JPS5857008A - Diagnosis of anomaly of water feeding pump and driving turbine thereof - Google Patents

Diagnosis of anomaly of water feeding pump and driving turbine thereof

Info

Publication number
JPS5857008A
JPS5857008A JP15365481A JP15365481A JPS5857008A JP S5857008 A JPS5857008 A JP S5857008A JP 15365481 A JP15365481 A JP 15365481A JP 15365481 A JP15365481 A JP 15365481A JP S5857008 A JPS5857008 A JP S5857008A
Authority
JP
Japan
Prior art keywords
turbine
performance
data
pressure
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15365481A
Other languages
Japanese (ja)
Inventor
Shuji Saito
斉藤 修二
Noriyoshi Teranishi
寺西 詔奉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15365481A priority Critical patent/JPS5857008A/en
Publication of JPS5857008A publication Critical patent/JPS5857008A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps
    • F01K9/023Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Turbines (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To enable secular deformation of a boiler water feeding pump and a driving turbine to be surveyed and diagnosed by detecting the values in operation state of the pump and the turbine and comparing the above data with the data in the past. CONSTITUTION:Each output data on each detection device 13-15 for the temperature, the pressure, and the flow rate of steam and the supplied water and each detecting device 16 for the number of revolution of a water feeding pump and a driving turbine is inputted into an average value calculating apparatus 17 and averaging is performed. Enthalpies H1-3 and H4.5 are calculated in an enthalpy calculating apparatuses 18 and 18 from the average value from each data, and the gained power F1 of the turbine described the above and the power F2 necessary for the water feeding pump are calculated from the above enthalpies in calculating units 21 and 22 respectively. The above calculated values F1 and F2 and the planned value data 25 stored beforehand are inputted into a performance analyser 26, and the results in analysis are inputted into a performance diagnostic apparatus 27, and thus the secular variation in performance of the water feeding pump and the driving turbine is judged and surveyed.

Description

【発明の詳細な説明】 本発明はボイラ給水ポンプ及び同駆動タービンの性能を
継続的に分析し、ボイラ給水ポンプ及び同駆動タービン
の経年的な性能劣化を分析診断する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus that continuously analyzes the performance of a boiler feed water pump and its driving turbine, and analyzes and diagnoses performance deterioration over time of the boiler feed water pump and its driving turbine.

蒸気タービンプラント性能診断装置の性節監視方法はタ
ービンプラント全体の性能を監視するものであり、ター
ビンプラント全体の定期点検補修時期を適切に判断する
ものであるが、本発明はタービンプラントラ構成する重
要な機器の一つであるボイラ給水ポンプ及び同駆動ター
ビンについて性能監視を行うものである。
The solar node monitoring method of the steam turbine plant performance diagnostic device monitors the performance of the entire turbine plant and appropriately determines the timing of periodic inspection and repair of the entire turbine plant. The purpose of this project is to monitor the performance of the boiler feed water pump and its driving turbine, which are one of the important devices.

本発明の目的は、タービンプラントを構成する重要機器
の一つであるボイラ給水ポンプ及び同駆動タービンと、
その周辺の機器の性能を計測により検出されたデータを
もとに、分析診断することを可能とする装置を提供する
にある。
The purpose of the present invention is to provide a boiler feed water pump and its driving turbine, which are one of the important equipments constituting a turbine plant,
An object of the present invention is to provide a device that enables analysis and diagnosis of the performance of peripheral equipment based on data detected by measurement.

第1図にて蒸気タービンプラント構成の概略を説明する
。ボイラ1で発生した高温高圧蒸気が、主蒸気管2を通
り高圧タービン3に入る。
The outline of the steam turbine plant configuration will be explained with reference to FIG. High-temperature, high-pressure steam generated in a boiler 1 passes through a main steam pipe 2 and enters a high-pressure turbine 3.

高圧タービン3で仕事を終えた蒸気は、つぎに低圧ター
ピ/4へ送られる。
The steam that has completed its work in the high-pressure turbine 3 is then sent to the low-pressure turbine 4.

高圧・低圧タービンそれぞれ3.4で蒸気の行った仕事
は、発電機5にて電気エネルギに変換される。また1低
圧タービン4の排気は復水器6で水に還元され、復水ポ
ンプ7及びボイラ給水ポンプ10により、ボイラ1へ給
水される。この給水系統には一般に、プラント効率向上
のため、低圧給水加熱器8及び高圧給水加熱器11が設
置きれる。そして、給水中の溶存酸素を脱気するために
脱気器9が設置これる。これらは、高圧・低圧タービン
3.4から抽気される高温蒸気により給水と熱交換させ
、給水を加熱する機器である。
The work done by the steam in each of the high-pressure and low-pressure turbines 3.4 is converted into electrical energy by the generator 5. Further, the exhaust gas from the low pressure turbine 4 is reduced to water in the condenser 6, and water is supplied to the boiler 1 by the condensate pump 7 and the boiler feed water pump 10. In general, a low-pressure feedwater heater 8 and a high-pressure feedwater heater 11 can be installed in this water supply system to improve plant efficiency. A deaerator 9 is installed to remove dissolved oxygen from the water supply. These are devices that heat the feed water by exchanging heat with the feed water using high-temperature steam extracted from the high-pressure/low-pressure turbine 3.4.

以上が蒸気タービンプラントサイクル構成の概略である
が、つぎに、第2図でボイラ給水ポンプ及び開駆動ター
ビン廻りの機器の構成を説明する。
The above is an outline of the steam turbine plant cycle configuration. Next, the configuration of equipment around the boiler feed water pump and the open drive turbine will be explained with reference to FIG. 2.

脱気器9よりの給水がボイラ給水ポンプ10でボイラ所
要圧力まで昇圧され、高圧給水加熱器11を通り、ボイ
ラへ流れていく。この時、ボイラ給水ポンプ10は同駆
動タービン12により駆動される。この駆動タービン1
2は一般的に低圧・高圧の二つの駆動蒸気源をもち、低
圧駆動蒸気又は、高圧駆動蒸気が、駆動タービン12に
入り動力を得て駆動するようになっている。この時、ボ
イラ給水ポンプ10及び同駆動タービン12は直結され
、プラント運転時の負荷(発電機出力)により、ボイラ
給水ポンプ10の吐出給水圧力及び吐出給水流量が、ボ
イラ所要圧力及びプラント給水流量を保てるような回転
数に制御され、そして、プラント運転時の圧力検出装置
13、温度検出装置14、流量検出装置15、回転数検
出装置16による各データ信号をもとに、ボイラ給水ポ
ンプ及び同駆動タービン、きらには、その周辺の機器の
性能を分析する。
Feed water from the deaerator 9 is pressurized to the boiler required pressure by the boiler feed water pump 10, passes through the high pressure feed water heater 11, and flows to the boiler. At this time, the boiler feed water pump 10 is driven by the driving turbine 12. This drive turbine 1
2 generally has two driving steam sources, low pressure and high pressure, and the low pressure driving steam or the high pressure driving steam enters the driving turbine 12 to obtain power and drive it. At this time, the boiler feed water pump 10 and the driving turbine 12 are directly connected, and the discharge water pressure and discharge water flow rate of the boiler feed water pump 10 change depending on the load (generator output) during plant operation, and the boiler required pressure and plant water flow rate. The boiler feed water pump and its drive are controlled to a rotation speed that can be maintained, and based on data signals from the pressure detection device 13, temperature detection device 14, flow rate detection device 15, and rotation speed detection device 16 during plant operation. Analyze the performance of the turbine and surrounding equipment.

従来の性能計算に、プラント全体について実施していた
ものであるが、プラント全体の経年変化が全く考慮され
ないことから、検出データに変化が生じた際に、その変
化が検出計器等の故障による異常値を示しているのか、
プラントの経年変化に基づく値を示しているのが判別で
きなかった。
Conventional performance calculations were carried out for the entire plant, but since the aging of the entire plant is not taken into account at all, when a change occurs in the detection data, the change is considered to be an abnormality due to a failure of the detection instrument, etc. Does it indicate the value?
It was not possible to determine whether the value was based on the aging of the plant.

しかし、プラント全体の性能の経年変化は監視が可能で
あるが、タービンプラントを構成する機器単体の詳細な
経年変化捷では監視しきれなかった。
However, although it is possible to monitor changes in the performance of the entire plant over time, it has not been possible to monitor the detailed changes over time of individual equipment that make up a turbine plant.

本発明の目的は、タービンプラントラ構成する機器単体
の性能の経年変化を監視するものであり、その中でもと
くに重要な機器の一つであるボイラ給水ポンプ及び同駆
動タービン、さらには、その周辺の機器の性能監視を可
能にしたボイラ給水ポンプ及び同、駆動タービン性能診
断方法全提供するにある。
The purpose of the present invention is to monitor changes over time in the performance of individual equipment that constitutes a turbine planter, and among these, the boiler feed water pump and its driving turbine, which are one of the most important equipment, as well as its surroundings. The present invention provides a complete method for diagnosing the performance of boiler feed water pumps and drive turbines that enable equipment performance monitoring.

本発明の特徴は、プラント運転時のボイラ給水ポンプ及
び同駆動タービンの運転状態値を検出して、これら機器
の性能を計算するとともに、一定期間毎に、検出データ
を記@装置に記憶させておき、定期的あるいは、オペレ
ータリクエストにより、記憶されている過去のデータ(
経年的データ)との対比を行なうことにより、ボイラ給
水ポンプ及び同駆動タービンの経年変化の監視2診断を
可能にした采イラ給水ポンプ及び同5駆動タービンの性
能監視方法にある。
The present invention is characterized by detecting operating status values of the boiler feed water pump and its driving turbine during plant operation, calculating the performance of these devices, and storing the detected data in the device at regular intervals. Historical data (
This invention provides a method for monitoring the performance of a boiler feed water pump and its driving turbine, which makes it possible to monitor and diagnose changes over time in the boiler's feed water pump and its driving turbine by comparing the results with aging data.

又、過去のデータをプラント負荷帯毎に分類して記憶σ
せる機能により、オペレータリクエストに応じてプラン
ト負荷帯の選択ができ、必要な負荷帯についても、過去
のデータとの対比を行なうことができる。
In addition, past data is classified and stored by plant load band σ
The plant load band can be selected according to the operator's request, and the required load band can be compared with past data.

また、過去のデータとの対比により求めたボイラ給水ポ
ンプ及び同駆動タービンの経年的変化傾向(性能、圧力
、温度、流量9回転数のデータ)から、異常状態の検出
等を診断する機能により、性能の経年変化を把握し、将
来の運用状態を予測することができ、保修項目、保修時
期の指針を与えるとともに、効率的なボイラ給水ポンプ
及び同駆動タービンの運用を可能とし、さらには1プラ
ント全体の効率的運用全可能とする。
In addition, a function that diagnoses abnormal conditions, etc. from the secular change trends (performance, pressure, temperature, flow rate 9 rotation speed data) of the boiler feed water pump and its driving turbine determined by comparison with past data, It is possible to understand changes in performance over time and predict future operating conditions, provide guidelines for maintenance items and maintenance timing, and enable efficient operation of boiler feed water pumps and their drive turbines. Enable efficient overall operation.

本発明の一実施例であるボイラ給水ポンプ及び同駆動タ
ービンの性能監視方法について図面を参照して説明する
。第2図において、性能監視を行う装置について説明す
る。複数の圧力検出装置13によって低圧1駆動蒸気圧
力PI、高圧駆動蒸気圧力P2、タービン排気圧力P3
、ポンプ吸込給水圧力P4 、ポンプ吐出給水圧力P5
、をそれぞれ検出して演算装置に入力する。また、複数
の温度検出装置14によって低圧駆動蒸気温度T3、高
圧駆動蒸気温度T2% タービン排気温度T3、ポンプ
吸込給水温度T4、ポンプ吐出圧力T6、をそれぞれ検
出して演算装置に入力する。!た−複数の流量検出装置
15によって低圧駆動蒸気流量f7、高圧駆動蒸気流量
f2、ポンプ吸込給水流量f3 f:それぞれ検出して
演算装置に入力する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for monitoring the performance of a boiler feed water pump and its driving turbine, which is an embodiment of the present invention, will be described with reference to the drawings. Referring to FIG. 2, a device for performance monitoring will be described. A plurality of pressure detection devices 13 detect low pressure 1 driving steam pressure PI, high pressure driving steam pressure P2, and turbine exhaust pressure P3.
, pump suction water supply pressure P4, pump discharge water supply pressure P5
, are detected and input to the arithmetic device. Further, the plurality of temperature detection devices 14 detect low-pressure drive steam temperature T3, high-pressure drive steam temperature T2%, turbine exhaust temperature T3, pump suction feed water temperature T4, and pump discharge pressure T6, respectively, and input them to the arithmetic unit. ! - A low-pressure drive steam flow rate f7, a high-pressure drive steam flow rate f2, and a pump suction water supply flow rate f3 f: are detected by the plurality of flow rate detection devices 15 and input to the arithmetic unit.

また、ボイラ給水ポンプ及び同駆動タービンの回転数N
を回転数検出装置16により検出する。
In addition, the rotation speed N of the boiler feed water pump and its driving turbine
is detected by the rotation speed detection device 16.

以上捷での検出データを基にプラント運転時における、
ボイラ給水ポンプ及び同駆動タービンの性能を分析し、
性能の経年変化を診断する。
Based on the above detection data during plant operation,
Analyzing the performance of the boiler feed water pump and its driving turbine,
Diagnose changes in performance over time.

これらの道程を第3図によって説明する。These steps will be explained with reference to FIG.

第3図において、各々の検出装置13〜16により検出
はれたデータは、測定時間内のデータのばらつ@を無く
すために平均値演算装置17により平均化される。そし
て平均値演算装置17からはそれぞれ平均値を取った低
圧駆動蒸気圧力P。
In FIG. 3, the data detected by each of the detection devices 13 to 16 is averaged by an average value calculation device 17 in order to eliminate data variations within the measurement time. The average value calculation device 17 outputs the average value of the low-pressure driving steam pressure P.

・温度TI+高圧駆動蒸気圧力P2  Φ温度T2゜タ
ービン排気圧力P3.m度T、が算出されエンタルピ演
算装置18に入力される。また、同様にポンプ吸込給水
圧力P4  ・温度T4.ポンプ吐出給水圧力P−3・
温度T、が算出これエンタルピ演算装置18に入力され
る。
・Temperature TI + High pressure driving steam pressure P2 Φ Temperature T2° Turbine exhaust pressure P3. m degrees T, is calculated and input to the enthalpy calculation device 18. Similarly, pump suction water supply pressure P4 and temperature T4. Pump discharge water supply pressure P-3・
The temperature T is calculated and inputted to the enthalpy calculation device 18.

また、平均値演算装置17では低圧駆動蒸気流量f1、
高圧駆動蒸気流量f2、ポンプ吸込給水流量f3、回転
数Nの平均値を算出する。
In addition, the average value calculation device 17 also has a low pressure drive steam flow rate f1,
The average value of the high-pressure drive steam flow rate f2, the pump suction water supply flow rate f3, and the rotation speed N is calculated.

つぎに、ボイラ給水ポンプ駆動タービンの取得動力を取
得動力演算装置21にて、エンタルピ演算装置18にて
算出したエンタルピH1〜3と、低圧駆動蒸気流量f1
、高圧駆動蒸気流量f2より、ボイラ給水ポンプ駆動タ
ービンの取得動力F1を算出する。また、それと並行し
てボイラ給水ポンプの所要動力を、所要動力演算装置2
2にテ、エンタルピ演算装置18にて算出したエンタル
ピH1〜、とポンプ吸込給水流量f3 よりボイラ給水
ポンプ所要動力F2を算出する。
Next, the acquired power of the boiler feed water pump driving turbine is determined by the acquired power calculation device 21, and the enthalpies H1 to H3 calculated by the enthalpy calculation device 18 and the low pressure driving steam flow rate f1 are calculated by the enthalpy calculation device 18.
, the acquired power F1 of the boiler feed water pump drive turbine is calculated from the high pressure drive steam flow rate f2. In parallel, the required power of the boiler feed pump is calculated by the required power calculation device 2.
2, the required power F2 of the boiler feed water pump is calculated from the enthalpy H1~ calculated by the enthalpy calculating device 18 and the pump suction feed water flow rate f3.

以上の結果より求めたボイラ給水ポンプ所要動力F2、
同駆動タービン取得動力F8、回転数Nと、あらかじめ
記憶装置に、ボイラ給水ポンプ及び開駆動タービン廻り
の計画値データ25(F’。
The required power F2 of the boiler feed water pump obtained from the above results,
The drive turbine acquired power F8, rotation speed N, and planned value data 25 (F') around the boiler feed water pump and open drive turbine are stored in advance in the storage device.

P’、T’、f’、N’)を記憶させておき、そのデー
タとをボイラ給水ポンプ及び同駆動タービン性能分析装
置26に入力し、ボイラ給水ポンプ及び同駆動タービン
の性能を分析する。そして、その結果をボイラ給水ポン
プ及び同駆動タービン性能診断装置27に入力し、経年
的性能変化を判定、監視するものである。
P', T', f', N') are stored, and the data is inputted to the boiler feed water pump and the same driving turbine performance analyzer 26 to analyze the performance of the boiler feed water pump and the same driving turbine. The results are then input to the boiler feed water pump and drive turbine performance diagnostic device 27 to determine and monitor performance changes over time.

前述のエンタルピ演算装置18を説明する。第4図に示
すように、圧力及び温度の平均値演算装置17からの圧
力温度データP、〜P、 、 T、〜T5により、縦軸
がエンタルピ、横軸がエントロピから成る線図(Mol
lier線図)上に交点を求め、その交点に相応したエ
ンタルピI−(、〜H、を演算するものである。つまり
、T、 、  P、から低圧駆動蒸気エンタルピH,を
、T2 t F2から高圧駆動蒸気エンタルピI]2を
、T3.F3からタービン排気エンタルピH3を、T4
.F4からポンプ吸込給水エンタルピH4k、T5 、
Paからポンプ吐出給水エンタルピH6をそれぞれ算出
する。
The enthalpy calculation device 18 mentioned above will be explained. As shown in FIG. 4, a diagram (Mol
lier diagram), and calculate the enthalpy I-(, ~H) corresponding to the intersection. In other words, the low-pressure drive steam enthalpy H, from T, , P, is calculated from T2 t F2. High pressure drive steam enthalpy I]2, T3.Turbine exhaust enthalpy H3 from F3, T4
.. Pump suction water enthalpy H4k from F4, T5,
Pump discharge water supply enthalpy H6 is calculated from Pa.

また、H8を算出するにあたり、タービン排気が湿り蒸
気域に入る場合は、他に湿υ度検出計器を用い11.タ
ービン排気蒸気の湿υ度と、 l1li’T3又は、圧
力P3が使用される。
In addition, when calculating H8, if the turbine exhaust enters the humid steam region, use a humidity detection instrument in addition to 11. The humidity of the turbine exhaust steam and the pressure P3 are used.

つぎに、駆動タービン取得動力演算装置21を説明する
と、低圧駆動蒸気流量f1、同エンタルピH1、高圧駆
動蒸気流量f2、同エンタルピH2、タービン排気エン
タルピH3より駆動タービン取得動力F1を下式(1)
より算出する。
Next, to explain the driving turbine acquired power calculation device 21, the driving turbine acquired power F1 is calculated from the low pressure driving steam flow rate f1, the same enthalpy H1, the high pressure driving steam flow rate f2, the same enthalpy H2, and the turbine exhaust enthalpy H3 using the following formula (1).
Calculate from

F+  −(f+ ×(H+  Hs ) + f2 
x(I(2H311/860 ・・・・・・・・・ (
1)また、並行して給水ポンプの所要動力演算装置給水
ポンプ所要動力F2を下式(2)より算出する。
F+ −(f+ ×(H+ Hs) + f2
x(I(2H311/860 ・・・・・・・・・(
1) In parallel, the required power calculation device for the water supply pump calculates the required power F2 for the water supply pump using the following formula (2).

F2 ” ’s X (Hs−H4)/860  ・・
・・・・・・・ (2)次に、前記のボイラ給水ポンプ
及び同駆動タービン性能分析装置26と、性能診断装置
27を説明する。まず性能分析装置26においては、計
画値25 (P’ 、P’ 、−T’ 、f’ 、N’
 )と(1)式・(2)式において求めたF、、F2及
び検出データであるP、T、f、N’に比較しその偏差
を下式(3)〜(18)により求める。
F2”'s X (Hs-H4)/860...
(2) Next, the boiler feed water pump and its drive turbine performance analysis device 26 and performance diagnosis device 27 will be explained. First, in the performance analyzer 26, the planned values 25 (P', P', -T', f', N'
) is compared with F, , F2 obtained in equations (1) and (2), and the detected data P, T, f, N', and the deviation thereof is obtained using equations (3) to (18) below.

1)駆動タービン取得動力偏差ΔF1 ΔF、=F、−F、’・・・・・・・・・・・・・・・
 (3)2)給水ポンプ所要動力偏差ΔF2 ΔF2”F2  F2’・・・・・・・・・四・・ (
4)3)低圧駆動蒸気圧力・温度・流量偏差ΔP1  
・ΔT、・Δf。
1) Drive turbine acquired power deviation ΔF1 ΔF, =F, -F,'・・・・・・・・・・・・・・・
(3) 2) Water pump required power deviation ΔF2 ΔF2"F2 F2'・・・・・・・・・4... (
4) 3) Low pressure drive steam pressure/temperature/flow deviation ΔP1
・ΔT, ・Δf.

Δp、−p、−p、’・・・・・・・・・・・・・・・
(5)ΔT、=T、 −T、’  ・・・・・・・・・
・・・・・・ (6)Δf、=f、  f、’・・曲・
・・・曲回(7)4)高圧駆動蒸気圧力・温度・流量偏
差ΔP2 ・ΔT2 ・Δf2 ΔP2=P2−P2’  ・・・・・・・・・・・・・
・・(8)ΔT、 =T、 −Tt’  ・・・・・・
・・・・・・・・・ (9)Δf=f2−f2′・・曲
・・曲・・・(1o)5)タービン排気圧力・温度偏差
ΔP3  ・ΔT3ΔP3= F3−P3’  ・・・
・・・・・・・・・・・・(11)ΔT、 =T3−P
、 ’  ・・・・・・・・曲・・・(12)6)給水
ポンプ吸込給水圧力・温度・流量偏差ΔP4  ・ΔT
4 ・Δf3 ΔP4=P4−p4’  ・・・・・・・・・・・・・
・・(13)ΔT4=T4−T、 ’  ・・曲回・曲
(14)Δf3= F3− f3’  ・・・・・・・
・・・・・・・・・・・ (15)7)給水ポンプ吐出
給水圧力・温度偏差ΔP5 ・ΔT。
Δp, -p, -p,'・・・・・・・・・・・・・・・
(5) ΔT, =T, -T,' ・・・・・・・・・
...... (6) Δf, = f, f,'...song...
...Turn (7) 4) High-pressure drive steam pressure/temperature/flow deviation ΔP2 ・ΔT2 ・Δf2 ΔP2=P2-P2' ・・・・・・・・・・・・・・・
・・・(8)ΔT, =T, -Tt' ・・・・・・
...... (9) Δf=f2-f2'...Song...Song...(1o)5) Turbine exhaust pressure/temperature deviation ΔP3 ・ΔT3ΔP3= F3-P3'...
・・・・・・・・・・・・(11)ΔT, =T3−P
, '・・・・・・・・・Song...(12)6) Water supply pump suction water supply pressure/temperature/flow rate deviation ΔP4 ・ΔT
4 ・Δf3 ΔP4=P4-p4' ・・・・・・・・・・・・・
...(13) ΔT4=T4-T, ' ... Song number/song (14) Δf3= F3- f3' ......
・・・・・・・・・・・・ (15) 7) Water supply pump discharge water supply pressure/temperature deviation ΔP5 ・ΔT.

ΔP、−P、−P、’  ・・・・・・・・・・・・・
・・ (16)JT5=Ts  ’r、・ ・・・・・
・・・・・・・・・・ (1718)回転数偏差ΔN ΔN=N−N’  ・・・・・・・・・・・・・・・・
・・・・・・・・ (18)以上1)〜8)の(3)〜
(18)式によって求められた各データの偏差値は、ボ
イラ給水ポンプ及び同駆動タービン、ζらには、その周
辺の機器の性能変化を表わし、その偏差データを基に性
能診断をするのが、ボイラ給水ポンプ及び同駆動タービ
ン性能診断装置27である。そして、それらの性能判定
要因としては下記があげられる。
ΔP, -P, -P,' ・・・・・・・・・・・・・・・
... (16) JT5=Ts 'r, ...
・・・・・・・・・・・・ (1718) Rotation speed deviation ΔN ΔN=N-N' ・・・・・・・・・・・・・・・・・・
・・・・・・・・・ (18) Above 1) to 8) (3) to
The deviation value of each data obtained by equation (18) represents the performance change of the boiler feed water pump, its driving turbine, and other peripheral equipment, and it is recommended to perform a performance diagnosis based on the deviation data. , a boiler feed water pump and its driving turbine performance diagnostic device 27. The following are the performance determining factors:

駆動タービン取得動力偏差ΔFl 、給水ポンプ所要動
力偏差ΔF2、回転数偏差ΔNはボイラ給水ポンプ及び
開駆動ターピ/の性能判定に用いられるが、この時、考
慮しなくてはならないのは、運転条件による補正である
。その要因としては下記に示す通りである。
The drive turbine acquired power deviation ΔFl, the feed water pump required power deviation ΔF2, and the rotation speed deviation ΔN are used to judge the performance of the boiler feed water pump and the open drive turret. This is a correction. The factors are as shown below.

1、 ボイラ給水ポンプ吐出給水圧力変化(ΔPs)に
れは、高圧給水加熱器及びボイラの性能変化も知ること
ができる。) 2、 ボイラ給水ポンプ駆動タービン駆動蒸気条件(Δ
PusΔF2+ΔT1.ΔT2) (これは、蒸気源の性能変化を知ることもできる。) 3、 ボイラ給水ポンプ駆動タービン排気蒸気条件(Δ
P3+ΔT3) (これは、排気回収光の性能変化を知ることもできる。
1. Changes in the performance of the high-pressure feed water heater and boiler can also be known from the boiler feed water pump discharge feed water pressure change (ΔPs). ) 2. Boiler feedwater pump drive turbine drive steam conditions (Δ
PusΔF2+ΔT1. ΔT2) (This also allows you to know the performance change of the steam source.) 3. Boiler feedwater pump drive turbine exhaust steam condition (ΔT2)
P3+ΔT3) (This also allows us to know the performance change of the exhaust gas recovery light.

4、 プラント運転時の発電機出力(負荷)の変化(こ
れに、プラント運転時における負荷別についての性能を
監視するために必要である。)5、 ボイラ給水ポンプ
吐出流量(F4)の変化(給水ポンプが2系列設置され
ている場合に、その系列別の性能変化を知ることができ
る。また、ボイラ性能の変化及びプラント全体の性能変
化、も知ることができる。) 以上5項目の補正要因から次にあげる4項目の現象を解
析する。
4. Changes in generator output (load) during plant operation (This is necessary to monitor performance for each load during plant operation.) 5. Changes in boiler feed water pump discharge flow rate (F4) ( (If two lines of water supply pumps are installed, you can know the performance changes for each line. You can also know the changes in boiler performance and the performance of the entire plant.) Correction factors for the above five items We will analyze the following four phenomena.

1、 ボイラ給水ポンプ駆動タービン駆動蒸気量の変化
(Δf1+Δf2 )原因。
1. Cause of change in boiler feed water pump drive turbine drive steam amount (Δf1+Δf2).

2、 ボイラ給水ポンプ及び同駆動タービン回転数の変
化(ΔN)原因。
2. The cause of the change (ΔN) in the boiler feed water pump and its driving turbine rotation speed.

3、 ボイラ給水ポンプ吐出給水圧力の変化(ΔP5)
原因。
3. Change in boiler feed water pump discharge water pressure (ΔP5)
Cause.

4、 ボイラ給水ポンプ吐出給水流量の変化(F4)原
因。
4. Cause of change in boiler feed water pump discharge water flow rate (F4).

以上の如く、ボイラ給水ポンプ及び同駆動ター  。As mentioned above, the boiler feed water pump and its drive turbine.

ビン性能診断・分析機能においては、計画値とプラント
運転時における検出データを記憶装置内に記憶させるこ
とにより、過去のデータ(経年的データ)との比較が可
能となり、ボイラ給水ポンプ及び同駆動タービン性能の
経年変化を把握するこ 。
In the bin performance diagnosis and analysis function, by storing planned values and detected data during plant operation in the storage device, comparison with past data (data over time) is possible. Understand changes in performance over time.

とが可能となる。また、その周辺の機器の性能の経年変
化も把握することができる。
becomes possible. It is also possible to understand changes in the performance of surrounding equipment over time.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 1、運転中にお゛ける各部状態値を測定し、その測定値
を基に給水ポンプ及び、同駆動タービンの性能や運転特
性を計算機によって計算すると共に、一定期間毎にこれ
ら運転状態値及び、性能データ・運転特性データを計算
機に記憶させておき、これらの記憶されている過去の経
年的データと現時点の前記運転状態値及び、前記性能デ
ータ・前記運転特性データを比較させることによって経
年変化を分析診断することを特徴とする給水ポンプ及び
同駆動タービンの異常診断方法。
1. Measure the state values of each part during operation, calculate the performance and operating characteristics of the water supply pump and its driving turbine based on the measured values, and measure these operating state values and the operating characteristics at regular intervals. Performance data and driving characteristic data are stored in a computer, and changes over time can be measured by comparing these stored past secular data with the current driving state value and the performance data and driving characteristic data. A method for diagnosing an abnormality in a water supply pump and its driving turbine, characterized by analyzing and diagnosing the same.
JP15365481A 1981-09-30 1981-09-30 Diagnosis of anomaly of water feeding pump and driving turbine thereof Pending JPS5857008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15365481A JPS5857008A (en) 1981-09-30 1981-09-30 Diagnosis of anomaly of water feeding pump and driving turbine thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15365481A JPS5857008A (en) 1981-09-30 1981-09-30 Diagnosis of anomaly of water feeding pump and driving turbine thereof

Publications (1)

Publication Number Publication Date
JPS5857008A true JPS5857008A (en) 1983-04-05

Family

ID=15567256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15365481A Pending JPS5857008A (en) 1981-09-30 1981-09-30 Diagnosis of anomaly of water feeding pump and driving turbine thereof

Country Status (1)

Country Link
JP (1) JPS5857008A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110691U (en) * 1983-12-29 1985-07-26 大淀ヂ−ゼル株式会社 Measuring and recording device for the operating status of electric air compressors
JPH01193096A (en) * 1988-01-27 1989-08-03 Ebara Corp Submergible pump mounting data processor
JPH029968A (en) * 1988-06-27 1990-01-12 Babcock Hitachi Kk Blower performance diagnostic device
JP2006125275A (en) * 2004-10-28 2006-05-18 Mitsubishi Heavy Ind Ltd Device and system for diagnosing performance of fluid machine
JP2019049230A (en) * 2017-09-11 2019-03-28 株式会社荏原製作所 Water supply device and trial operation method of water supply device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685506A (en) * 1979-12-17 1981-07-11 Hitachi Ltd Monitoring method of performance of steam turbine plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685506A (en) * 1979-12-17 1981-07-11 Hitachi Ltd Monitoring method of performance of steam turbine plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110691U (en) * 1983-12-29 1985-07-26 大淀ヂ−ゼル株式会社 Measuring and recording device for the operating status of electric air compressors
JPH01193096A (en) * 1988-01-27 1989-08-03 Ebara Corp Submergible pump mounting data processor
JPH029968A (en) * 1988-06-27 1990-01-12 Babcock Hitachi Kk Blower performance diagnostic device
JP2006125275A (en) * 2004-10-28 2006-05-18 Mitsubishi Heavy Ind Ltd Device and system for diagnosing performance of fluid machine
JP4625306B2 (en) * 2004-10-28 2011-02-02 三菱重工業株式会社 Fluid machinery performance diagnostic apparatus and system
JP2019049230A (en) * 2017-09-11 2019-03-28 株式会社荏原製作所 Water supply device and trial operation method of water supply device

Similar Documents

Publication Publication Date Title
CN106404403B (en) Method and system for analysis of a turbomachine
JP3614751B2 (en) Thermal efficiency diagnosis method and apparatus for combined power plant
RU2310226C2 (en) Method and device for evaluating productivity of steam-gas electric plants
US20150025814A1 (en) Method and system for real time dry low nitrogen oxide (dln) and diffusion combustion monitoring
US20150160096A1 (en) System and Method for Detecting an At-Fault Combustor
JPH04217786A (en) Method and device for controlling condenser for power plant
CN106053105A (en) Nuclear power station regenerative heater energy efficiency monitoring and diagnosing method and system
US11060422B2 (en) Water quality monitoring system and steam turbine system including the same as well as water quality monitoring method
JP2002155708A (en) System and method of providing guidance for power- generating plant
CN108334047A (en) Diversification energy management system
US8874415B2 (en) System and method for forming failure estimates for a heat recovery steam generator
US20090043539A1 (en) Method and system for automatically evaluating the performance of a power plant machine
JP2004324548A (en) Anomaly monitoring device of equipment, anomaly monitoring device of gas turbine, gas turbine facility and combined power generating facility
JP2016009352A (en) Plant abnormality sign diagnosis device and method
JPS5857008A (en) Diagnosis of anomaly of water feeding pump and driving turbine thereof
KR20190072813A (en) high pressure pump failure prediction Method And System
JP6554162B2 (en) Power plant performance evaluation method and power plant performance evaluation program
KR100468402B1 (en) A On-line Real-time Operation Performance Monitoring and Diagnostic System for Combined-cycle Power Plant
JP5164928B2 (en) Gas turbine abnormality diagnosis device
JPS624526B2 (en)
KR101372489B1 (en) System for monitoring low pressure turbine using smart sensor
JPH06313734A (en) Method and apparatus for diagnosing equipment of plant
JP2003193808A (en) Diagnostic method and diagnostic system of electric power plant
TWI546514B (en) System and method for analyzing waste heat recycling efficiency and computer product thereof
CN114352365B (en) Device and method for monitoring heat consumption rate of online steam turbine of thermal power plant