JPS585874B2 - Lightweight composite panel using asbestos cement product and its manufacturing method - Google Patents

Lightweight composite panel using asbestos cement product and its manufacturing method

Info

Publication number
JPS585874B2
JPS585874B2 JP51079517A JP7951776A JPS585874B2 JP S585874 B2 JPS585874 B2 JP S585874B2 JP 51079517 A JP51079517 A JP 51079517A JP 7951776 A JP7951776 A JP 7951776A JP S585874 B2 JPS585874 B2 JP S585874B2
Authority
JP
Japan
Prior art keywords
asbestos
slate
lightweight composite
composite panel
hydrothermal reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51079517A
Other languages
Japanese (ja)
Other versions
JPS535221A (en
Inventor
卓爾 中村
泰光 嶋田
邦昭 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP51079517A priority Critical patent/JPS585874B2/en
Publication of JPS535221A publication Critical patent/JPS535221A/en
Publication of JPS585874B2 publication Critical patent/JPS585874B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】 本発明は石綿セメント製品を使用した軽量複合パネル並
びにその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to lightweight composite panels using asbestos-cement products and methods of manufacturing the same.

近年、オートクレーブ養生気泡コンクリートAuto
cl’aved Li’ht−wei ’ht Con
crete、(以下ALCと称す)はその比重が0.5
であるから軽量にして、その気泡がほぼ独立気泡体より
なる故、熱伝導率が低いため断熱性富む。
In recent years, autoclave cured aerated concrete Auto
cl'aved Li'ht-wei'ht Con
crete (hereinafter referred to as ALC) has a specific gravity of 0.5
Therefore, it is lightweight, and since its cells are almost closed cells, its thermal conductivity is low, making it highly insulating.

又主原料が石灰質原料(生石灰あるいはセメント等)や
珪酸質原料(硅石等)であるため耐火性も良く、現場で
の施工も容易である等の多くの長所を有する故、ALC
の使用は毎年大巾の増加を示してきた。
In addition, since the main raw materials are calcareous materials (quicklime or cement, etc.) and silicic materials (silica stone, etc.), ALC has many advantages such as good fire resistance and easy construction on site.
The use of large cloth has shown an increase every year.

ところで、上述の如く多くの長所を有するALCも、基
本的には発泡体である故、比重との対比の割合において
は、強度が大であっても、末だ強度的に不允分であるか
ら、多少とも強度を必要とする箇所には鉄筋又はメタル
ラスを入れて施工してきた。
By the way, ALC, which has many advantages as mentioned above, is basically a foam, so even if its strength is high in comparison to its specific gravity, it is still inadequate in terms of strength. Since then, reinforcing bars or metal lath have been installed in places where more or less strength is required.

然し乍らALOはセメントコンクリートに比較して、ア
ルカリ性が多少低く、且つ多孔体である故、鉄筋が錆び
易い。
However, since ALO has a somewhat lower alkalinity than cement concrete and is porous, reinforcing bars are susceptible to rust.

それで鉄筋に防錆処理を施さねばならなかった。Therefore, the reinforcing steel had to be treated to prevent rust.

さらに鉄筋を補強に使用するとALOめ発泡性製造方法
の本質上、どうしても鉄筋等の挿入材の上部に巣の発生
が避けられず、従って挿入材との完全固着は不可能であ
る。
Furthermore, if reinforcing bars are used for reinforcement, due to the nature of the ALO foam manufacturing method, it is inevitable that cavities will occur above the inserts such as reinforcing bars, and therefore complete adhesion to the inserts is impossible.

尚、鉄筋等の金属性補強挿入材を使用した場合、現場施
工中に切断加工の必要が生じたとき、切断加工が非常に
困難である。
In addition, when a metallic reinforcing insertion material such as a reinforcing bar is used, it is very difficult to perform cutting when it becomes necessary to perform cutting during on-site construction.

又、鉄筋の配筋自体が切断を考慮したものでないから、
敢て切断した場合、パネル自体の曲げ強度が設計以下と
なるさらに、複合パネルの製造には、有機質もしくは無
機質の接着剤が用いられているが、いずれの場合も広い
接着表面を均一に表面処理することはきわめて厄介であ
るうえ、有機質接着剤の場合には耐火性に問題があり、
また無機質接着剤の場合には、施工方法によっては剥離
の問題を生じる。
Also, since the reinforcing bar arrangement itself is not designed with cutting in mind,
If the panel is intentionally cut, the bending strength of the panel itself will be lower than the design.Furthermore, organic or inorganic adhesives are used to manufacture composite panels, but in either case, the large adhesive surface must be uniformly treated. It is extremely troublesome to do so, and organic adhesives have problems with fire resistance.
Furthermore, in the case of inorganic adhesives, peeling problems may occur depending on the method of application.

また耐火性、接着力の優れた安価な接着剤はいまだに開
発されていないのが現状である。
Furthermore, at present, an inexpensive adhesive with excellent fire resistance and adhesive strength has not yet been developed.

本発明は、ALCの上述の如き欠点を除き、比較的強度
を必要とするところへ、その長所を一層発揮せしめる利
点の大なるALCの複合パネル及びその製造方法である
The present invention is an ALC composite panel and a method for manufacturing the same, which have the great advantage of eliminating the above-mentioned drawbacks of ALC and further demonstrating its advantages in areas that require relatively high strength.

以下に添付図面に示した実施例によって本発明を詳細に
説明する。
The present invention will be explained in detail below with reference to embodiments shown in the accompanying drawings.

第1図に示す如く、型枠13a中に石綿波形スレート1
2aを配置し、珪石、生石灰、セメントをボールミルで
微粉としたものに水とアルミ粉とを加えたALCの原料
スラリーを別途作成して前記型枠13aに注型し、適宜
時間後ケーキ状態となったものを所要寸法に切断する。
As shown in FIG. 1, asbestos corrugated slate 1 is placed in the formwork 13a.
2a, a raw material slurry for ALC is separately prepared by adding water and aluminum powder to silica stone, quicklime, and cement made into fine powder in a ball mill, and poured into the mold 13a, and after an appropriate time, it becomes a cake state. Cut the resulting material to the required size.

その後、例えば180℃10気圧の飽和水蒸気下で15
時間オートクレーブ中で養生せしめて、石綿スレートと
?ALC複合パネル10aを得る。
After that, for example, 15 minutes at 180°C under 10 atmospheres of saturated steam.
Asbestos slate and cured in an autoclave for hours? An ALC composite panel 10a is obtained.

このように、石綿スレート12aを芯材とするように型
枠13a中に配置し、これにAL(3原料のスラリーを
接触せしめて、オートクレーブ中の高渥高圧の下で養生
せしめると、前記石綿スレート中のセメント成分と、A
LC原料中のOaO及びScOとが水熱反応し、その界
面に水和物が生じ、これが両者を界面において一体的に
接合し、芯材とした石綿スレート12aとその外側に接
するALC11aとは、強固に密着し、石綿スレート1
2aを芯材とするALC複合パネル10aを得る。
As described above, when the asbestos slate 12a is placed in the formwork 13a as a core material, the slurry of AL (three raw materials) is brought into contact with this, and the asbestos slate 12a is cured under high pressure in an autoclave. Cement components in slate and A
OaO and ScO in the LC raw material undergo a hydrothermal reaction, and a hydrate is generated at the interface, which integrally joins the two at the interface, and the asbestos slate 12a serving as the core material and the ALC 11a in contact with the outside thereof are as follows. Strongly adheres to asbestos slate 1
An ALC composite panel 10a having 2a as a core material is obtained.

尚このALC複合パネル10aについて、芯材たるスレ
ート12aと外側のALC材との接着強度を調べたとこ
ろ、何れの供試片もAIC材破断として現れ、両者の完
全接着が証された。
Regarding this ALC composite panel 10a, when the adhesive strength between the core material slate 12a and the outer ALC material was examined, the AIC material appeared to be broken in all of the test pieces, proving complete adhesion between the two.

本発明の第2実施例は、第2図に示す如く型枠13bの
内側両面に石綿平板スレート12bを当接し、その間に
ALC原料たるスラリーを注型し、適宜時間後ケーキ状
となったものを、第1実施例と同様に、180℃、lO
気圧の飽和蒸気下で15時間オートクレーブ中で養生せ
しめ、両側面をスレート構造とするALC複合パネル1
0bを得た。
In the second embodiment of the present invention, as shown in FIG. 2, asbestos flat slates 12b are brought into contact with both inner surfaces of a mold 13b, and slurry as an ALC raw material is poured between them, and after a suitable period of time, it becomes cake-like. was heated to 180°C and lO as in the first example.
ALC composite panel 1 that is cured in an autoclave for 15 hours under saturated steam at atmospheric pressure and has a slate structure on both sides.
I got 0b.

この第2実施例に係るパネル10bについて、両側面の
スレート12bとALC材11bとの接着強度試験の結
果は何れもALC材破断として現れ両者の完全接着が証
された。
Regarding the panel 10b according to the second example, the results of an adhesive strength test between the slate 12b on both sides and the ALC material 11b showed that the ALC material was broken, proving complete adhesion between the two.

次で本発明の第3実施例は、芯材とするスレート中のセ
メント分のうち10重量パーセントを硅石粉で代替し、
第1実施例と同様にALC複合パネル10cを作成し、
その接着強度を調べた結果は前2回の実施例と同様であ
った。
Next, in the third embodiment of the present invention, 10 weight percent of the cement content in the slate used as the core material is replaced with silica powder,
Create an ALC composite panel 10c in the same manner as in the first embodiment,
The results of examining the adhesive strength were the same as in the previous two examples.

尚本発明に係るALC−スレート複合パネルと従来の鉄
筋補強ALCパネル及びメタルラス補強ALCパネルと
を、その曲げ強さ試験を行った結果は下記の通り。
The results of a bending strength test of the ALC-slate composite panel of the present invention, a conventional steel reinforced ALC panel, and a metal lath reinforced ALC panel are as follows.

(ひび割れを以て破壊とした)試験体:厚さ10cm、
長さ300cm、( 巾60cm
)試験方法:3等分点載荷方式 上表に示す如く、本発明に係るALC複合パネルはその
オートクレーブ養生を利用してALC原材スラリーと反
応し、水和物を生じるところのスレートを複合物とした
ことによって、鉄筋又はメタルラス等の金属補強材を使
用した場合と比較しても同等もしくはそれ以上の強度を
得ることができた。
Test specimen (destructed by cracking): 10 cm thick,
Length 300cm, width 60cm
) Test method: 3-point loading method As shown in the table above, the ALC composite panel according to the present invention uses its autoclave curing to react with the ALC raw material slurry, and converts the slate, which produces hydrates, into the composite. By doing so, we were able to obtain strength equal to or greater than that obtained when using metal reinforcing materials such as reinforcing bars or metal lath.

尚、スレート及びALCの何れか又は両者に硅石粉、フ
ライアツシュ、シリカ等の生石灰やセメントと水和物を
生成する添加物を混入(好ましくは10〜40%)する
ことによって一層強度を増大し得ることができた。
In addition, the strength can be further increased by mixing (preferably 10 to 40%) additives that form hydrates with quicklime and cement, such as silica powder, fly ash, and silica, into either or both of slate and ALC. I was able to do that.

尚、シリカは超微細シリカを使用することが強度上望ま
しい。
Note that it is desirable to use ultrafine silica as the silica in terms of strength.

本発明は上述の如く、石綿セメント系板状体を芯材もし
くは表面材とし、ALCをもって板状体を形成した構造
を特徴とする石綿セメント製品を使用した軽量複合パネ
ルであって、型枠内に石綿スレートを予め所定の位置に
配置した後、軽量複合パネルの原料スラリーを注入し、
次で前養生を施し、しかる後にオートクレーブ処理をす
ることにより、母材と石綿スレート中の組成分とを界面
で水熱反応を生じせしめ強固に一体化せしめることを特
徴とするALC製軽量複合パネルの製造方法であるから
、従来の鉄筋、メタルライス等の金属製補強材に替えて
セメントスレート板状体を使用することにより、従来の
補強材の場合の如く防錆処理の必要がなく、切断加工の
困難性もなく、且つ、石綿セメント系板状体とALCと
が強固に一体化されており、補強材との付着接着不良に
よる強度不足及び遮音性の低下を防止し得る等、従来の
欠点を一挙に解決した利点の多いものである。
As described above, the present invention is a lightweight composite panel using an asbestos-cement product characterized by a structure in which an asbestos-cement plate is used as a core material or a surface material, and the plate-like body is formed with ALC. After placing the asbestos slate in place in advance, the raw material slurry for lightweight composite panels is injected,
A lightweight composite panel made of ALC characterized in that it is pre-cured and then autoclaved to cause a hydrothermal reaction between the base material and the components in the asbestos slate at the interface, resulting in a strong integration. By using cement slate plates instead of conventional metal reinforcing materials such as reinforcing bars and metal rice, there is no need for anti-rust treatment as with conventional reinforcing materials, and cutting is easy. There is no difficulty in processing, and the asbestos-cement plate and ALC are strongly integrated, which prevents insufficient strength and deterioration of sound insulation due to poor adhesion with reinforcing materials. It has many advantages and solves all the disadvantages all at once.

尚、本ALC複合パネルの形状構造は、第1図及び第2
図に示すものに限ることなく、第3図に示す如く、波形
スレート板12cを芯材とし上面及び下面に異形スレー
ト板12c,12c’で覆ったもの及び、第4図に示す
如く全表面を全て石綿スレート板で覆ったもの等、必要
に応じた形状構造があることは云う迄もない。
The shape and structure of this ALC composite panel are shown in Figures 1 and 2.
It is not limited to what is shown in the figure, but as shown in FIG. 3, the core material is a corrugated slate board 12c and the upper and lower surfaces are covered with deformed slate boards 12c, 12c', and as shown in FIG. 4, the entire surface is covered with Needless to say, there are various shapes and structures depending on needs, such as those covered with asbestos slate boards.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は波形スレート板を芯材とした本発明に係る軽量
複合パネル斜視図。 第2図は平板スレートを両側面に使用したときの斜視図
、第3図は芯材と上下面にスレート板を使用した場合に
して第4図は全表面にスレート板状体を使用した場合の
斜視図である。 10=軽量複合パネル、11=芯材としたスレート板、
12一側面に使用したスレート平板、13一上下面に使
用した異形スレート板。
FIG. 1 is a perspective view of a lightweight composite panel according to the present invention using a corrugated slate board as a core material. Figure 2 is a perspective view when flat slate is used on both sides, Figure 3 is when slate plates are used for the core and upper and lower surfaces, and Figure 4 is when slate plates are used on the entire surface. FIG. 10 = lightweight composite panel, 11 = slate board as core material,
12 A flat slate plate used for one side, 13 A irregularly shaped slate plate used for the top and bottom sides.

Claims (1)

【特許請求の範囲】 1 石綿セメント系板状体を芯材もしくは表面材とし、
該石綿セメント系板状体とオートクレーブ養生気泡コン
クリート板状体とが、両者の界面において水熱反応によ
る一体的な積層板状体とした構造を特徴とする石綿セメ
ント製品を使用した軽量複合パネル。 2 硅石粉、フライアソシュ、シリカ等を混入した石綿
セメント系板状体を使用した第1項記載の石綿セイント
製品を使用した軽量複谷バネル。 3 型枠内に石綿スレート板を予め所定の位置に配置し
た後、前記スレート板との界面において水熱反応を生じ
る軽量複合パネルの原料たるスラリーを該型枠内に注入
し、次で前養生を施し、しかる後に高淵高圧処理である
オートクレーブ処理をすることにより、前記スラリーた
る母材と石綿スレート中の組成分とを界面で水熱反応を
生じせめ強固に一体化せしめることを特徴とするオート
クレーブ養生気泡コンクリート製軽量複合パネルの製造
方法。 4 硅石粉、フライアツシュ、シリカ等、水熱反応によ
り強固な硬化体を形成し得る無機質添加材を加えた石綿
スレートを使用する第3項記載の軽量複合パネルの製造
方法。
[Claims] 1. An asbestos-cement plate-like material is used as a core material or a surface material,
A lightweight composite panel using an asbestos-cement product characterized by a structure in which the asbestos-cement plate and the autoclave-cured aerated concrete plate form an integral laminated plate through a hydrothermal reaction at the interface between the two. 2. A lightweight multi-valley panel using the asbestos saint product described in item 1, which uses an asbestos-cement plate mixed with silica powder, fly assosh, silica, etc. 3. After asbestos slate boards are placed at predetermined positions in the formwork, slurry, which is the raw material for lightweight composite panels that causes a hydrothermal reaction at the interface with the slate board, is injected into the formwork, followed by pre-curing. and then autoclave treatment, which is Takafuchi high-pressure treatment, to cause a hydrothermal reaction between the slurry base material and the components in the asbestos slate at the interface, so that they are firmly integrated. Method of manufacturing lightweight composite panels made of autoclaved aerated concrete. 4. The method for producing a lightweight composite panel according to item 3, which uses asbestos slate containing an inorganic additive such as silica powder, fly ash, silica, etc. that can form a strong hardened body through a hydrothermal reaction.
JP51079517A 1976-07-06 1976-07-06 Lightweight composite panel using asbestos cement product and its manufacturing method Expired JPS585874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51079517A JPS585874B2 (en) 1976-07-06 1976-07-06 Lightweight composite panel using asbestos cement product and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51079517A JPS585874B2 (en) 1976-07-06 1976-07-06 Lightweight composite panel using asbestos cement product and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS535221A JPS535221A (en) 1978-01-18
JPS585874B2 true JPS585874B2 (en) 1983-02-02

Family

ID=13692158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51079517A Expired JPS585874B2 (en) 1976-07-06 1976-07-06 Lightweight composite panel using asbestos cement product and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS585874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230034231A1 (en) * 2020-05-27 2023-02-02 Mitsubishi Electric Corporation Vehicle steering system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712835A (en) * 1980-06-28 1982-01-22 Satake Eng Co Ltd Feeder for humidified air

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4520776Y1 (en) * 1966-04-05 1970-08-19
JPS491611A (en) * 1972-04-19 1974-01-09
JPS5113827A (en) * 1974-07-24 1976-02-03 Choichiro Hasumi Keiryokazaino konnyuhoho

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4520776Y1 (en) * 1966-04-05 1970-08-19
JPS491611A (en) * 1972-04-19 1974-01-09
JPS5113827A (en) * 1974-07-24 1976-02-03 Choichiro Hasumi Keiryokazaino konnyuhoho

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230034231A1 (en) * 2020-05-27 2023-02-02 Mitsubishi Electric Corporation Vehicle steering system

Also Published As

Publication number Publication date
JPS535221A (en) 1978-01-18

Similar Documents

Publication Publication Date Title
US4372092A (en) Precast concrete modular building panel
US5268226A (en) Composite structure with waste plastic core and method of making same
US5209968A (en) Composite structure with waste plastic core and method of making same
CN102155070B (en) Heat-preserving and fire-proof composite plate with light weight and producing method thereof
US4259824A (en) Precast concrete modular building panel
EP3308917B1 (en) Building material and method for producing building material
CN110776301B (en) Microwave modified inorganic cementing material, preparation method and application thereof
KR20190011861A (en) A method of manufacturing a board using bottom ash, and a board manufactured thereby
US3261894A (en) Method of manufacturing foamed silicate structures
CN109572090B (en) Thermal insulation material and preparation method thereof
JPS585874B2 (en) Lightweight composite panel using asbestos cement product and its manufacturing method
CN217105608U (en) Aerogel insulation board
CN212534871U (en) Heat preservation and decoration integrated composite board
JPS5957941A (en) Reinforced calcium silicate board
KR950008608B1 (en) Process for producing structural material of lightweight panel
SU1539067A1 (en) Method of producing three-layer panels
JPS59107985A (en) Manufacture of floor board
WO1985004164A1 (en) Blocks, beams, pipes and building elements that can be sawn and nailed
CZ328899A3 (en) Building element and process for producing thereof
CN110228971B (en) Glass fiber three-dimensional reinforced light cement batten
KR102343104B1 (en) Method for constructing high-strength mortar panel for reducing floor impact sound in apartment houses
JP2006175773A (en) Autoclaved lightweight concrete panel
CN114961028A (en) Heat-insulating wall and manufacturing process thereof
Zach et al. DEVELOPMENT OF ADVANCED THERMAL AND ACOUSTIC INSULATION MATERIALS BASED ON FOAM GLASS AGGREGATE
SU1712188A1 (en) Method for production of laminated structures