JPS5856749B2 - powder spray material - Google Patents

powder spray material

Info

Publication number
JPS5856749B2
JPS5856749B2 JP55021599A JP2159980A JPS5856749B2 JP S5856749 B2 JPS5856749 B2 JP S5856749B2 JP 55021599 A JP55021599 A JP 55021599A JP 2159980 A JP2159980 A JP 2159980A JP S5856749 B2 JPS5856749 B2 JP S5856749B2
Authority
JP
Japan
Prior art keywords
coating
thermal
hardness
sprayed
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55021599A
Other languages
Japanese (ja)
Other versions
JPS56119765A (en
Inventor
健 三品
孝志 荘司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP55021599A priority Critical patent/JPS5856749B2/en
Publication of JPS56119765A publication Critical patent/JPS56119765A/en
Publication of JPS5856749B2 publication Critical patent/JPS5856749B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic

Description

【発明の詳細な説明】 本発明は粉末溶射材に関し、特にこの溶射材を使用した
溶射面が硬く耐摩耗性に優れ、かつその仕上げ面が平滑
となる合金粉末溶射材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal sprayed powder material, and more particularly to an alloy powder thermal sprayed material that uses this thermal sprayed material to provide a hard and wear-resistant sprayed surface and a smooth finished surface.

従来、溶射材としては被膜に要求される特性に応じて種
々の金属、酸化物等の粉末あるいは線材等にしたものが
用いられている。
Conventionally, thermal spray materials have been used in the form of powders or wires of various metals, oxides, etc., depending on the characteristics required for the coating.

これらの中で機械材料として使用しうる硬さ、耐摩耗性
を有し、かつ溶射面が良好な仕上げに研摩できる溶射材
料としてはモリブデン及びニッケルやコバルトを主とし
た自溶性合金が知られている。
Among these, self-fusing alloys mainly containing molybdenum, nickel, and cobalt are known as thermal spray materials that have hardness and wear resistance that can be used as mechanical materials, and can be polished to a good finish on the sprayed surface. There is.

しかし、これらの材料は高価であるばかりか、溶射時の
歩溜りも低く、かつ耐摩耗性の面でまた不充分であり、
さらにもろいとか、後処理を必要とする欠点がある。
However, these materials are not only expensive, but also have a low yield during thermal spraying, and have insufficient wear resistance.
It also has the disadvantages of being brittle and requiring post-processing.

本発明の目的は溶射面を研摩により平滑にすることがで
き、かつ硬く耐摩耗性を有する溶射材料を提供すること
、さらにこの材料を比較的安価に提供することにある。
An object of the present invention is to provide a thermal spray material whose thermal spray surface can be made smooth by polishing, which is hard and wear resistant, and to provide this material at a relatively low cost.

本発明の溶射材料は鉄を主成分とし、これにモリブデン
(MO)、ホウ素(B)、アルミニウム(A1)及び炭
素(C)を添加した合金の粉末からなる。
The thermal spray material of the present invention is composed of an alloy powder containing iron as a main component, to which molybdenum (MO), boron (B), aluminum (A1), and carbon (C) are added.

即ち、合金組成は重量%でMo:15〜40、B:0.
5〜5.0 、 At : 0.5〜5.0.C:2〜
5.0.pe:残、及び付随的不純物からなるものであ
る。
That is, the alloy composition is Mo: 15-40, B: 0.
5-5.0, At: 0.5-5.0. C: 2~
5.0. pe: Consists of residue and incidental impurities.

この溶射材料はピストン、シリンダー等摺動部分に使用
される機械材料の表面被覆材として好適なものである。
This thermal spray material is suitable as a surface coating material for mechanical materials used for sliding parts such as pistons and cylinders.

合金粉末は前記組成範囲で成分を調整し、溶解して得た
インゴットをボールミル、スタンプミル等で粉砕して得
られる。
The alloy powder is obtained by adjusting the ingredients within the above composition range, melting the resulting ingot, and pulverizing it with a ball mill, stamp mill, or the like.

また溶解した溶湯に気体を吹きつける噴霧法にかつても
粉末を得ることができる。
Powder can also be obtained using the atomization method, in which gas is sprayed onto molten metal.

噴霧法においては酸化防止のため不活性ガスが用いられ
る。
In the spray method, an inert gas is used to prevent oxidation.

粉末の粒度は溶射材として一般に使用される10〜74
μの範囲が適当である。
The particle size of the powder is 10-74, which is commonly used as a thermal spray material.
A range of μ is appropriate.

本発明の溶射材は合金の粉末であるため、各成分元素の
粉末を混合した場合のような粉末集合物内における組成
上の局部的変動がないので、品質の安定した溶射被膜が
得られる。
Since the thermal spraying material of the present invention is an alloy powder, there is no local variation in composition within the powder aggregate, unlike when powders of each component element are mixed, so a thermal sprayed coating with stable quality can be obtained.

また本発明の組成の合金では溶射に適した線材に加工し
、線材のまま溶射に供することは困難であるが、この合
金の粉末化は比較的容易であるので、本発明の粉末溶射
材は製造上の問題は特にない。
Furthermore, it is difficult to process the alloy having the composition of the present invention into a wire rod suitable for thermal spraying and to subject it to thermal spraying as it is, but since it is relatively easy to powderize this alloy, the powder thermal spray material of the present invention is suitable for thermal spraying. There are no particular manufacturing problems.

次に本発明の溶射材の各成分を限定した理由を述べる。Next, the reason for limiting each component of the thermal spray material of the present invention will be described.

Moは溶射被膜の耐摩耗性に効果があり、また耐焼付性
、即ち、溶射した材料を摺動部材として使用した場合、
その摺動面において焼付けを起さない効果がある。
Mo has an effect on the wear resistance of the thermally sprayed coating, and also improves the seizure resistance, that is, when the thermally sprayed material is used as a sliding member.
This has the effect of preventing seizure on the sliding surface.

それはこの被膜が硬いばかりでな5<、その表面を仕上
げ研摩した場合に平滑な面が得られるからである。
This is because not only is this coating hard, but also a smooth surface can be obtained when the surface is polished.

これらの作用効果を付与するにはMoは少なくとも15
%(重量%、以下同じ)必要である。
To provide these effects, Mo must be at least 15
% (weight %, same hereinafter) is required.

しかし、この効果は40%を越えると飽和するばかりで
なく、被膜がもろくなる。
However, when this effect exceeds 40%, not only is this effect saturated, but the film becomes brittle.

更にMoが高くなり、主としてMoからなる皮膜では前
記したような耐摩耗性や歩溜りの面で欠点が現れる。
Further, the Mo content increases, and a film mainly composed of Mo has the above-mentioned drawbacks in terms of wear resistance and yield.

このように被膜の特性上の点及び経済性等を考慮してM
oは15〜40%が適当である。
In this way, M
o is suitably 15 to 40%.

Bは合金の融点を下げ、また溶射時における付着性を向
上させる作用があり、被膜の密度を上昇させる他、侵入
型硬化剤としての効果があり、研摩後の表面が平滑にな
る。
B has the effect of lowering the melting point of the alloy and improving adhesion during thermal spraying, increases the density of the coating, and also acts as an interstitial hardening agent, making the surface smooth after polishing.

これらの特性を向上させるためにはBは最低0.5%は
必要であるが、反面5%を越すと溶解時に合金に固溶さ
せることが困難である上、溶射後の被膜がもろくなる。
In order to improve these properties, B must be present in an amount of at least 0.5%, but if it exceeds 5%, it is difficult to form a solid solution in the alloy during melting, and the coating after thermal spraying becomes brittle.

これらのことよりBは0.5〜5.0%の範囲が適する
For these reasons, a suitable range for B is 0.5 to 5.0%.

Atは溶射時における付着性を向上させ、被膜の密度を
高める作用効果及び高温で耐酸化性に効果がある。
At has the effect of improving adhesion during thermal spraying, increasing the density of the coating, and improving oxidation resistance at high temperatures.

そのためには少なくとも0.5%は必要である。For this purpose, at least 0.5% is necessary.

そしてこの効果は5%の添加でほぼ飽和に達する。This effect reaches almost saturation at 5% addition.

またあまり高過ぎれば逆に被溶射物との接着や溶射粒子
相互の接着が悪くなる等の面で欠点が現れる。
On the other hand, if the temperature is too high, disadvantages will appear in terms of poor adhesion to the object to be sprayed and poor adhesion between the sprayed particles.

Cは溶射被膜の強度、硬度に影響を及ぼし、その添加は
これらの特性を向上させるが、5%を越える固溶は困難
であるばかりでなく、無理に多くするともろさが現れる
C affects the strength and hardness of the sprayed coating, and its addition improves these properties, but not only is it difficult to form a solid solution of more than 5%, but if the amount is too large, brittleness appears.

これらのことからCは2〜5%の範囲が適する。For these reasons, a suitable range for C is 2 to 5%.

以上の成分以外はFe及び付随的不純物である。Components other than the above are Fe and incidental impurities.

本発明の溶射材はこのFeが主成分をなすものであり、
それによってMoを主成分とするものに比べ被膜の耐熱
衝撃性が優れている。
The thermal spray material of the present invention has this Fe as its main component,
As a result, the thermal shock resistance of the coating is superior to that of coatings containing Mo as a main component.

また安価に提供できることは云うまでもない。It goes without saying that it can also be provided at a low price.

その他付随的不純物としてはSi 2.0%以下、V
o、06%以下、so、io%以下、CuO950%以
下である。
Other incidental impurities include Si 2.0% or less, V
o, 06% or less, so, io% or less, and CuO950% or less.

以上の成分からなる本発明の溶射材を用いて各種の金属
等の表面に溶射した場合における被膜の特性は、溶射条
件等によっても異なるが、はぼ硬度(ロックウェル硬度
)が53以上、表面仕上げ研摩後の表面中心線粗さくR
aミクロン)0.40以下、溶射歩溜り55%以上、被
覆の気孔率10.0%以下である。
When the thermal spraying material of the present invention consisting of the above components is thermally sprayed onto the surfaces of various metals, the characteristics of the coating will vary depending on the thermal spraying conditions, etc., but the coating properties will vary depending on the thermal spraying conditions, etc. Surface center line roughness R after final polishing
a micron) 0.40 or less, thermal spray yield 55% or more, and coating porosity 10.0% or less.

実施例 原料として銑鉄、フェロモリブデン(Mo62%)、フ
ェロボロン(1321%)、アルミニウムを使用し、炭
素として黒鉛加炭材を使用し、これらを第1表の組成範
囲となるように配合し、高周波誘導炉によって溶解した
Examples Pig iron, ferromolybdenum (Mo62%), ferroboron (1321%), and aluminum were used as raw materials, and graphite carburizer was used as carbon, and these were blended to have the composition range shown in Table 1. Melted by induction furnace.

その溶湯を鋳造し、インゴットにした後、スタンプミル
により約3mmに粉砕し、さらにサンプルミルにより約
150メツシユ(105μm)下に粉砕した。
The molten metal was cast and made into an ingot, which was then ground to about 3 mm using a stamp mill, and further ground to about 150 meshes (105 μm) using a sample mill.

これを風力分級機で64μm〜10μmに分級した。This was classified into 64 μm to 10 μm using a wind classifier.

この分級粉末を用いてプラズマフレームスプレーガンに
より軟鋼の基板上に50〜10μmの厚さで被膜を形成
させた。
Using this classified powder, a film with a thickness of 50 to 10 μm was formed on a mild steel substrate using a plasma flame spray gun.

次にこの被膜を炭化物高硬度工具5iC500番 30
〜4011m)で研摩し、その表面の滑らかさを表面粗
さ計で中心線表面粗さを測定することにより判定した。
Next, apply this coating using a carbide high hardness tool 5iC500 No. 30.
~4011 m), and the smoothness of the surface was determined by measuring the centerline surface roughness with a surface roughness meter.

さらに摩耗性を判断するためにその硬度をロックウェル
硬度計により測定した。
Furthermore, in order to judge the abrasion resistance, the hardness was measured using a Rockwell hardness meter.

これらの結果を第1表に示す。第1表中/161〜屑5
は本発明材料の実施例であり、硬度、研摩後の表面中心
線粗さ、溶射歩溜、被膜の気孔率共、満足のゆく結果を
示している。
These results are shown in Table 1. Table 1/161~Scrap 5
is an example of the material of the present invention, and shows satisfactory results in terms of hardness, surface centerline roughness after polishing, thermal spray yield, and coating porosity.

比較例の中で腐6及び/I6.7はモリブデンの影響を
確認したものでMoが少なすぎると硬度が不充分であり
、仕上げ表面粗さも粗くなる。
Among the comparative examples, the influence of molybdenum was confirmed in Ro6 and /I6.7, and if Mo is too small, the hardness is insufficient and the finished surface roughness becomes rough.

またM。が高すぎると硬度は充分であるが仕上げ表面が
不満足であり溶射歩溜も悪い。
M again. If it is too high, the hardness will be sufficient, but the finished surface will be unsatisfactory and the spray yield will be poor.

/168から410はホウ素の影響を確認した。/168 to 410 confirmed the influence of boron.

ホウ素が少なすぎると硬度が不充分であり被膜の気孔率
も高い。
If the amount of boron is too low, the hardness will be insufficient and the porosity of the coating will be high.

ホウ素が多すぎると研摩仕上げ面、被膜の気孔率は満足
するものの硬度の面で不充分である。
If there is too much boron, the polished surface and the porosity of the coating will be satisfactory, but the hardness will be insufficient.

、%11.A12はアルミニウムの影響を調べた結果で
ある。
,%11. A12 is the result of investigating the influence of aluminum.

アルミニウムが少なすぎると特に溶射歩溜が悪く、かつ
被膜の気孔率が高くなる。
If there is too little aluminum, the thermal spray yield will be particularly poor and the porosity of the coating will be high.

多すぎると表面仕上げ性が悪く、気孔率が高くなる。If it is too large, the surface finish will be poor and the porosity will increase.

AIが多すぎて気孔率が高いのは被膜断面に、亀裂が生
じているためである。
The reason why the porosity is high due to too much AI is that cracks are formed in the cross section of the film.

AI3〜涜15はカーボンの影響を調べた結果である。AI3 to AI15 are the results of examining the influence of carbon.

カーボンが少ないと被膜の気孔率、表面仕上げ性に於い
て満足するものであるが硬度が不満足である。
When the amount of carbon is small, the porosity and surface finish of the coating are satisfactory, but the hardness is unsatisfactory.

逆に高すぎると硬度はますものの表面仕上げ性が悪くな
る。
On the other hand, if it is too high, the hardness will increase but the surface finish will deteriorate.

416は市販の溶射用モリブデン粉末を使用して、同様
の実験を実施した結果である。
416 is the result of a similar experiment using commercially available molybdenum powder for thermal spraying.

Claims (1)

【特許請求の範囲】 1 重量%で Mo 二 l 5〜40 B:0.5〜5.0 Al:0.5〜5.0 C: 2〜5.0 Fe:残 及び付随的不純物からなる合金の粉末溶射材。[Claims] 1% by weight Mo 2 l 5-40 B:0.5-5.0 Al: 0.5-5.0 C: 2-5.0 Fe: remaining and incidental impurities.
JP55021599A 1980-02-25 1980-02-25 powder spray material Expired JPS5856749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55021599A JPS5856749B2 (en) 1980-02-25 1980-02-25 powder spray material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55021599A JPS5856749B2 (en) 1980-02-25 1980-02-25 powder spray material

Publications (2)

Publication Number Publication Date
JPS56119765A JPS56119765A (en) 1981-09-19
JPS5856749B2 true JPS5856749B2 (en) 1983-12-16

Family

ID=12059494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55021599A Expired JPS5856749B2 (en) 1980-02-25 1980-02-25 powder spray material

Country Status (1)

Country Link
JP (1) JPS5856749B2 (en)

Also Published As

Publication number Publication date
JPS56119765A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
US4822415A (en) Thermal spray iron alloy powder containing molybdenum, copper and boron
US4725508A (en) Composite hard chromium compounds for thermal spraying
US7645493B2 (en) Composite wires for coating substrates and methods of use
EP0224724B1 (en) Amorphous alloy
CN100432277C (en) High corrosion resistant antiwear iron base heat spray coating layer material and its preparation method
US3313633A (en) High temperature flame spray powder
US3378392A (en) High temperature flame spray powder and process
US5332628A (en) Iron based ductile wire for forming a surfacing alloy system
EP1485220A1 (en) Corrosion resistant powder and coating
JPS6353250A (en) Composite wire for arc gun flame spraying
US4162392A (en) Hard facing of metal substrates
CA2567089C (en) Wear resistant alloy powders and coatings
CN109351957A (en) Laser melting coating iron(-)base powder and preparation method thereof
CN108048784A (en) A kind of method that plasma thermal sprayed prepares nitride enhancing high-entropy alloy coating
JPS60230974A (en) Thermal spray composite material and method of setting corrosion resistant coating
JPS62112745A (en) Alloy having high abrasion resistance and high corrosion resistance and flame spraying powder based on said alloy
US4810464A (en) Iron-base hard surfacing alloy system
JP2001503816A (en) Coated wear-resistant parts of internal combustion engines, in particular piston rings and methods for their production
JP2023507264A (en) Iron-based high corrosion resistance and wear resistance alloy
JPS5856749B2 (en) powder spray material
JPH08311630A (en) Corrosion resistant and wear resistant self-fluxing alloy for thermal spraying
US5013587A (en) Metal filler composition and method of employing same
CN113481458A (en) Wear-resistant particle wear-resistant powder core wire material and preparation method thereof, wear-resistant particle wear-resistant coating and preparation method thereof
JP2979102B2 (en) Manufacturing method of sliding parts
CN101407741A (en) Superfine ore powder lubricant additive having self-repair function