08 ”/b歪付与。
The magnetic properties of the steel plate in the rolling direction before and after applying strain are the same as before applying strain! Is-L 942 T r W 1go
"1-08"/b distortion added.

被y 焼嫌B @ ” 1938 T e W ”’i
0 冨0.99 ” /’1でありた。
B @ ” 1938 T e W ”'i
The value was 0.99''/'1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図体)は本発明に従い微小歪を付与した電磁鋼板の
断面の顕微鏡写真である。(倍率200倍)。 伽)は比較例としてナイフの刃先で導入したキズである
。(倍率200倍)。 第2図(畠)は本発明に従い微小歪付与後、ガラス質被
膜を剥いだ後、転位ビット法で歪の様子を観察し九もの
である。伽)は比較例てナイスの刃先で導入した歪の様
子である。(倍率100倍)。 第3図〜第7図は本発明の効果を示す図面で、第3図は
微小歪付与前後の鉄損特性を示す図、第4図は微小歪付
与方向と鉄損の向上率の関係を示す図、(a)L方向の
向上率、(b)C方向の向上率、第5図は微小歪付与間
隔と鉄損の関係を示す図、第6図は微小歪付与圧力と付
与間隔の関係を示す図、第7図は微小歪付与前後のB、
−W17150の関係を示す図である。 第1図 占ゾ巴。 第2図 (X コ、00) 第 4 図 (α) 手続補正書 (方式) 昭和57年10月27日 特許庁長官 若 杉 和 夫殿 1、 事件の表示 昭和57年特許願第87651号 2 発明の名称 超低鉄損一方向性電磁鋼板 3、補正をする者 事件との関係 特許出願人 代表者 武  1)   豊 4、代理人〒100 6、補正の対象 明細書の発明の詳細な説明の欄2図面の簡単な説明の欄
1図面及び委任状に対する印鑑証明7、 補正の内容 1)Ql]細書5頁9行「本発明の・・・K示す、」を
r本発明の微小歪の顕微鏡写真の模式図を第1図゛←)
に示す、」に補正する。 2)同15頁下から8行〜最下行「第1図(a)は・・
・(倍率100倍)、」を下記の通シ補正する。 r  811図(a)は本発明に従い微小歪を付与した
電磁鋼板の断面の顕微鏡写真(倍率200倍)、伽)は
比較例としてナイフの刃先で導入したキズの顕微鏡写真
(倍率200倍)を夫々模式的に示した図である・ 第2図(&)は本発明に従い微小歪付与後、ガ2メ質皮
属を剥いだ後、転位ビット法で表面の歪の様子を観察し
九顕微鏡写真(倍率100倍)の模式図、伽)は同じく
比較例としてナイフの刃先で導入した歪の模式図である
。」 3)第1図及び第2図を別紙t)ih)補正する。 4)印鑑証明書を別紙ohシ提出する。
Figure 1) is a microscopic photograph of a cross section of an electrical steel sheet to which micro-strains have been applied according to the present invention. (200x magnification).弽) is a scratch introduced by the edge of a knife as a comparative example. (200x magnification). FIG. 2 (Hata) shows nine results obtained by observing the state of strain using the dislocation bit method after applying minute strain according to the present invention and peeling off the glassy film.佽) shows the strain introduced by a nice cutting edge in a comparative example. (100x magnification). Figures 3 to 7 are drawings showing the effects of the present invention. Figure 3 is a diagram showing the iron loss characteristics before and after applying a minute strain, and Figure 4 is a diagram showing the relationship between the direction of applying a minute strain and the improvement rate of iron loss. (a) Improvement rate in the L direction, (b) Improvement rate in the C direction, Figure 5 is a diagram showing the relationship between the minute strain application interval and iron loss, and Figure 6 is the relationship between the minute strain application pressure and the application interval. A diagram showing the relationship, Figure 7 is B before and after applying minute strain,
-W17150. Figure 1: Zanzo Tomoe. Figure 2 (X Co, 00) Figure 4 (α) Procedural amendment (method) Kazuo Wakasugi, Commissioner of the Patent Office, dated October 27, 19801, Indication of the case, Patent Application No. 87651, filed in 1987, 2 Name of the invention Ultra-low iron loss unidirectional electrical steel sheet 3, Relationship with the case of the person making the amendment Patent applicant representative Takeshi 1) Yutaka 4, agent 〒100 6, Detailed explanation of the invention in the specification subject to amendment Column 2 Column 1 for brief explanation of the drawings 1 Seal certificate for drawings and power of attorney 7 Contents of amendment 1) Ql] Page 5, line 9 of the detailed description ``K indicates...K'' of the present invention r Microdistortion of the present invention A schematic diagram of the microscopic photograph is shown in Figure 1゛←)
Correct as shown in ``. 2) Page 15, line 8 from the bottom to the bottom line “Figure 1 (a) is...
・(Magnification: 100x)," is corrected as shown below. Figure 811 (a) is a micrograph (magnification: 200x) of a cross section of an electrical steel sheet that has been subjected to microstrain according to the present invention, and Figure 811 (a) is a micrograph (magnification: 200x) of a scratch introduced by the edge of a knife as a comparative example. Figure 2 (&) is a diagram schematically showing the results of applying microstrain according to the present invention, peeling off the 2nd cortex, and observing the strain on the surface using the dislocation bit method. The photograph (100x magnification) is a schematic diagram of strain introduced at the edge of a knife as a comparative example. 3) Correct Figures 1 and 2 as attached. 4) Submit a separate seal certificate.

Claims (2)

【特許請求の範囲】[Claims] (1)  仕上焼鈍済の一方向性電磁鋼板の地鉄表面に
、線状の微小歪を有し、該微小歪間の間隙がl〜15■
、深さが5μ以下、巾がlθ〜100μである超低鉄損
一方向性電磁鋼板。
(1) The base iron surface of the finish-annealed unidirectional electrical steel sheet has a linear microstrain, and the gap between the microstrains is 1 to 15 cm.
, an ultra-low iron loss unidirectional electrical steel sheet having a depth of 5μ or less and a width of lθ to 100μ.
(2)  無機質被膜を有する仕上焼鈍済の一方向性電
磁鋼板の地鉄表面に、線状の微小歪を有し、該微小歪間
の間隙が1〜15■、深さが5声以下、巾がlO〜10
0μである超低鉄損一方向性電磁鋼板・
(2) The base surface of a finish-annealed unidirectional electrical steel sheet having an inorganic coating has linear microstrains, the gap between the microstrains is 1 to 15 cm, and the depth is 5 tones or less, Width is lO~10
Ultra-low iron loss unidirectional electrical steel sheet with 0μ
JP57087651A 1982-05-24 1982-05-24 Unidirectional electrical steel plate of extra low watt loss Pending JPS5861225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57087651A JPS5861225A (en) 1982-05-24 1982-05-24 Unidirectional electrical steel plate of extra low watt loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57087651A JPS5861225A (en) 1982-05-24 1982-05-24 Unidirectional electrical steel plate of extra low watt loss

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52050667A Division JPS585968B2 (en) 1977-05-04 1977-05-04 Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet

Publications (1)

Publication Number Publication Date
JPS5861225A true JPS5861225A (en) 1983-04-12

Family

ID=13920863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57087651A Pending JPS5861225A (en) 1982-05-24 1982-05-24 Unidirectional electrical steel plate of extra low watt loss

Country Status (1)

Country Link
JP (1) JPS5861225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002950A1 (en) * 1984-11-10 1986-05-22 Nippon Steel Corporation Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
JPS61186422A (en) * 1985-02-15 1986-08-20 Nippon Steel Corp Improvement of iron loss of grain oriented electrical steel sheet strip and steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002950A1 (en) * 1984-11-10 1986-05-22 Nippon Steel Corporation Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
US4770720A (en) * 1984-11-10 1988-09-13 Nippon Steel Corporation Method for producing a grain-oriented electrical steel sheet having a low watt-loss
JPS61186422A (en) * 1985-02-15 1986-08-20 Nippon Steel Corp Improvement of iron loss of grain oriented electrical steel sheet strip and steel sheet
JPH0437144B2 (en) * 1985-02-15 1992-06-18 Nippon Steel Corp

Similar Documents

Publication Publication Date Title
JPS585968B2 (en) Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet
EP2537958B1 (en) Non-oriented electromagnetic steel sheet and process for production thereof
JPS61149433A (en) Method and apparatus for reducing iron loss in crystal grainorientation type silicon steel
JPH05121224A (en) Grain oriented electromagnetic steel sheet small in iron loss and its production
JPS60131976A (en) Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic
EP0225619B1 (en) Grain-oriented electrical steel sheet having improved glass film properties and low watt loss and a process for producing same
US4277530A (en) Electrical steel lamination
US4846939A (en) Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
JPS5861225A (en) Unidirectional electrical steel plate of extra low watt loss
JP2001303261A (en) Low core loss, grain-oriented silicon steel sheet having tension-applied anisotropic film
JP2018090871A (en) Grain oriented silicon steel sheet and method for manufacturing the same
JP2654862B2 (en) Method for forming insulation film on grain-oriented electrical steel sheet with excellent core workability and dust resistance
KR20200118202A (en) Grain-oriented electrical steel sheet
JPS5814851B2 (en) Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet
JP2584163B2 (en) Manufacturing method of amorphous iron core
EP0467384B1 (en) Method of producing grain oriented silicon steel sheets each having a low watt loss
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JP3524058B2 (en) Method for manufacturing oriented silicon steel sheet with insulating film having excellent space factor and seizure resistance
JPS613838A (en) Manufacture of electromagnetic steel sheet having small anisotropy
JP3380775B2 (en) Grain-oriented silicon steel sheet with low strain sensitivity and excellent magnetic properties
JPS62274047A (en) High-silicon iron sheet excellent in formability
JPH0332890B2 (en)
KR20230066067A (en) Grain-oriented electrical steel sheet, manufacturing method of grain-oriented electrical steel sheet, and evaluation method of grain-oriented electrical steel sheet
JP2001164344A (en) Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor
JP2005120405A (en) Grain oriented silicon steel sheet for lamination type iron core