JPS5855768A - Insulation diagnosing method - Google Patents

Insulation diagnosing method

Info

Publication number
JPS5855768A
JPS5855768A JP56154447A JP15444781A JPS5855768A JP S5855768 A JPS5855768 A JP S5855768A JP 56154447 A JP56154447 A JP 56154447A JP 15444781 A JP15444781 A JP 15444781A JP S5855768 A JPS5855768 A JP S5855768A
Authority
JP
Japan
Prior art keywords
insulation
resistance value
insulator
state
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56154447A
Other languages
Japanese (ja)
Inventor
Sunao Iwabuchi
岩「淵」 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56154447A priority Critical patent/JPS5855768A/en
Publication of JPS5855768A publication Critical patent/JPS5855768A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Electric Cable Installation (AREA)

Abstract

PURPOSE:To diagnose a degree of insulation degradation, by measuring the difference between the resistance value of an insulating material in the dry state and that in the humid state in a rotary device. CONSTITUTION:A slot part Tandelta1 of a winding insulator of a rotary machine consists of a material, where an electrostatic capacity component C0 of the coil iron core part and an insulation resistance R0 of the coil iron core part are connected in parallel, and is connected in parallel with a power source PW, and a coil end part Tandelta2 consists of a material, where an electrostatic capacity component C1 and an insulation resistance component R1 are connected in parallel, and is connected in parallel to the power source PW through a surface resistance Rs of the coil end surface. The resistance value of an insulator in the dry state and the resistance value and the breakdown voltage value in the humid state are measured, and a degree of degradation of the insulator is diagnosed with the correlation between the breakdown voltage and the ratio of the resistance value in the dry state to that in the humid state.

Description

【発明の詳細な説明】 この発明は絶縁診断方法に関し、特に回転機器の固定子
巻線や回転子巻線の絶縁の劣化状態および絶縁破壊値の
推定をする絶縁診断方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulation diagnosis method, and more particularly to an insulation diagnosis method for estimating the deterioration state and dielectric breakdown value of the insulation of a stator winding or a rotor winding of a rotating device.

従来この種の絶縁診断方法としては、 l)絶縁抵抗試験 2)直流吸収試験 3)交流電流試験 り Tanδ試験 j)部分放電試験 等があり、普通定常雰囲気中にて実施している。Conventionally, this type of insulation diagnosis method is as follows: l) Insulation resistance test 2) DC absorption test 3) AC current test Tanδ test j) Partial discharge test etc., and is usually carried out in a steady atmosphere.

一般に回転機の巻線絶縁物を1スロット部とコイルエン
ド部の絶縁に大きく分けることができ、その等価回路を
87図に示す。図において、Tanδ。
In general, the winding insulation of a rotating machine can be broadly divided into insulation for one slot portion and coil end portion, and the equivalent circuit thereof is shown in Fig. 87. In the figure, Tanδ.

はスロット部のTanδであり、Tanδ2 はコイル
エンド部のTanδであるnTanδ、はコイル鉄心部
の静電容量分C0とコイル鉄心部の絶縁抵抗R8との並
列接続体からなり、電源pwに並列接続されて示されて
いる。またTanδ2はコイルエンド部の静電容−分C
1とコイルエンド部の絶縁抵抗分R1との並列接続体か
らなり、コイルエンド表面の表面抵N:Rsを介して電
源pwに並列接続されて示されていム。
is the Tan δ of the slot portion, Tan δ2 is the Tan δ of the coil end portion, nTan δ is composed of a parallel connection of the capacitance C0 of the coil core and the insulation resistance R8 of the coil core, and is connected in parallel to the power supply pw. is shown. In addition, Tan δ2 is the capacitance of the coil end - minute C
1 and the insulation resistance R1 of the coil end portion, and is shown connected in parallel to the power supply pw via the surface resistance N:Rs on the surface of the coil end.

絶縁物の劣化要因としては、熱的劣化、電気的劣化、機
械的劣化、環境化学的劣化が考えられるが、特に交流電
動機の場合は、起動時の起動ttlLによる電磁力によ
り、コイルエンドに大きな機械的ストレスが発生し、こ
の機械的劣化を主要因として、熱劣化、環境化学劣化が
相まってコイルエンド部に欠陥が発生するという傾向を
有する。事実、長期間実使用した機器の絶縁破壊試験を
実施すると、コイルエンドからアースに出面閃絡を生じ
る場合が多い。
The deterioration factors of insulators are thought to be thermal deterioration, electrical deterioration, mechanical deterioration, and environmental chemical deterioration, but in the case of AC motors in particular, the electromagnetic force caused by starting ttlL at startup causes a large amount of damage to the coil end. Mechanical stress is generated, and this mechanical deterioration is the main factor, and the combination of thermal deterioration and environmental chemical deterioration tends to cause defects in the coil end portion. In fact, when conducting dielectric breakdown tests on equipment that has been used for a long period of time, flash shorts often occur from the coil end to the ground.

しかるに絶縁の劣化度を検出する場合、絶縁物を乾燥さ
せて吸湿していない状態、すなわち第1図に示す表面抵
抗Rsが大きい状態では、上述のように劣化の受けやす
いコイルエンドの絶縁(絶縁特性としてはTanδ2で
表わされる部分)に電圧が印加されず、コイルエンド部
に欠陥があっても検出不可能である。この場合でも水素
冷却のタービン発電機のようにコイル表面が清浄に保た
れている場合はフィルエンド部の絶縁劣化が問題となる
ことはないので、スロット部絶縁の劣化度を検出するこ
とにより(絶縁特性としてfX Tanδ1で表わされ
る部分)良好な絶縁診断が可能ではあるが、空気冷却方
式のように、湿′度、塵埃、汚損にさらされる回転機の
場合は、汚損状態の程度によりコイル表面抵抗R8が種
々変化し、絶縁特性においてスロット部のTanδ1 
に対するエンド部のTanδ!の検出値への混入程度が
一様でないため、真の絶縁状態の判断がつきに(い。
However, when detecting the degree of deterioration of insulation, when the insulator is dry and does not absorb moisture, that is, when the surface resistance Rs shown in Fig. 1 is large, the coil end insulation (insulation As a characteristic, no voltage is applied to the portion represented by Tan δ2, and even if there is a defect in the coil end, it cannot be detected. Even in this case, if the coil surface is kept clean like in a hydrogen-cooled turbine generator, insulation deterioration at the fill end will not be a problem, so by detecting the degree of deterioration of the slot insulation, Although it is possible to perform a good insulation diagnosis (the part expressed as fX Tanδ1 as the insulation property), in the case of rotating machines that are exposed to humidity, dust, and dirt, such as those using air cooling systems, the coil surface may be damaged depending on the degree of dirt. Resistance R8 changes variously, and Tan δ1 of the slot part changes in insulation properties.
Tanδ of the end portion for Since the degree of contamination in the detected value is not uniform, it is difficult to judge the true insulation state.

このような理由からTanδ特性と絶縁劣化度の実測値
もしくは絶縁破壊値との相関性が得られず、その実測値
から絶縁診断を行うことはできなかった。第一図を工こ
の’I’anδ特性と絶縁破壊値BDVとの関係を示す
図であり、供試物としてはフレークマイカ、ポリエステ
ル真空含浸レジンコイルの運転経過年数io、−20年
のものを使用した。第2図において、縦軸は絶縁破壊値
BDV(チ)を、横軸はΔTan δ(1←〔定格電圧
におけるTa、nδ〕−(/ KVにおけるTanδ〕
)を示す。絶縁破壊値ioθチは初期の破壊電圧値を表
わしている。この第2図のプロットからもΔTanδと
BDV との間に明確な相関性を特定することができず
、絶縁診断の行うことができないのが解る。
For these reasons, it has not been possible to obtain a correlation between the Tan δ characteristics and the measured value of the degree of insulation deterioration or the dielectric breakdown value, and it has not been possible to perform insulation diagnosis from the measured values. Figure 1 is a diagram showing the relationship between the 'I'anδ characteristics and the dielectric breakdown value BDV.The test specimens are flake mica and polyester vacuum impregnated resin coils with an operating age of -20 years. used. In Fig. 2, the vertical axis is the dielectric breakdown value BDV (chi), and the horizontal axis is ΔTan δ (1← [Ta, nδ at rated voltage] - (Tan δ at / KV)
) is shown. The dielectric breakdown value ioθ represents the initial breakdown voltage value. It can be seen from the plot of FIG. 2 that no clear correlation can be identified between ΔTanδ and BDV, and insulation diagnosis cannot be performed.

以上はΔTanδとBDVの関係についてのみ説明した
が、同様に部分放電開始電圧C+SV と絶縁破壊値B
D■(チ)との間(第3図)、および部分数を最大電荷
量QMAIと絶縁破壊値BDV との間(第グ図)Kも
絶縁診断な可能とするような相関性がない。
The above has only explained the relationship between ΔTanδ and BDV, but similarly, partial discharge inception voltage C+SV and dielectric breakdown value B
There is also no correlation between the maximum charge amount QMAI and the dielectric breakdown value BDV (Fig. G) and K (Fig. 3) that would enable insulation diagnosis.

以上のように従来の診断法でをニ一般的手段による非破
壊特性と絶縁破壊値の相関性が得られず。
As mentioned above, it is not possible to obtain a correlation between non-destructive properties and dielectric breakdown values using conventional diagnostic methods.

絶縁劣化の推定もしくは診断に困雌であった。It was difficult to estimate or diagnose insulation deterioration.

この発明は上記のような従来のものの欠点を除去するた
めに為されたもので、巻線が置かれている環境状態の差
異すなわち乾燥状態と吸湿状態との絶縁特性の差異に注
目して絶縁劣化の推定を可能とした絶縁診断方法を提供
することを目的としている。
This invention was made to eliminate the above-mentioned drawbacks of the conventional method, and focuses on the difference in the environmental conditions in which the winding is placed, that is, the difference in insulation properties between a dry state and a moisture-absorbed state. The purpose of this invention is to provide an insulation diagnosis method that makes it possible to estimate deterioration.

すなわち、絶縁劣化度の進んだ絶縁物は吸湿状態におい
てはその絶縁抵抗値が極端罠低下するのでその乾燥状態
と吸湿状態の抵抗値の差異を測定することにより絶縁劣
化度を診断しようとするものである。
In other words, the insulation resistance value of an insulator with advanced insulation deterioration drops dramatically when it absorbs moisture, so the degree of insulation deterioration can be diagnosed by measuring the difference in resistance value between the dry state and the moisture absorption state. It is.

以下、この発明の実楕例について説明する。Hereinafter, an actual example of this invention will be explained.

フレークマイカ構造、ポリエステルレジン真空含浸コイ
ルよりなる固定子巻線のもので、運転年数10S20年
、容量夕0θXW−λ000 KWのモーター10台を
選んで次のテストを実施した。
The following tests were conducted on 10 motors with a flake mica structure and a stator winding made of polyester resin vacuum-impregnated coils, operating years of 10 to 20 years, and a capacity of 0θXW-λ000 KW.

ステップ−7)湿度100チ、温度60℃の蒸気中に巻
線を72時間暴露し、蒸気槽から取出した後、直ちに絶
縁抵抗Rh um を測定した。
Step-7) The windings were exposed to steam at a humidity of 100 degrees and a temperature of 60 degrees Celsius for 72 hours, and immediately after being taken out from the steam bath, the insulation resistance Rh um was measured.

ステップーコ)その後、巻線を蒸気噴射洗浄し。After that, the windings are cleaned by steam injection.

−/3!”C,,14時間水切乾燥し1巻線温度が室温
にもどってから、再び絶縁抵抗Rd r y を測定し
た。
-/3! After draining and drying for 14 hours and the temperature of the first winding returning to room temperature, the insulation resistance Rd ry was measured again.

ステップ−J)日出線より高電圧(kcAOH2)を印
加しく三相一括にて実施)、/KV/秒の電圧上昇法に
よって絶縁の破壊電圧値を測定した。
Step-J) A high voltage (kcAOH2) was applied from the Hiji Line to three phases at once), and the breakdown voltage value of the insulation was measured by the voltage increase method of /KV/sec.

以上の結果を第3図に示す。The above results are shown in FIG.

縦軸は対地間交流破壊電圧値を示し、初期の値を100
チとした。
The vertical axis shows the AC breakdown voltage value to ground, and the initial value is 100
It was hot.

横軸は乾燥後の絶縁抵抗Rdry  と吸湿後の絶縁抵
抗Rh um の比をとり、その対数log (Rdr
y/Rhum)で表わした。
The horizontal axis is the ratio of the insulation resistance Rdry after drying to the insulation resistance Rh um after moisture absorption, and its logarithm log (Rdr
y/Rhum).

第3図のプロットから分るように絶縁抵抗の上記比と絶
縁破壊値との間には、具体的な相関関係があり、従って
絶縁抵抗の比を知れば、第S図のグラフから絶縁破壊強
度を推定できることとなる。
As can be seen from the plot in Figure 3, there is a specific correlation between the above ratio of insulation resistance and the dielectric breakdown value. This means that the strength can be estimated.

横軸の値が2−3すなわち抵抗値比が702 〜10 
 倍では、初期値のtroSb(17@の電圧値で絶縁
破壊し、横軸の値が3以上すなわち1000倍以上では
初期の破壊電圧値の半分以下に絶縁強度が低下するのが
第S図から分る。
The value on the horizontal axis is 2-3, that is, the resistance value ratio is 702 to 10.
Figure S shows that when the voltage is doubled, dielectric breakdown occurs at a voltage value of the initial value troSb (17@), and when the value on the horizontal axis is 3 or more, that is, 1000 times or more, the insulation strength decreases to less than half of the initial breakdown voltage value. I understand.

なお上記実施例でを工、巻線を強制吸湿または乾燥させ
て絶縁抵抗値を測定するものについて述べたが、通常、
プラントに据付けられた状態においても、環境の変動(
例えば湿度の変動)Kおける絶縁抵抗値を定期的に測定
し、そのデータから最近の吸湿状態の絶縁抵抗値と乾燥
状態の絶縁抵抗値との比を判断するようにしても良い。
In the above embodiment, the insulation resistance value is measured by forcing the winding to absorb moisture or drying.
Even when installed in a plant, changes in the environment (
For example, the insulation resistance value due to humidity fluctuations may be periodically measured, and the ratio between the insulation resistance value in the recent moisture absorption state and the insulation resistance value in the dry state may be determined from the data.

さらに、運転停止直後の温度の高い状態、および停止中
の湿度の低い状態での絶縁抵抗値の差異から絶縁劣化度
を判断するようにしても良い。
Furthermore, the degree of insulation deterioration may be determined from the difference in insulation resistance value between a high temperature state immediately after the operation is stopped and a low humidity state during the operation stop.

以上のようにこの発明によれば、吸湿後と乾燥後の絶縁
抵抗を測定し、その差異を知ることにより、絶縁破壊強
度を推定することが可能である。
As described above, according to the present invention, it is possible to estimate the dielectric breakdown strength by measuring the insulation resistance after moisture absorption and after drying and knowing the difference.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図を子巻線絶縁物の等両回路を示す図、第2図を工
ΔTanδと絶縁破壊電圧BDV  との相関性を示す
図、第3図は部分放電開始電圧C8V と絶縁破壊電圧
BDV との相関性を示す図、第q図は最大放電々荷量
Q MAYと絶縁破壊電圧BDV との相関性を示す図
、第S図はこの発明の一実施例によって得られた。乾燥
および吸湿状態の絶縁抵抗値の比log (Rdry 
/ Rhum )と絶縁破壊電圧BDVとの相関性を示
す図である。図において、Tan a。 をニスロット部のTan 、IJ 、 Tanδ はコ
イルエンド部のTanδ、 R8tXコイルエンド表面
の表面抵抗である。 代 理  人   葛  野  信  −幣1図 s
Figure 1 is a diagram showing the circuit of the child winding insulator, Figure 2 is a diagram showing the correlation between ΔTanδ and dielectric breakdown voltage BDV, and Figure 3 is a diagram showing the partial discharge inception voltage C8V and dielectric breakdown voltage BDV. Figure q is a diagram showing the correlation between the maximum discharge charge QMAY and dielectric breakdown voltage BDV, and Figure S was obtained by an embodiment of the present invention. Rdry Rdry Rdry
/Rhum) and dielectric breakdown voltage BDV. In the figure, Tan a. Tan, IJ, and Tanδ of the slotted part are Tanδ of the coil end, and are the surface resistance of the R8tX coil end surface. Agent Makoto Kuzuno - Figure 1 s

Claims (1)

【特許請求の範囲】 +11  絶縁物の乾燥状態における抵抗値を?111
1定し。 前記絶縁物の吸湿状態における抵抗値をMl:定し、前
記絶縁物の破壊電圧値を測定し、前記吸l髭状態の抵抗
値に対する前記乾燥状態の抵抗値の比と、前記破壊電圧
値との相関関係を求め、前記抵抗値の比から前記相関関
係を用いて前記絶縁物の劣化程度を診断するようにした
ことを特徴とする絶縁診断方法。 (2)  前記乾燥状態および吸湿状態の抵抗値の61
11定a、前記絶縁物を強制的にそれぞれ乾燥状態およ
び吸湿状態の中に置いて行われるようにした特許請求の
範囲第1項記載の絶縁診断方法。 (3)  前記乾燥状態および吸湿状態の抵抗値は、実
使用状態にある前記絶縁物の抵抗値およびその絶縁物の
置かれた環境中の湿度を定期的に測定することにより、
その測定データから判断されるよ5Kした特許請求の範
囲第1項記載の絶縁診断方法。
[Claims] +11 What is the resistance value of the insulator in a dry state? 111
Fixed at 1. The resistance value of the insulator in the moisture absorption state is determined as Ml, the breakdown voltage value of the insulator is measured, and the ratio of the resistance value in the dry state to the resistance value in the moisture absorption state is determined as the breakdown voltage value. An insulation diagnosis method, characterized in that the degree of deterioration of the insulator is diagnosed using the correlation based on the ratio of the resistance values. (2) 61 of the resistance value in the dry state and moisture absorption state
11. The insulation diagnosis method according to claim 1, wherein the insulation diagnosis is performed by forcibly placing the insulator in a dry state and a moisture absorbing state, respectively. (3) The resistance value in the dry state and the moisture absorption state can be determined by periodically measuring the resistance value of the insulator in actual use and the humidity in the environment in which the insulator is placed.
5. The insulation diagnosis method according to claim 1, wherein the insulation diagnosis is 5K as determined from the measurement data.
JP56154447A 1981-09-28 1981-09-28 Insulation diagnosing method Pending JPS5855768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56154447A JPS5855768A (en) 1981-09-28 1981-09-28 Insulation diagnosing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56154447A JPS5855768A (en) 1981-09-28 1981-09-28 Insulation diagnosing method

Publications (1)

Publication Number Publication Date
JPS5855768A true JPS5855768A (en) 1983-04-02

Family

ID=15584404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56154447A Pending JPS5855768A (en) 1981-09-28 1981-09-28 Insulation diagnosing method

Country Status (1)

Country Link
JP (1) JPS5855768A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771580A (en) * 1995-09-29 1998-06-30 Sanyo Electric Co., Ltd. Electric razor
US7111983B2 (en) * 2004-04-13 2006-09-26 Reliance Electric Technologies, Llc Temperature detection method and apparatus for inverter-driven machines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771580A (en) * 1995-09-29 1998-06-30 Sanyo Electric Co., Ltd. Electric razor
US7111983B2 (en) * 2004-04-13 2006-09-26 Reliance Electric Technologies, Llc Temperature detection method and apparatus for inverter-driven machines

Similar Documents

Publication Publication Date Title
David et al. PDC measurements to assess machine insulation
Soltani et al. Impact of humidity on dielectric response of rotating machines insulation system
McDermid Insulation systems and monitoring for stator windings of large rotating machines
Cameron Diagnoses of AC generator insulation condition by nondestructive tests [includes discussion]
JPS5855768A (en) Insulation diagnosing method
Stone et al. Experience with DC polarization-depolarization measurements on stator winding insulation
Phloymuk et al. The aging of the insulation system of large rotating machines in frequency domains
David et al. Progress in DC testing of generator stator windings: theoretical considerations and laboratory tests
Gutten et al. Frequency Domain Diagnostics of Transformer Insulation
Johnson A maintenance inspection program for large rotating machines
David et al. The use of time domain spectroscopy as a diagnostic tool for rotating machine windings
Phloymuk et al. The Dissipation Factor (tan δ) Monitoring of A Stator Winding Insulation of A Synchronous Machine
KR100805872B1 (en) Method and device for estimating remaining service life of coil
David et al. Investigation on the low frequency dielectric response of ground-wall insulation of rotating machine windings
Cotner Observations on the polarization index test as applied to strip-on-edge field windings of salient pole hydro generators
Wieseman Insulation resistance of armature windings
Phloymuk et al. Dielectric Properties Analysis of Gas Turbine Synchronous Generator by Polarization and Depolarization Current Measuremen
Brandes et al. Class H insulation system for rotating equipment
Leape et al. A Method of Evaluating Insulation Systems In Motors [includes discussion]
Kimura et al. Fundamentals-a useful index for estimating residual life of motor insulation
Moghadam et al. Effect of humidity on high voltage testing of VPI insulation systems before impregnation
JPH0833431B2 (en) Insulation deterioration diagnosis method for high voltage rotating machines
fuchun et al. Research on Insulation Damp Diagnosis of Synchronous Motor Stator Winding
Rao Case studies of rotating machine insulation condition assessment
Calo et al. Effect of performing DC tests before dielectric frequency response on a MV stator