JPS5860590A - Control of semiconductor laser oscillation by hologram - Google Patents

Control of semiconductor laser oscillation by hologram

Info

Publication number
JPS5860590A
JPS5860590A JP15963881A JP15963881A JPS5860590A JP S5860590 A JPS5860590 A JP S5860590A JP 15963881 A JP15963881 A JP 15963881A JP 15963881 A JP15963881 A JP 15963881A JP S5860590 A JPS5860590 A JP S5860590A
Authority
JP
Japan
Prior art keywords
semiconductor laser
hologram
wavelength
light
hologram plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15963881A
Other languages
Japanese (ja)
Inventor
Koichi Suzuki
宏一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP15963881A priority Critical patent/JPS5860590A/en
Publication of JPS5860590A publication Critical patent/JPS5860590A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate the control of oscillation wavelength of multimode semuconductor laser by a method wherein the focussing light of specified wave only is reflected to be returned to semiconductor laser by means of a hologram plate. CONSTITUTION:The light emitted from multimode semiconductor laser 1 is made parallel beam 9 through collimator 2 and incident over hologram plate 3. The zero order light transmitted through the hologram plate 3 is focussed on the end of optical fiber 5 by means of a focussing lens 4. On the other hand, the primary diffraction light with specified wavelength through said hologram plate 3 is focussed on the pinhole 7a of pinhole plate 7 and returned to said hologram plate 3 reflecting the mirror 6 to be diffracted again becoming parallel beam 9 (in the reverse direction) further focussed by said collimator 2 to be returned to said multimode semiconductor laser 1. Consequently the oscillation of multimode semiconductor laser 1 is substantially fixed at the wavelength beam, i.e. lambda0 enabling the optical communication at single wavelength.

Description

【発明の詳細な説明】 本発明は、ホログラムによる半導体レーザ発振11i1
1 rM’方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides semiconductor laser oscillation 11i1 using a hologram.
1 rM' method.

ilt来、多モード半導体レーザに関しては、l) ト
「コ装置の回折格子によって選択された特定の波長の光
を当該半導体レーザにフィードバンクさせることにより
、単一波長で発振させることができることが知られてい
る。
Since then, it has been known that multimode semiconductor lasers can be made to oscillate at a single wavelength by feeding the semiconductor laser with light of a specific wavelength selected by the diffraction grating of the device. It is being

しかし、発振波長を特定波長に固定するためには、その
波長の1次回折光が正確に半導体レーザの活性層にフィ
ードバンクされなければならず、回折格子の設置角度の
調整と帰還状態の監視が必要である。そして、その手段
として従来技術では、回折格子−を用いたIJ )口装
置の構成を採用しており、このため装置が高価となるは
かりでなく調整bitsも複雑となるなどの欠点を有し
ていた。
However, in order to fix the oscillation wavelength to a specific wavelength, the first-order diffracted light of that wavelength must be accurately fed-banked to the active layer of the semiconductor laser, which requires adjustment of the installation angle of the diffraction grating and monitoring of the feedback state. is necessary. As a means for achieving this, the conventional technology employs the configuration of an IJ) device using a diffraction grating, which has disadvantages such as an expensive scale and complicated adjustment bits. Ta.

本発明は手記従来技術における欠点に着目してなされた
もので、多モード半導体レーザの波長選択並びに波長固
定等に係る発振波長制御を容易にし、目、つ経済的に実
施できる、ホログラl、による半導体レーザ発振制御方
法を提供することを目的とする3、 以下、本発明の詳細な説明する1、 本発明に係る、ホログラムによる半導体レーザ発振制御
方法は、多モード半導体レーザを光源とする光学装置に
おいて、 該半導体レーザからの出射光の光路中に1次回折光を集
束するホログラムを配し、特定波長の東京光のみを反射
させて−F記単導体レーザに帰還させることを特徴とす
る。
The present invention has been made by focusing on the shortcomings in the prior art, and is based on a hologram that facilitates and economically implements oscillation wavelength control related to wavelength selection and wavelength fixing of multimode semiconductor lasers. 3. The present invention will be described in detail below. 1. A semiconductor laser oscillation control method using a hologram according to the present invention is an optical device using a multimode semiconductor laser as a light source. The method is characterized in that a hologram that focuses the first-order diffracted light is disposed in the optical path of the emitted light from the semiconductor laser, and only the Tokyo light of a specific wavelength is reflected and returned to the -F single conductor laser.

本発明を光通信に適用した場合の実施f!/11を第1
図に示す。
Implementation f when the present invention is applied to optical communication! /11 first
As shown in the figure.

図とおいて符号1は多モード半導体レーザを小し、その
出射光軸上にコリメーターレンズ2、ボーログラム板3
、集光レンズlI 、光フIイバー5等が順に配列され
ている。又、ホログラム板:3の後方であって、該ホロ
グラム板3からの零次出射光の光路外には、ミラー6の
直前位置にピンホール板7が配置されている。なお、符
号8は多モート−+導体レーザ1の駆動回路を示す。
In the figure, reference numeral 1 denotes a small multimode semiconductor laser, with a collimator lens 2 and a borogram plate 3 on its output optical axis.
, a condenser lens I, an optical fiber 5, etc. are arranged in this order. Further, behind the hologram plate 3 and outside the optical path of the zero-order light emitted from the hologram plate 3, a pinhole plate 7 is arranged at a position immediately in front of the mirror 6. Note that reference numeral 8 indicates a drive circuit for the multi-mode + conductor laser 1.

上記構成において、多モート半導体レーザlの出力光は
コリメーターレンズ2により平行ビーム9となりホログ
ラム板3に入射する。ホログラム板、3を透過した零次
光は集光レンズ4により光フ・1バー5の端面に集光さ
れる。
In the above configuration, the output light of the multi-mode semiconductor laser 1 is converted into a parallel beam 9 by the collimator lens 2 and is incident on the hologram plate 3. The zero-order light transmitted through the hologram plate 3 is focused onto the end face of the optical fiber 1 bar 5 by a condenser lens 4.

一方、ホログラムによる特定波長の1次回折光はピノホ
ール板7のピンホール7aに集束し、ミラー(つによっ
て反射されてホログラム板3に戻り、再び回折ざnて平
行ビーム9(但し逆向き)となり、コリメーターレンズ
2により集束されて多モート半導体レーザーlに帰還さ
れる。
On the other hand, the first-order diffracted light of a specific wavelength from the hologram is focused on the pinhole 7a of the pinhole plate 7, is reflected by the mirror, returns to the hologram plate 3, is diffracted again, and becomes a parallel beam 9 (but in the opposite direction). The light is focused by the collimator lens 2 and fed back to the multi-mode semiconductor laser l.

その結果、多モート半導体レーザ1の発振は、1記帰還
さlしるビームの波長例えばλ0で実質固定さ7L、こ
れにより、単一波長での光通信が可能と?、− ・よ る 、 次に、第2図を参照しながら、ホログラム板3の作製に
関するホログラム記録光学系について説明する 図において、符号10はレーザ光源を示し、その出射光
軸上に灼物レンズ11、ピンホール板12、コリメータ
ーレンズ13、ビームスフリツタ1.17iび、基板3
bの表面にホログラム記録材料3aを塗布されているホ
ログラム板3等が順に配列さtr、でイル、又、ビーム
スプリッタ14の直−上空間には、ミラー15が配置さ
れており、このミラー15と1−記ホログラム板3との
間には集光レンズ16が配置されている4、 上記構成において、レーザー光源10は波長λ()のガ
スレーザ若しくは波長λ0に固定された1・・8体レー
ザとする。
As a result, the oscillation of the multi-mode semiconductor laser 1 is substantially fixed at the wavelength of the feedback beam, for example λ0, 7L, which makes it possible to perform optical communication with a single wavelength. Next, referring to FIG. 2, in a diagram illustrating the hologram recording optical system related to the production of the hologram plate 3, reference numeral 10 indicates a laser light source, and a cautery lens is placed on the emitting optical axis of the hologram recording optical system. 11, pinhole plate 12, collimator lens 13, beam fritter 1.17i, substrate 3
The hologram plates 3, etc. whose surfaces are coated with the hologram recording material 3a are arranged in order, and a mirror 15 is arranged directly above the beam splitter 14. A condensing lens 16 is disposed between the hologram plate 3 and 1-4. In the above configuration, the laser light source 10 is a gas laser with a wavelength λ() or a 1-8 body laser fixed at a wavelength λ0. shall be.

さて、レーザー光源lOを出射したビームは4物レンズ
11によりピンホール板12のビンポール12a部で集
光して点光源を形成する。このピノホール板12は必ず
しも必要とはし7ないが、ノイズを・除去する−にで効
果がある。ピンホール12aを1((1過した光はコリ
メーターレンズ13で平イテビームとなり、ビームスプ
リッタ14に達するっ該ビームスプリッタ14は上記平
行ビートを2分割する。分割さ、ttた一方は参照光R
としてホログラム板3に照射され、他方はミラー15及
び集光レンズI6を経てqλ01より発散する物体光0
となってボログラム板;3に照射さ柱る。
Now, the beam emitted from the laser light source IO is condensed by the four-object lens 11 at the bin pole 12a of the pinhole plate 12 to form a point light source. Although this Pinohole plate 12 is not necessarily necessary, it is effective in removing noise. The light that passes through the pinhole 12a becomes a flat beam through the collimator lens 13 and reaches the beam splitter 14.The beam splitter 14 divides the parallel beam into two.
, and the other is the object light 0 which diverges from qλ01 via the mirror 15 and the condensing lens I6.
As a result, the bologram plate; 3 is irradiated.

このようにして、ホログラム記録材料3α土に参照光R
及び物体光0の2光束干渉による干渉縞が記録され、ホ
ログラムが形成される3、このホログラムは、平行ビー
ムで再生する場合には、1次回折光が集束する軸外し型
のホログラムレンズトシて機能する。
In this way, the reference beam R is applied to the hologram recording material 3α.
Interference fringes due to two-beam interference of the object beam 0 and the object beam 0 are recorded, and a hologram is formed.3 When reproducing this hologram with a parallel beam, the hologram functions as an off-axis hologram lens that focuses the first-order diffracted light. do.

こうして1手製されたホログラム板3に、多モート発振
している半導体レーザ光でろる平行ビーム9を照射した
場合の作用を第3図によりさらに説明すると、1次回折
光は波長によってそれぞれ異なる位置に巣末する。
To further explain the effect when the hologram plate 3 made by hand in this way is irradiated with a parallel beam 9 of semiconductor laser light oscillating in multiple modes, the first-order diffracted light is concentrated at different positions depending on the wavelength. End.

ピンホール板7は吸光性の部材で形成さ7−しており、
ピンホール7α以外の位置に到達した光、例えCL波長
−11の光17や波長λ2の光18はそこで吸収さ扛る
か、ピンホール7a内に集束する波長λ0の九]9はミ
ラー6で反射されてホログラム板3に灰る1、そして、
この光はホログラムにより再び回折されて平行ビーム9
となって逆方向に進み半導体レーザに帰還される。従っ
て、ホログラム板:3を透過する零次光20は実質、波
長λ0の単一・波長の光束として利用できる。
The pinhole plate 7 is made of a light-absorbing material.
Light that reaches a position other than the pinhole 7α, such as the light 17 with the CL wavelength -11 or the light 18 with the wavelength λ2, is absorbed there, or the light 9 with the wavelength λ0 that is focused in the pinhole 7a is reflected by the mirror 6. 1 is reflected and ashes on the hologram plate 3, and
This light is diffracted again by the hologram and becomes a parallel beam 9
The light then travels in the opposite direction and is fed back to the semiconductor laser. Therefore, the zero-order light 20 that passes through the hologram plate 3 can be practically used as a single-wavelength light beam having the wavelength λ0.

尚、第2図により説明した記録系で作製したホログラム
は、波長λ0に対して無収差の集束回折光が得られるた
め、波長λ0に固定する様にして使用するこ吉が好まし
いが、これと異なる波長例えは波長λ1や波長λ2の光
等、各波長に応じて異なる位置に集束する各レーザ光を
、ミラー反射面の面前に配した吸光性ピンホール板7を
移動することにより所望の波長のビームの集束点にピン
ホール7αを合わせて上記所望の波長のビーノ・を半導
体レーザに帰還さぜることにより実用的な波長選択をな
、し得ることも可能である。
In addition, since the hologram produced with the recording system explained in FIG. 2 can obtain a focused diffracted light with no aberration at the wavelength λ0, it is preferable to use the hologram with the wavelength λ0 fixed. Laser beams with different wavelengths, such as light with wavelength λ1 and wavelength λ2, are focused at different positions depending on the wavelength, and are focused at the desired wavelength by moving the light-absorbing pinhole plate 7 placed in front of the mirror reflection surface. Practical wavelength selection can also be achieved by aligning the pinhole 7α with the focal point of the beam and returning the beam of the desired wavelength to the semiconductor laser.

このように、本発明は、多モート半導体し−リ゛の発振
波長制御を容易に、且つ、経済的に実施でき、又、瓜フ
!イバーと半導体レーザの組合せによる波長多重通信に
おける送信波長の選択や半導体レーザを光源とするホロ
グラフィ−におけ心、波長固定等に利用することができ
好都合である
As described above, the present invention enables easy and economical control of the oscillation wavelength of a multi-mode semiconductor device. It can be conveniently used for selecting the transmission wavelength in wavelength division multiplexing communication using a combination of a fiber and a semiconductor laser, and for fixing the wavelength in holography using a semiconductor laser as a light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光通信における本発明の詳細な説明した光学系
構成図、第2図はホログラノ、の作製光学系の構成図、
第3図は同上第を図の要部拡友図である。 3・・・ホログラム板。
Fig. 1 is a block diagram of an optical system for detailed explanation of the present invention in optical communication, and Fig. 2 is a block diagram of an optical system for producing a hologram.
Figure 3 is an enlarged view of the main part of Figure 3. 3...Hologram board.

Claims (1)

【特許請求の範囲】 1、 多モード半導体レーザを光源とする光学装置にお
いて、 該半導体レーザからの出射光の光路中に1次回折光を集
束するホログラノ・を配′し、特定波長の集束光のみを
反射させて上記半導体レーザに帰還させることを特徴と
するホログラムによる半導体レーザ発振制御方法1. 2、特許請求の範囲第1項記載のホログラムは軸外し型
のホログラムレンズであることを特徴とする ホログラ
ムによる半導体レーザ発振制御方法。 3 %許請求の範囲第1項記載のホログラムにより、波
長に応じて異々る位置に集束する各レーザ光を、反射面
の直前に配した吸光性ピンホール板を移動することによ
り選択的に半導体レーザに帰還させて波長選択自在とし
たことを特徴とする、ホログラムによる半導体レーザ発
振制御方法。
[Claims] 1. In an optical device using a multimode semiconductor laser as a light source, a hologram that focuses first-order diffracted light is arranged in the optical path of the light emitted from the semiconductor laser, and only focused light of a specific wavelength is provided. 1. A semiconductor laser oscillation control method using a hologram, characterized in that the oscillation is reflected and returned to the semiconductor laser. 2. A semiconductor laser oscillation control method using a hologram, wherein the hologram according to claim 1 is an off-axis hologram lens. 3% By using the hologram described in claim 1, laser beams focused at different positions depending on the wavelength can be selectively focused by moving a light-absorbing pinhole plate placed just in front of the reflecting surface. A semiconductor laser oscillation control method using a hologram, characterized in that wavelength can be freely selected by feeding back to the semiconductor laser.
JP15963881A 1981-10-07 1981-10-07 Control of semiconductor laser oscillation by hologram Pending JPS5860590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15963881A JPS5860590A (en) 1981-10-07 1981-10-07 Control of semiconductor laser oscillation by hologram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15963881A JPS5860590A (en) 1981-10-07 1981-10-07 Control of semiconductor laser oscillation by hologram

Publications (1)

Publication Number Publication Date
JPS5860590A true JPS5860590A (en) 1983-04-11

Family

ID=15698082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15963881A Pending JPS5860590A (en) 1981-10-07 1981-10-07 Control of semiconductor laser oscillation by hologram

Country Status (1)

Country Link
JP (1) JPS5860590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2037244A1 (en) 2007-09-14 2009-03-18 Fujinon Corporation wavefront measuring apparatus for an optical pickup apparatus
US7538890B2 (en) 2004-06-07 2009-05-26 Fujinon Corporation Wavefront-measuring interferometer apparatus, and light beam measurement apparatus and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538890B2 (en) 2004-06-07 2009-05-26 Fujinon Corporation Wavefront-measuring interferometer apparatus, and light beam measurement apparatus and method thereof
EP2037244A1 (en) 2007-09-14 2009-03-18 Fujinon Corporation wavefront measuring apparatus for an optical pickup apparatus
US7719691B2 (en) 2007-09-14 2010-05-18 Fujinon Corporation Wavefront measuring apparatus for optical pickup

Similar Documents

Publication Publication Date Title
EP0171816B1 (en) Autofocusing control system
US4532619A (en) Method and apparatus for reducing semiconductor laser optical noise
US4791650A (en) Phased-array semiconductor laser apparatus
EP0463295B1 (en) Optical pickup head
JPH0795372B2 (en) Optical head device
JPS5860590A (en) Control of semiconductor laser oscillation by hologram
JPS60157730A (en) Optical head
JPS6352342A (en) Optical pickup
JP3761060B2 (en) Waveguide type optical device and light source and optical apparatus using the same
CA2248501C (en) External resonator light source
JPS59170815A (en) Diffraction grating type optical demultiplexer
JPH0385578A (en) Hologram recorder
JPH09323184A (en) Laser beam machine
JP3526309B2 (en) Optical information recording / reproducing device
JP2542153B2 (en) Optical head device
JP2501097B2 (en) Optical head device
JP2766348B2 (en) Optical head
JP2531938B2 (en) Optical head device
JP2537338B2 (en) Optical head device
JP2531939B2 (en) Optical head device
JPS63298839A (en) Forming device for optical master disk
JPS63310194A (en) Semiconductor laser light collimating device
JPS60205567A (en) Optical apparatus
JPH0476972A (en) Semiconductor device
JPS54108602A (en) Optical reproducer