JPS5858428A - Three-wire temperature sensor - Google Patents

Three-wire temperature sensor

Info

Publication number
JPS5858428A
JPS5858428A JP15796181A JP15796181A JPS5858428A JP S5858428 A JPS5858428 A JP S5858428A JP 15796181 A JP15796181 A JP 15796181A JP 15796181 A JP15796181 A JP 15796181A JP S5858428 A JPS5858428 A JP S5858428A
Authority
JP
Japan
Prior art keywords
temperature
constant current
current source
resistor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15796181A
Other languages
Japanese (ja)
Inventor
Yutaka Nakamura
豊 中村
Yoshio Igari
猪狩 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP15796181A priority Critical patent/JPS5858428A/en
Publication of JPS5858428A publication Critical patent/JPS5858428A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/206Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit in a potentiometer circuit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PURPOSE:To measure the temperature with a high precision, by connecting the first constant current source, the second constant current source, and a thermometric resistor and combining a resistance, which shows the same resistance value as the thermometric resistor at a prescribed temperature, with this series circuit. CONSTITUTION:In a temperature sensor 20, a constant current circuit consists of the first constant current source 21, the second constant current source 22, connecting lines 61-63, a thermometric resistor 5 (temperature coefficient alpha), and a standard resistance 4 (which shows the same resistance value as the resistor 5 at 0 deg.C). When resistance values of connecting lines 61-63 are denoted as (r) and the potential of a terminal 23 is denoted as Vx, the potential Vx is expressed by formulaI. If conditions are so set to satisfy I2=2I1, I is Vx=alphaTI1. Since currents supplied from constant current sources 21 and 22 are constant independently of temperature, the bias of a differential amplifier 9 is not changed and the gain is not changed even if the temperature of an environment where the resistor 5 is placed. As a result, a high-precision temperature measurement dependent upon only temperature and a temperature coefficient is possible.

Description

【発明の詳細な説明】 本発明は、配線抵抗が測定値に影響をおよばさない31
!1式In度センサに関するものである。
[Detailed Description of the Invention] The present invention is characterized in that wiring resistance does not affect measured values.
! This relates to a Type 1 In degree sensor.

一般に、物体の温度測定を行う場合、測定場所は物体の
設置場所から離れていることが多い。このため、被測定
個所に測温抵抗体を取付け、この測温抵抗体と温度セン
サ本体とを接続線によって接続している。この時、接続
線の配線抵抗が測定値に影響をおよぼさないようにする
ため、測温抵抗体を3本の接続線によって接続する3線
式温度七ンサが用いられる。
Generally, when measuring the temperature of an object, the measurement location is often far from the installation location of the object. For this reason, a resistance temperature detector is attached to the location to be measured, and the resistance temperature detector and the temperature sensor body are connected by a connecting wire. At this time, in order to prevent the wiring resistance of the connection wires from affecting the measured value, a three-wire temperature sensor is used in which the resistance temperature detectors are connected by three connection wires.

第1図は従来から用いられている3線式温度センサの一
例を示す回路図である。同図において1は温度センサで
あって、抵抗2〜4、測温抵抗体5、およびこの測温抵
抗体5に接続される接続線61〜63とから構成されて
いる。なお接続線@1〜61は図上には抵抗として示し
ている。
FIG. 1 is a circuit diagram showing an example of a conventional three-wire temperature sensor. In the figure, reference numeral 1 denotes a temperature sensor, which is composed of resistors 2 to 4, a resistance temperature detector 5, and connection lines 61 to 63 connected to the resistance temperature detector 5. Note that the connection lines @1 to 61 are shown as resistors in the diagram.

この場合、測温抵抗体5は下記の抵抗値を有している。In this case, the resistance temperature detector 5 has the following resistance value.

R=R・+αT R;測温抵抗体5がT℃の雰囲気に置かれた時に示す抵
抗値2、  ゛ R・:測温抵抗体5が所定温度の雰囲気に置かれた時に
示す抵抗値。
R=R・+αT R: Resistance value 2 when the resistance temperature detector 5 is placed in an atmosphere at T° C.; ゛R・: Resistance value when the resistance temperature detector 5 is placed in an atmosphere at a predetermined temperature.

α:S+a抵抗体5の温度係数。α: Temperature coefficient of S+a resistor 5.

T:測温抵抗体5が置かれている雰囲気を摂氏で表わし
た温度。
T: Temperature expressed in degrees Celsius of the atmosphere in which the resistance temperature detector 5 is placed.

そ1.て、抵抗4の抵抗値は測温抵抗体5が0℃の時に
示す抵抗値R・と等しい抵抗値を有するものとし、接続
線6に−6−はそれぞれ同一の抵抗値rを有するものと
なるように構成する。tた、抵抗2と3は同一の抵抗値
とする。
Part 1. It is assumed that the resistance value of the resistor 4 is equal to the resistance value R of the resistance temperature detector 5 when the temperature is 0°C, and that the connecting wires 6 and 6 have the same resistance value r. Configure it so that Furthermore, resistors 2 and 3 have the same resistance value.

このように構成され九従来の3線式温度センナに電圧E
を有する電源Tを接続し、接続点1aと1b間に発生す
る検出信号を差動増幅器9および抵抗10〜12から構
成される増幅回路で増幅する。
Thus configured, nine conventional three-wire temperature sensors have a voltage E
The detection signal generated between the connection points 1a and 1b is amplified by an amplifier circuit composed of a differential amplifier 9 and resistors 10 to 12.

この場合、測温抵抗体5が0℃の雰囲気の中に置かれた
時は、接続線・lおよび6mに流れる電流は勢しいので
接続線@1と6mでの電圧降下紘等しくなる。このため
、接紛線61 と6sでの電圧降下は打消され、差動増
幅器9のバイアスに影響を与え々い。
In this case, when the temperature sensing resistor 5 is placed in an atmosphere at 0° C., the current flowing through the connecting wires @1 and 6m is strong, so that the voltage drops across the connecting wires @1 and 6m are equal. Therefore, the voltage drop across the connecting wires 61 and 6s is canceled out and does not affect the bias of the differential amplifier 9.

しかしながら、測温抵抗体5が0℃以外の雰囲気の中に
置かれた時、測仁抵抗体5は抵抗値が便化するので、接
続線61 と63の電圧降下は同一ではなくなり、差動
増幅器9のバイアス電圧が変化して、測定精度が悪く々
ってしまう。
However, when the resistance temperature detector 5 is placed in an atmosphere other than 0°C, the resistance value of the resistance temperature detector 5 decreases, so the voltage drops across the connection lines 61 and 63 are no longer the same, and the differential The bias voltage of the amplifier 9 changes, resulting in poor measurement accuracy.

そして、接続線6sは差動増幅器9の帰還路に直列に挿
入されているため、接続線61〜6sを長さの異なった
ものに交換した時などのように、接続線6■の抵抗値が
変った時は差動増幅器9の帰還路の抵抗比が変るため、
差動増幅器9の利得が変化してしまい測定値に影響を与
えてしまう。
Since the connecting wire 6s is inserted in series in the feedback path of the differential amplifier 9, when the connecting wires 61 to 6s are replaced with ones of different lengths, the resistance of the connecting wire 6■ When changes, the resistance ratio of the feedback path of the differential amplifier 9 changes, so
The gain of the differential amplifier 9 changes, which affects the measured value.

このように従来の3線式温度センサは、測温抵抗体を接
続する接続線の影響によって検出信号を増幅する増幅器
のバイアス電圧が変化したり、利得が変化するため測定
精度が□悪くなってしまう欠点を有してい九。
In this way, with conventional three-wire temperature sensors, measurement accuracy deteriorates because the bias voltage of the amplifier that amplifies the detection signal changes and the gain changes due to the influence of the connection wire that connects the resistance temperature detector. It has some drawbacks.

したがって本発明の目的は、測温抵抗体を線銃するI!
続線が測定精度に影響を与え表い3It式温度センサを
提供することにおる。
Therefore, it is an object of the present invention to produce an I!
The connection wires affect the measurement accuracy and are intended to provide a 3It type temperature sensor.

このような目的を達成するために、本発明は測温抵抗体
の一端に第1の定電流源、他端には仁の第1の定電流源
の2倍の電流を供給する第2の定電流源を接続すると共
に、測温抵抗体と第2の定電流源との接続点と所定電位
間に測温抵抗体が所定温度の時に示す抵抗値と同一抵抗
値を有する抵抗を接続したものである。以下実施例を示
す図を用いて本発明の詳細な説明する。
In order to achieve such an object, the present invention provides a first constant current source at one end of the resistance temperature detector, and a second constant current source at the other end that supplies a current twice that of the first constant current source. In addition to connecting a constant current source, a resistor having the same resistance value as the resistance value exhibited by the resistance temperature detector at a predetermined temperature was connected between the connection point of the resistance temperature detector and the second constant current source and a predetermined potential. It is something. The present invention will be described in detail below using figures showing examples.

第2図は本発明の一実施例を示す回路図であシ、第1図
と同一部分および相当部分は同記号を用いている。同図
において、20杜温度センサであ)、21社第1の定電
流源、22は第2の定電流源である。そして、第1の定
電流源21の一端は第1の電位である+12VK*続さ
れ、第2の定電流1122の一端は第2の電位である一
12Vに接続され、第20定電流源22は第1の定電流
源2102倍の電流を供給するように構成されている。
FIG. 2 is a circuit diagram showing one embodiment of the present invention, and the same symbols are used for the same parts and corresponding parts as in FIG. 1. In the figure, 20 is a temperature sensor), 21 is a first constant current source, and 22 is a second constant current source. One end of the first constant current source 21 is connected to the first potential of +12VK*, one end of the second constant current source 1122 is connected to the second potential of -12V, and the second constant current source 21 is connected to the second potential of -12V. is configured to supply a current twice as large as that of the first constant current source.

鷹九、抵抗4の一端社所定の電位、例えばアース電位に
接続されている。23〜2!1は端子であって、測温抵
抗体5は長い接c線61〜6Iによってこの端子23〜
25に接続される。なお、差動増幅器9には3@式温度
センサ20に供給する電位を共用して使用することがで
きる。
One end of the resistor 4 is connected to a predetermined potential, for example, ground potential. 23~2!1 are terminals, and the resistance temperature detector 5 is connected to these terminals 23~2!1 by long tangent c wires 61~6I.
25. Note that the differential amplifier 9 can share the potential supplied to the 3@ type temperature sensor 20.

抵抗4は一端がアース電位に接続されているので端子2
3の電位は次のようになる。
Since one end of resistor 4 is connected to ground potential, terminal 2
The potential of 3 is as follows.

Vx=(Re+aT+r)Ix+(Ro+r)(It−
Is)・・―・(1) 但し、 Vx:端子23の電位、 r :接続1fiA 6 t〜6sが有する抵抗値、I
l ;定電流源21から祖給される電流、Is :定電
流源22から供給される電流、ここで l5w2Il @・・・・−・・嗜・・−・・(2とな
る−ように条件を設定すれば(1)式は(3)式のよう
に変形でき不−6 VX=(RO+αT+r)h+(Re+r)(Il 2
It)=R@It+IXTIt+r11 RoIt  
rTw=αTIl*see**s*#@@ll”e@(
3)この結果、第2図の回路において、定電流源22か
ら供給する電流ニ1を定電流源21から供給する電流ニ
1の2倍となるように設定して、接続線@1〜6・の抵
抗値が同一となるようにすれば、測温抵抗体5の置かれ
る雰囲気の温度が変っても差動増幅器Sのバイアスを変
化させることもなく、を九接続ms1〜・$の長さが変
っても差動増幅器lの利得も変化することがないので、
精度の曳い測定をすることができる。
Vx=(Re+aT+r)Ix+(Ro+r)(It-
Is) --- (1) However, Vx: potential of terminal 23, r: resistance value of connection 1fiA6t~6s, I
l: Current supplied from the constant current source 21, Is: Current supplied from the constant current source 22, where l5w2Il If you set , equation (1) can be transformed into equation (3).
It)=R@It+IXTIt+r11 RoIt
rTw=αTIl*see**s*#@@ll”e@(
3) As a result, in the circuit shown in FIG. 2, the current N1 supplied from the constant current source 22 is set to be twice the current N1 supplied from the constant current source 21, and the connecting wires @1 to 6 If the resistance values of ・ are made to be the same, the bias of the differential amplifier S will not change even if the temperature of the atmosphere in which the resistance temperature detector 5 is placed changes, and the length of 9 connections ms1 to ・$ Since the gain of the differential amplifier l does not change even if the
Accuracy can be measured.

定電流源21および22は例えば第3図のような構成と
なっておシ、差動増幅器31,32はツェナーダイオー
ド33.34および抵抗35によって非反転入力端に供
給される電圧と、抵抗36および可変抵抗3Tを介して
反転入力端に供給される電圧に応じて、トランジスタ3
8および3−のベースに所定の電圧を供給する。そして
この電圧の供給されたトランジスタ38.38によって
電流INおよびhが所定値に制御される。この締、可変
抵抗3Tを調節して電流ニーを電流X102倍となるよ
うにすれば、前記(2)式の条件を設定することができ
る。
For example, the constant current sources 21 and 22 have a configuration as shown in FIG. and the voltage supplied to the inverting input terminal via the variable resistor 3T, the transistor 3
A predetermined voltage is supplied to the bases of 8 and 3-. The currents IN and h are controlled to predetermined values by the transistors 38 and 38 supplied with this voltage. By adjusting the variable resistor 3T so that the current knee becomes 102 times the current X, the condition of equation (2) can be set.

このように構成された回路において、例えば電流IIが
平衡状態よシ大きくなれば、抵抗36の電圧降下が大き
くなシ、差動増幅器31の反転入力端の電圧が小さくな
る。この結果、差動増幅器31の出力電圧は上昇するO
で、トランジスタ38はベース・エミッタ間電圧が小さ
くなシミ流Ilを減少させるように動作する。
In a circuit configured in this manner, for example, if the current II becomes larger than in the balanced state, the voltage drop across the resistor 36 becomes large and the voltage at the inverting input terminal of the differential amplifier 31 becomes small. As a result, the output voltage of the differential amplifier 31 increases
In this case, the transistor 38 operates to reduce the stain current Il having a small base-emitter voltage.

また、電流ニ1が平衡状態よシ減少すると、トランジス
タ38は前記と反対に、゛シ流IIを増加させるように
動作するので、電流IIは常に一定電流に保たれる。こ
れは、電流Isについても全く同様である。
Furthermore, when the current N1 decreases from the equilibrium state, the transistor 38 operates to increase the current II, contrary to the above, so that the current II is always kept constant. This is exactly the same for the current Is.

以上説明したように本発明に係る3線式温度センサは測
温抵抗体の一端に第1の定′心tel; r’11%仙
端にはこの第1の定電流源の2倍の電流を供給する第2
の定電流源を接続すると共に、測温抵抗体と第2の定電
流源との接続点と所定電位間に側温抵抗体が所定温度の
時に示す抵抗値と同一の抵抗値を有する抵抗を接続した
ものであるから、測温抵抗体を接続する接続線の影響に
よって検出信号を増幅する増幅器のバイアス電圧が変化
したシ、利得が変化したシしないため、精度のよい温度
測蝋が行える優れた効果を有する。
As explained above, the three-wire temperature sensor according to the present invention has a first constant current source tel at one end of the resistance temperature detector; The second supplying
A constant current source is connected, and a resistor having the same resistance value as the resistance value shown when the side temperature resistor is at a predetermined temperature is connected between the connection point of the resistance temperature detector and the second constant current source and a predetermined potential. Because it is connected, the bias voltage of the amplifier that amplifies the detection signal does not change due to the influence of the connecting wire that connects the resistance temperature sensor, and the gain does not change, making it possible to measure temperature with high accuracy. It has a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来から用いられている温度センナの一例を示
す回路図、第2図は本発明の一実施例を示す回路図、第
3図は第2図に示した定電流源の一実施例を示す回路図
である。 4、 11. 1.2−・譬・抵抗、5・・・・側温抵
抗体、611Fp@I””接続線、1ees・差動増幅
器、20・・・・3線式温度センサ、21.22・・・
・定電流源。 %軒出願人  山武ハネウェル株式会社代通人 山用政
1it(ほか1名) 第1図 第2図 第3図
Fig. 1 is a circuit diagram showing an example of a conventionally used temperature sensor, Fig. 2 is a circuit diagram showing an embodiment of the present invention, and Fig. 3 is an implementation of the constant current source shown in Fig. 2. FIG. 2 is a circuit diagram showing an example. 4, 11. 1.2-・Resistance, 5・・Side temperature resistor, 611Fp@I"” connection line, 1ees・Differential amplifier, 20...3-wire temperature sensor, 21.22...
・Constant current source. %ken Applicant Yamatake Honeywell Co., Ltd. agent Masa Yamayo 1it (and 1 other person) Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 一端が第1の電位に接続された第1の定電流源と、所定
の温度係数を有する測温抵抗体と、その測温抵抗体の一
端と前記第1の定電流源の他端とを接続する第1の接続
線と、一端が第2の電位に接続され前記第1の定電流源
の2倍の電流を供給する第2の定電流源と、一端が所定
の電位に接続され、前記測温抵抗体が所定温度の時に示
す抵抗値と等しい抵抗値を有する抵抗と、前記側温抵抗
体の他端と前記抵抗9他端とを接続する第1の接続線と
同一の抵抗値を有する第2の接続線と、前記測温抵抗体
O他端と前記第2の定電流源の他端とを接続する第1の
接続線と同一の抵抗値を有すゐ第3の接続線とで構成膚
れ、前記所定電位と、前記第4の定電流源と前記第1の
接続線の接続点との関に発生する信号を検出信号として
使用することを特徴とする3線式亀度センサ。
A first constant current source whose one end is connected to a first potential, a temperature measuring resistor having a predetermined temperature coefficient, and one end of the temperature measuring resistor and the other end of the first constant current source. a first connection line to be connected, a second constant current source having one end connected to a second potential and supplying a current twice that of the first constant current source, and one end connected to a predetermined potential; A resistor having a resistance value equal to the resistance value that the temperature measuring resistor exhibits when the temperature is at a predetermined temperature, and a resistance value that is the same as that of a first connection line connecting the other end of the side temperature resistor and the other end of the resistor 9. and a third connection having the same resistance value as the first connection line connecting the other end of the temperature sensing resistor O and the other end of the second constant current source. A three-wire system comprising a wire, and a signal generated between the predetermined potential and a connection point between the fourth constant current source and the first connection line is used as a detection signal. Turtle sensor.
JP15796181A 1981-10-02 1981-10-02 Three-wire temperature sensor Pending JPS5858428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15796181A JPS5858428A (en) 1981-10-02 1981-10-02 Three-wire temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15796181A JPS5858428A (en) 1981-10-02 1981-10-02 Three-wire temperature sensor

Publications (1)

Publication Number Publication Date
JPS5858428A true JPS5858428A (en) 1983-04-07

Family

ID=15661231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15796181A Pending JPS5858428A (en) 1981-10-02 1981-10-02 Three-wire temperature sensor

Country Status (1)

Country Link
JP (1) JPS5858428A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127843A (en) * 1984-11-22 1986-06-16 Nippon Mining Co Ltd Titanium alloy having superior corrosion resistance
FR2672747A1 (en) * 1991-02-11 1992-08-14 Ecia Equip Composants Ind Auto CONTROL AND REGULATION CIRCUIT FOR ELECTRONICALLY SWITCHED ELECTRIC MOTOR.
CN107505061A (en) * 2017-04-14 2017-12-22 北京机械设备研究所 A kind of platinum resistance temperature measuring device in double-current source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950973A (en) * 1972-09-14 1974-05-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950973A (en) * 1972-09-14 1974-05-17

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127843A (en) * 1984-11-22 1986-06-16 Nippon Mining Co Ltd Titanium alloy having superior corrosion resistance
JPS6220268B2 (en) * 1984-11-22 1987-05-06 Nippon Mining Co
FR2672747A1 (en) * 1991-02-11 1992-08-14 Ecia Equip Composants Ind Auto CONTROL AND REGULATION CIRCUIT FOR ELECTRONICALLY SWITCHED ELECTRIC MOTOR.
CN107505061A (en) * 2017-04-14 2017-12-22 北京机械设备研究所 A kind of platinum resistance temperature measuring device in double-current source

Similar Documents

Publication Publication Date Title
CA1048622A (en) Transistor pair temperature sensor
US7775711B2 (en) Temperature measurement device and measurement method
JP3399953B2 (en) Pressure sensor
JPH09504373A (en) Two-terminal temperature sensitive device with a circuit that controls the total operating current so as to be linearly proportional to temperature
US3613454A (en) Platinum resistance thermometer circuit
US3913403A (en) Temperature measurement with three-lead resistance thermometers by dual constant current method
US4109196A (en) Resistance measuring circuit
JPS5985926A (en) Resistance thermometer
KR900005880B1 (en) Thermo-water meter
US3805616A (en) Temperature measuring apparatus
US3651696A (en) Linearized resistance bridge circuit operable in plurality from a common power supply
JPH09105681A (en) Temperature measuring circuit
JPS5858428A (en) Three-wire temperature sensor
JPH07117436B2 (en) Thermal flow sensor
JP2656669B2 (en) Thermal air flow meter that also functions as a temperature measurement meter
JP2890676B2 (en) IC type temperature detector
US3478588A (en) Cardiac output meter
JPS6336447B2 (en)
JPH09105680A (en) Temperature measuring circuit
JPS625291B2 (en)
JPS6228627A (en) Temperature compensating circuit for three-wire resistance type temperature sensor
JPS5937711Y2 (en) temperature measurement circuit
JP2610736B2 (en) Amplification compensation circuit of semiconductor pressure sensor
JPS625292B2 (en)
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it