JPS5858416A - Ultrasonic measuring device for velocity of flow - Google Patents

Ultrasonic measuring device for velocity of flow

Info

Publication number
JPS5858416A
JPS5858416A JP56157870A JP15787081A JPS5858416A JP S5858416 A JPS5858416 A JP S5858416A JP 56157870 A JP56157870 A JP 56157870A JP 15787081 A JP15787081 A JP 15787081A JP S5858416 A JPS5858416 A JP S5858416A
Authority
JP
Japan
Prior art keywords
transmitter
sing
flow
transmitted
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56157870A
Other languages
Japanese (ja)
Other versions
JPS63723B2 (en
Inventor
Goro Izumi
出水 五郎
Hisami Hayakawa
早川 向海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP56157870A priority Critical patent/JPS5858416A/en
Publication of JPS5858416A publication Critical patent/JPS5858416A/en
Publication of JPS63723B2 publication Critical patent/JPS63723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To eliminate errors in measurement with respect to the change in velocity of flow with time and to measure always the accurate velocity of flow continuously by making common use of one set of wave transmitter and receivers in plural sing-around systems and transmitting and receiving the ultrasonic wave pulses in the flow direction of fluid and in the direction opposite therefrom simultaneously. CONSTITUTION:The pulse signals of frequencies f1 and f2 are transmitted through respective hybrid transformers HYB to wave transmitters and receivers 41a and 41b. After the dignal f1 is converted to ultrasonic wave pulses with the transmitter and receiver 41a, the pulses are transmitted to the transmitter and receiver 41b. Similarly the signal f2 is transmitted to the transmitter and receiver 41a after conversion. The pulses received in the transmitter and receivers 41b and 41a are converted to electric signals which are transmitted through the respective HYBs to sing-around systems 20 and 30. The signal f1 is transmitted through a BPF22, an amplifier 23, a detector 24 and a waveform shaping circuit 25 to a signal transmitter 21 and a counter circuit 44 to count up the circuit 44 by one. The signal f2 counts up the circuit 45 similarly. The respective count values are subtracted by repetition of such operations for a prescribed time, whereby the velocity of flow of fluid 10 is determined.

Description

【発明の詳細な説明】 本発明はシングアラウンド法により液体、気体等の流通
を測定する装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an apparatus for measuring the flow of liquid, gas, etc. by the sing-around method.

従来のシングアラウンド法による流速測定装置を第1図
に示す。図中、■は波4彫型形回路2と送信器3と受信
器4と増幅器5よシなるシングアラウンド系、6は送受
切替回路、7は切換スイッチ、8a、8bは超音波の送
受波器、9はアップ・ダウンカウンタである。このよう
な装置において、まず送信器3と送受波器8a。
FIG. 1 shows a conventional flow velocity measuring device using the single-around method. In the figure, ■ is a sing-around system consisting of wave 4 shaped circuit 2, transmitter 3, receiver 4, and amplifier 5, 6 is a transmission/reception switching circuit, 7 is a changeover switch, and 8a and 8b are ultrasonic transmission/reception waves. 9 is an up/down counter. In such a device, first, the transmitter 3 and the transducer 8a.

受信器4と送受波器8b’tそれぞれ接続する如く送受
切替回路6を動作させ、これに連動して切換スイッチ7
をアップ・ダウンカウンタ9のアップ入力端子に接続す
る。送信器3で発生したパルス信号は送受波器84で超
音波ノソルスに変換され、流体10の流れの方向Aと同
方向に送受波器8bに向けて送出される。送受波器8b
にて受信された超音波パルスは再度電気信号に変換され
、受信器4.増幅器5にて増幅され、更に波形整形回路
2にて波形整形された後、アップ・ダウンカウンタ9及
び送信器3へ送出され、アップ・ダウンカウンタ9をカ
ウントアツプするとともに送信器3をトリガし再度パル
ス信号を発生させる。以下、上記同様の動作を所定時間
縁シ返した後、送受切替回路6及び切換スイッチ7を切
替えて送受波器8bよシ流体10の流れの方向Aに逆っ
て超音波パルスを送受波器8aへ向けて送出する如くな
し、上記同様の動作ニよシアラグ・ダウンカウンタ9の
内容を所定時間カウントダウンする。而してアップ・ダ
ウンカウンタ9の内容す竜゛わち流体10の流れと同方
向に超音波パルスを送出した場合と流れに逆って超音波
パルスを送出した場合のシングアラウンド周波数の差か
ら流速を算出する如くなっている。
The transmitter/receiver switching circuit 6 is operated so that the receiver 4 and the transducer 8b't are connected, and the selector switch 7 is operated in conjunction with this.
is connected to the up input terminal of the up/down counter 9. The pulse signal generated by the transmitter 3 is converted into an ultrasonic wave by the transducer 84, and is sent toward the transducer 8b in the same direction as the flow direction A of the fluid 10. Transducer/receiver 8b
The ultrasonic pulses received by the receiver 4. are converted into electrical signals again. After being amplified by the amplifier 5 and further waveform-shaped by the waveform shaping circuit 2, it is sent to the up/down counter 9 and the transmitter 3, which increments the up/down counter 9 and triggers the transmitter 3 again. Generate a pulse signal. Thereafter, after repeating the same operation as described above for a predetermined period of time, the transmission/reception switching circuit 6 and the changeover switch 7 are switched to transmit ultrasonic pulses from the transducer 8b to the transducer 8b in the opposite direction of the flow direction A of the fluid 10. In the same manner as above, the contents of the shear lag down counter 9 are counted down for a predetermined period of time. Therefore, the contents of the up/down counter 9 are calculated based on the difference in the sing-around frequency when the ultrasonic pulse is sent in the same direction as the flow of the fluid 10 and when the ultrasonic pulse is sent out against the flow. It is designed to calculate the flow velocity.

第2図は従来の他の流速測定装置を示すもので、第2図
中、11は減算器、12,13はカウンタ、14,15
は第1図のシングアラウンド系1と同様な構成をそれぞ
れ有するシングアラウンド系(υ、(2八 16 a 
r 16 bはシングアラウンド系(υに接続した超音
波の送受波器、17a、17bはシングアラウンド系(
2)に接続した送受波器であシ、シングアラウンド系(
1)は送受波器16aと送受波器16b間で流体10の
流れの方向Aと同方向に超音波パルス全送受信しカウン
タ12をカウントアツプし、クングアラウンド系(2)
は送受波器17aと送受波器17b間で流体10の流れ
の方向Aと反対の方向に超音波パルスを送受信しカウン
タ13をカウントアツプし、該カウンタ12と13の計
数値を減算器11で減算し、シングアラウンド周波数の
差を求め、流速を得る如くなっている。
Fig. 2 shows another conventional flow rate measuring device, in which 11 is a subtracter, 12, 13 are counters, 14, 15
are sing-around systems (υ, (28 16 a
r 16 b is the sing-around system (ultrasonic transducer connected to υ, 17a and 17b are the sing-around system (
2) with a transducer connected to the sing-around system (
In 1), all ultrasonic pulses are transmitted and received between the transducer 16a and the transducer 16b in the same direction as the flow direction A of the fluid 10, and the counter 12 is counted up.
transmits and receives ultrasonic pulses between the transducer 17a and the transducer 17b in the direction opposite to the flow direction A of the fluid 10, counts up the counter 13, and calculates the counted values of the counters 12 and 13 using the subtracter 11. The flow velocity is obtained by subtracting and finding the difference in sing-around frequencies.

しかしながら上記第1図の装置では送受波器8a−8b
間での超音波パルスの送受信の方向を変えるために送受
切替回路6及び切換スイッチ7t−必要とし、流れの方
向Aと同方向に超音波パルスを送受信する時間と流れの
方向Aと逆方向に超音波パルスを送受信する時間とが異
なるために測定中に流速が変化した場合、誤差が生じ、
特に短い周期の流速変動をとらえにくいという欠点があ
った。
However, in the device shown in FIG. 1, the transducers 8a-8b
In order to change the direction of transmission and reception of ultrasonic pulses between them, a transmission/reception switching circuit 6 and a changeover switch 7t are required. If the flow velocity changes during measurement due to different times when transmitting and receiving ultrasonic pulses, errors will occur.
In particular, it had the disadvantage that it was difficult to detect short-period flow velocity fluctuations.

また第2図の装置では送受波器を2組4個必要とし、2
組の送受波器16a 、16bの測定位置と送受波器1
7a 、17bの測定位置との間で流速が異った場合、
誤差が生じるという欠点があった。
In addition, the device shown in Figure 2 requires 2 sets of 4 transducers, and 2
Measurement positions of the set of transducers 16a and 16b and transducer 1
If the flow velocity differs between the measurement positions 7a and 17b,
There was a drawback that errors occurred.

本発明は上記従来の欠点を除去するため、シングアラウ
ンド法による超音波流速測定装置において、異なる周波
数のパルス信号にて動作する第1及び第2のクングアラ
ウンド系と、2個1組の送受波器とを有し、該1組の送
受波器の一方を上記第1のクングアラウンド系の送信側
と上記第2のシングアラウンド系の受信側に、また他方
を上記第2のシングアラウンド系の送信側と上記第1の
シングアラウンド系の受信側にそれぞれノ・イブリツド
トラノスを介して接続し、上記1組の送受波器間で流体
の流れと同方向及び反対方向に同時に超音波パルスを送
受信するようにしたもので、その目的とするところは流
速の時間的変動及び部分的な相違による測定誤差のない
流速測定装置を提供することにある。以下、図面につい
て詳細に説、明する。
In order to eliminate the above-mentioned conventional drawbacks, the present invention provides an ultrasonic flow rate measuring device using the sing-around method, which includes a first and a second sing-around system that operate with pulse signals of different frequencies, and a pair of transmitting/receiving systems. one set of transducers is used as the transmitting side of the first sing-around system and the receiving side of the second sing-around system, and the other is used as the transmitting side of the first sing-around system and the other as the receiving side of the second sing-around system. The transmitting side of the system and the receiving side of the first single-around system are connected via hybrid transducers, respectively, and ultrasonic waves are simultaneously transmitted in the same direction and in the opposite direction of the fluid flow between the pair of transducers. The purpose of this device is to provide a flow velocity measurement device that is free from measurement errors due to temporal fluctuations and local differences in flow velocity. The drawings will be described and explained in detail below.

第3図は本発明の一実施例を示すものである。FIG. 3 shows an embodiment of the present invention.

図中、20は第1のシングアラウンド系で、周波数f、
の信号よシなるパルス信号を発生する送信器21、周波
数flの信号のみを通過させるバンドパスフィルタ22
、増幅器23、検波器24、波形整形回路25とよシな
る。また30は第2のクングアラウンド系で、上記周波
数flと異なる周波数f2の信号よ勺なるノぞルス信号
を発生する送信器31、周波数f2の信号のみを通過さ
せるバンドパスフィルタ32、増幅器33、検波器34
%波形整形回路35とよシなる。41a。
In the figure, 20 is the first sing-around system, with frequencies f,
a transmitter 21 that generates a pulse signal similar to the signal of , and a bandpass filter 22 that passes only the signal of frequency fl.
, an amplifier 23, a detector 24, and a waveform shaping circuit 25. Reference numeral 30 designates a second clock-around system, which includes a transmitter 31 that generates a signal with a frequency f2 different from the frequency fl, a bandpass filter 32 that passes only the signal with the frequency f2, and an amplifier 33. , detector 34
It is similar to the % waveform shaping circuit 35. 41a.

41bは流体10中にその流れの方向に沿って距@Dだ
け離隔して互いに対向設置された1組の超音波の送受波
器、42.43はハイブリッドトランス、44.45は
計数回路、46は減算回路である。
41b is a pair of ultrasonic transducers installed facing each other along the flow direction of the fluid 10 at a distance @D apart from each other; 42.43 is a hybrid transformer; 44.45 is a counting circuit; 46 is a subtraction circuit.

次に上記回路の動作及び流速の算出について述べる。送
信器21及び31からそれぞれ発生した周波数f1及び
f2のパルス信号はハイブリッドトランス42及び43
から送受波器41a及び41bに送出される。周波数f
1のパルス信号は送受波器41aで超音波ノξルスに変
換され送受波器41bに向けて送信され、同様に周波数
f2のノξルス信号は送受波器41bで超音波ノソルス
に変換され送受波器41aに向けて送信される。ここで
流体10が矢印AIIP方向、すなわち周波数f1の超
音波、(+ルスの伝搬する方向と四方向に速度Vで流れ
、静止状態における流体10中の音波の伝搬速度ecと
すると、周波数f1の超音波パルスの伝搬速度は(c+
v)s周波数計、の超音波パルスの伝搬速度はCC−v
)となる。従って周波数f、の超音波、oルス及び周波
数f、の超音波ノクルスが送受波器41a−41b間を
伝搬するのにかかる時間t1及びt、は、それぞれ(1
)式及び(2)式の如くなる。
Next, the operation of the above circuit and calculation of flow velocity will be described. Pulse signals of frequencies f1 and f2 generated from transmitters 21 and 31, respectively, are transmitted to hybrid transformers 42 and 43.
The signal is transmitted from the transmitter/receiver to the transducers 41a and 41b. frequency f
The pulse signal of 1 is converted into an ultrasonic pulse by the transducer 41a and transmitted to the transducer 41b, and similarly the ξ pulse signal of frequency f2 is converted to an ultrasonic pulse by the transducer 41b and transmitted and received. The signal is transmitted toward the wave transmitter 41a. Here, if the fluid 10 flows in the direction of the arrow AIIP, that is, in the direction of propagation of the ultrasonic wave of the frequency f1, and the propagation direction of the ultrasonic wave (+Russ), at a speed of V, and the propagation speed of the sound wave in the fluid 10 in a stationary state is ec, then The propagation speed of the ultrasonic pulse is (c+
v) The propagation velocity of the ultrasonic pulse of the s frequency meter is CC-v
). Therefore, the times t1 and t required for the ultrasonic pulse of frequency f and the ultrasonic noculus of frequency f to propagate between the transducers 41a and 41b are (1
) and (2).

1、シ□  ・・・・・・(1) C+V i、e=□   ・・・・・・(2) −V 流体10を伝搬した周波数f、及びf、の超音波パルス
は送受波器41b及び41aでそれぞれ受信され電気信
号に変換され、ハイブリッドトランス43及び42を介
して第1のシングアラウンド系?0及び第2のシングア
ラウ/i−′系3゜に送出される。第1のシングアラウ
ンド系2゜に送出された周波数f、のパルス信号は−マ
ンドパスフイルタ22で不要ノイズ等が除去され、増幅
器23にて増幅され、更に検波器24で検波される。検
波器24で検波された信号は波形整形回路25で波形整
形された後、送信器21及び計数回路44に送出され、
送信器21をトリガして再び周波数f、のパルス信号を
発生させるとともに計数回路44を1っカウントアツプ
する。
1, C□ ......(1) C+V i, e=□ ......(2) -V The ultrasonic pulses of frequencies f and f propagated through the fluid 10 are transmitted to the transducer 41b. and 41a, the signals are received and converted into electrical signals, and sent to the first sing-around system ? through hybrid transformers 43 and 42, respectively. 0 and a second single arrow/i-' system 3°. The pulse signal of frequency f sent to the first sing-around system 2° has unnecessary noise removed by a -mand pass filter 22, amplified by an amplifier 23, and further detected by a detector 24. The signal detected by the detector 24 is waveform-shaped by the waveform shaping circuit 25, and then sent to the transmitter 21 and the counting circuit 44.
The transmitter 21 is triggered to generate a pulse signal of frequency f again, and the counting circuit 44 is counted up by one.

同様にIIIE2の7ングアラクンド系3oに送出され
た周波a faのパルス信号はバンドパスフィルタ32
でノイズ等が除去され、更に増幅器33゜検波器34全
通して波形整形回路35で波形整形され、その後、送信
器31及び計数回路45に送出され、送信器31 ’i
 ) リガして再び周波    ゛□数f2のパルス信
号を発生させるとともに計数回路45を1つカウントア
ツプする。
Similarly, the pulse signal of frequency afa sent to the 7-channel aracundo system 3o of IIIE2 is passed through the bandpass filter 32.
Noise etc. are removed by the amplifier 33° detector 34, the waveform is shaped by the waveform shaping circuit 35, and then sent to the transmitter 31 and the counting circuit 45.
) The pulse signal with the frequency f2 is generated again and the counting circuit 45 is counted up by one.

上記動作を所定時間Tの間繰り返し、計数回路44と4
5の計数値を減算回路46で減算する。ここで、計数回
路44及び45の計数値をそれぞれQl及びQzとし、
電気信号が回路を伝搬するのに要する時間を無視すると
、計数値Q+ 。
The above operation is repeated for a predetermined time T, and the counting circuits 44 and 4
The count value of 5 is subtracted by the subtraction circuit 46. Here, the count values of the counting circuits 44 and 45 are respectively Ql and Qz,
Neglecting the time required for the electrical signal to propagate through the circuit, the count value Q+.

Qzは(3)式、(4)式の如くなる。Qz is expressed by equations (3) and (4).

C+v FtL数値Q1とQlとの差、すなわち減算回路4Bの
出力をQaとすると。
C+v FtL Let Qa be the difference between the numerical values Q1 and Ql, that is, the output of the subtraction circuit 4B.

:=:“1111−m− り となる。従って流体10の流速Vは(0式の如くなる。:=:“1111-m- the law of nature becomes. Therefore, the flow velocity V of the fluid 10 is as shown in equation (0).

V”  Qa       ・・・(5)T 上記(5)式において時間T及び距離りはあらかじめ定
められておシ、減X回路46の出力値Q3ヲ(5)式に
代入するのみで流体10の流速Vを求めることができる
V" Qa ... (5) T In the above equation (5), the time T and the distance are determined in advance. By simply substituting the output value Q3 of the reducing X circuit 46 into the equation (5), the The flow velocity V can be determined.

このように上記実施例によれば、1組の送受波器41 
a t 4 l b ’fl”周波数の異なるパルス信
号で動作する第1及び第2のシングアラウンド系20及
び30にて共用し、流体lOの流れと同方向の超音波パ
ルスと流れに逆らう超音波パルスを同時に送受信するよ
うになしたので、第1図の従来例のように流速の時間的
変化に対して計測誤差を生じることなく、また第2図の
従来例のように測定位置の違いによる計測誤差を生じる
ことなく、常に正確な流速を連続的に測定できる。
In this way, according to the above embodiment, one set of transducers 41
a t 4 l b 'fl'' Commonly used by the first and second sing-around systems 20 and 30 that operate with pulse signals of different frequencies, an ultrasonic pulse in the same direction as the flow of the fluid IO and an ultrasonic wave that opposes the flow. Since the pulses are transmitted and received simultaneously, there is no measurement error caused by temporal changes in flow velocity, as in the conventional example shown in Figure 1, and there is no measurement error caused by differences in measurement positions, as in the conventional example shown in Figure 2. Accurate flow velocity can always be measured continuously without measurement errors.

以上説明したように本発明によれば、シングアラウンド
法による超音波流速測定装置において、異なる周波数の
ノξルス信号にて動作する第1及び第2のシングアラウ
ンド系と、2個1組の送受波器とを有し、該1組の送受
波器の一方を上記第1のシングアラウンド系の送信側と
上記第2のシングアラウンド系の受信側に、また他方を
上記第2のシングアラウンド系の送信側と上記第1のシ
ングアラウンド系の受信側にそれぞれハイブリッドトラ
ンスを介して接続し、上記1組の送受波器間で流体の流
れと同方向及び反対方向に同時に超音波パルスを送受信
するようにしたので、流速の時間的変動が激しい場所で
も誤差なく連続的に流速を計測でき、また部分的に流速
の異なる場所での局部流速や狭域流速の測定もできる。
As explained above, according to the present invention, in an ultrasonic flow rate measurement device using the sing-around method, the first and second sing-around systems that operate using ξ nose signals of different frequencies, and a set of two transmitting and receiving systems are provided. one set of transducers is used as the transmitting side of the first sing-around system and the receiving side of the second sing-around system, and the other is used as the transmitting side of the first sing-around system, and the other side is used as the transmitting side of the second sing-around system. and the receiving side of the first single-around system via hybrid transformers, and transmit and receive ultrasonic pulses simultaneously in the same direction and in the opposite direction of the fluid flow between the pair of transducers. As a result, the flow velocity can be measured continuously without error even in places where the flow velocity fluctuates rapidly over time, and it is also possible to measure local flow velocities and narrow area flow velocities in places where the flow velocities are partially different.

また従来例と異なシ送受切替回路等を必要とせず、送受
波器も1組(2個)のみでよく、より簡単な構成となシ
、装置全体としての小型・軽量化を図ることができる等
の効果がある。
In addition, there is no need for a transmitter/receiver switching circuit, etc., which is different from the conventional example, and only one set (two) of transducers is required, resulting in a simpler configuration, and the overall device can be made smaller and lighter. There are other effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の説明に供する−もので、第1図は従来の
流速測定装置の概略構成図、第2図は従来の他の流速測
定装置の概略構成図、第3図は本発明の流速測定装置の
一実施例を示す概略構成図である。 10・・・流体、20・・・第1のシングアラウンド系
、30・・・第2のシングアラウンド系、41a、41
b・・・送受波器、42.43・・・ノ1イブリッドト
ランス 特許出願人  沖電気工業株式会社 代理人 弁理士  吉  1) 精 孝−−Σ−
The drawings are for explaining the present invention, and FIG. 1 is a schematic diagram of a conventional flow rate measuring device, FIG. 2 is a schematic diagram of another conventional flow rate measuring device, and FIG. 3 is a diagram of a flow rate measuring device of the present invention. FIG. 1 is a schematic configuration diagram showing an example of a measuring device. DESCRIPTION OF SYMBOLS 10... Fluid, 20... First sing-around system, 30... Second sing-around system, 41a, 41
b... Transducer/receiver, 42.43...No. 1 Hybrid transformer Patent applicant Oki Electric Industry Co., Ltd. agent Patent attorney Yoshi 1) Takashi Seitaka --Σ-

Claims (1)

【特許請求の範囲】[Claims] シングアラウンド法による超音波流速測定装置において
、異なる周波数のパルス信号にて動作する第1及び第2
のシングアラウンド系と、2個1組の送受波器とを有し
、該1組の送受波器の一方を上記第1のシングアラウン
ド系の送信側と上記第2のシングアラウンド系の受信側
に、また他方を上記第2のシングアラウンド系の送信側
と上記第1のシングアラウンド系の受信側にそれぞれハ
イブリッドトランスを介して接続し、上記1組の送受波
器間で流体の流れと同方向及び反対方向に同時に超音波
パルスを送受信するよ・うにしたこと?特徴とする超音
波流速測定装置。
In an ultrasonic current measuring device using the sing-around method, the first and second
a sing-around system, and a set of two transducers, one of which is connected to the transmitting side of the first sing-around system and the receiving side of the second sing-around system. and the other is connected to the transmitting side of the second sing-around system and the receiving side of the first sing-around system through hybrid transformers, so that the fluid flow is the same between the pair of transducers. Have you tried transmitting and receiving ultrasonic pulses simultaneously in one direction and in the opposite direction? Features of ultrasonic flow velocity measuring device.
JP56157870A 1981-10-03 1981-10-03 Ultrasonic measuring device for velocity of flow Granted JPS5858416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56157870A JPS5858416A (en) 1981-10-03 1981-10-03 Ultrasonic measuring device for velocity of flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56157870A JPS5858416A (en) 1981-10-03 1981-10-03 Ultrasonic measuring device for velocity of flow

Publications (2)

Publication Number Publication Date
JPS5858416A true JPS5858416A (en) 1983-04-07
JPS63723B2 JPS63723B2 (en) 1988-01-08

Family

ID=15659199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56157870A Granted JPS5858416A (en) 1981-10-03 1981-10-03 Ultrasonic measuring device for velocity of flow

Country Status (1)

Country Link
JP (1) JPS5858416A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227540A (en) * 1975-08-21 1977-03-01 Nec Corp Constant-voltage supply circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227540A (en) * 1975-08-21 1977-03-01 Nec Corp Constant-voltage supply circuit

Also Published As

Publication number Publication date
JPS63723B2 (en) 1988-01-08

Similar Documents

Publication Publication Date Title
US4024760A (en) Fluid flow measurement apparatus
GB1264970A (en)
US20160069718A1 (en) Method for Verifying the Reliability of Ascertained Measurement Data From an Ultrasonic Flow Measurement According to the Transit-Time Difference Method and Ultrasonic Flow Meter
CA2557432A1 (en) Ultrasonic flowmeter and ultrasonic flow rate measurement method
WO1991002246A1 (en) An apparatus for determining the time taken for sound energy to cross a body of fluid in a pipe
CA2101652C (en) Measurement of the flow velocities of gases and/or of quantities that can be derived from same
US3901078A (en) Ultrasonic system for fluid flow measurement
US3678731A (en) Apparatus for measuring the flow velocity of fluids
GB2046442A (en) Ultrasonic flow meter
JPS5858416A (en) Ultrasonic measuring device for velocity of flow
JPH1048009A (en) Ultrasound temperature current meter
JP2608961B2 (en) Sound wave propagation time measurement method
US3097526A (en) fischbacher
JPH088417Y2 (en) Ultrasonic flowmeter calibration device
JP3422100B2 (en) Flow measurement device
US20220034694A1 (en) Flow-rate measuring apparatus capable of accurately measuring flow rate of fluid containing foreign objects
JPH09243421A (en) Flow rate measuring apparatus
JPH0584849B2 (en)
JP6767628B2 (en) Flow measuring device
JPH0561571B2 (en)
JPS59171813A (en) Ultrasonic flowmeter
JP3465100B2 (en) Vortex flow meter
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
JPS6042405B2 (en) Pulsed ultrasonic Doppler current meter
JP2987252B2 (en) Acoustic positioning device