JPS585373B2 - Refueling equipment testing equipment - Google Patents

Refueling equipment testing equipment

Info

Publication number
JPS585373B2
JPS585373B2 JP9482676A JP9482676A JPS585373B2 JP S585373 B2 JPS585373 B2 JP S585373B2 JP 9482676 A JP9482676 A JP 9482676A JP 9482676 A JP9482676 A JP 9482676A JP S585373 B2 JPS585373 B2 JP S585373B2
Authority
JP
Japan
Prior art keywords
distributor
oil
control valve
compressed air
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9482676A
Other languages
Japanese (ja)
Other versions
JPS5321366A (en
Inventor
佐藤善彦
藤田正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9482676A priority Critical patent/JPS585373B2/en
Publication of JPS5321366A publication Critical patent/JPS5321366A/en
Publication of JPS585373B2 publication Critical patent/JPS585373B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N25/00Distributing equipment with or without proportioning devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】 本発明は給油装置に係り、特に、目詰まり等の点検を効
率的に行う試験装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oil supply system, and more particularly to a test device for efficiently inspecting clogging and the like.

一般にチェーン等被給油体への給油は、微量な油を連続
的に流下する低圧自動給油装置が効果的であり、最近こ
の種給油装置の普及が著しい。
Generally, a low-pressure automatic oil supply device that continuously flows a small amount of oil is effective for lubricating objects to be lubricated such as chains, and recently this type of oil supply device has become extremely popular.

この低圧自動給油装置の構造を第1図から第4図により
説明する。
The structure of this low-pressure automatic oil supply system will be explained with reference to FIGS. 1 to 4.

図において、タンク2内の油はモータ3により回転する
ポンプ4により圧送され、配管5により分配器7に送ら
れる。
In the figure, oil in a tank 2 is pumped by a pump 4 rotated by a motor 3, and sent to a distributor 7 through a pipe 5.

このタンク2やポンプ4は本体ユニットとして一体的に
構成され、被給油体12の装置の機械室等に設置される
のが一般である。
The tank 2 and pump 4 are integrally constructed as a main body unit, and are generally installed in a machine room or the like of the equipment of the object 12 to be oiled.

分配器7に送られた油は主管側7a、枝管側7b等複数
あるいは複数以上に分岐される。
The oil sent to the distributor 7 is branched into a plurality or more than a plurality of pipes, such as a main pipe side 7a and a branch pipe side 7b.

ここで、6は配管5の継ぎ手、8はメクラ栓である。Here, 6 is a joint of the pipe 5, and 8 is a blind stopper.

分配器7により分岐された油は、その吐出側に取り付け
られた流量制御弁9によって所定の流量に制御される。
The oil branched by the distributor 7 is controlled to a predetermined flow rate by a flow rate control valve 9 attached to its discharge side.

この流量制御弁9はその内部に細い連続した螺旋状の溝
Sを有する抵抗体9aが圧入されており、その溝Sの大
きさあるいは延長長さにより、制御流量の大小ならびに
油の内圧に対する流量の直線的な変化を可能にしている
This flow rate control valve 9 has a resistor 9a having a thin continuous spiral groove S press-fitted therein, and depending on the size or extension length of the groove S, the control flow rate and the flow rate relative to the internal pressure of the oil are determined. This allows for linear changes in

この流量制御弁9により制御された油はそれぞれ配管1
0により導かれ、被給油体12部分に配置されたノズル
11により吐出される。
The oil controlled by this flow control valve 9 is supplied to each pipe 1
0, and is discharged by a nozzle 11 arranged at the lubricated body 12 portion.

このノズル11は微量に制御された油を連続流下状にす
るため、吐出口内径d1が0.5mm程度吉細く、かつ
、吐出口外径d2はd2≦2d、、また、吐出口内径d
、の長さ!、はl、≦6d、というように独特の工夫が
なされ、これによって5〜10cc/minという微量
な油を連続流下できるようにしているこのような低圧自
動給油装置は、流量制御弁9の抵抗体9aに設けた溝S
およびノズル11の吐出口内径d1が極めて細いため、
微小な塵埃が入るとそれらの中に埋まってしまい、ノズ
ル11から油が出ないというトラブルが発生する。
This nozzle 11 has a discharge port inner diameter d1 as narrow as about 0.5 mm, and a discharge port outer diameter d2 which satisfies d2≦2d, in order to continuously flow down a minute amount of oil.
, length! , is l, ≦6d, and this low-pressure automatic oil supply device is uniquely designed to allow a small amount of oil of 5 to 10 cc/min to continuously flow down. Groove S provided in body 9a
And since the inner diameter d1 of the discharge port of the nozzle 11 is extremely small,
If minute dust enters, it will become buried in the dust, causing a problem that oil will not come out from the nozzle 11.

このため、本体ユニット1や分配器と流量制御弁9の組
合わせ品ならびにノズル11という各部品は、単独状態
で清掃し、かつ、1個ずつ給油試験を行っている。
For this reason, the main body unit 1, the combination of the distributor and flow rate control valve 9, and the nozzle 11 are cleaned individually and subjected to a lubrication test one by one.

しかしながら、これら単品について給油試験を確実に実
施しても、それらの部品の接続、すなわち配管作業は被
給油体12の装置内で行なわれるため、塵埃の管理が十
分行届かず、配管作業時に塵埃が進入するケースがしば
しば発生するこのため、各部品の取付けならびに配管作
業が完了した後に、実際の給油状態と同じようにタンク
2に油を入れ、モータ3を結線してポンプ4を回転して
ノズル11からの油の吐出状態ならびに配管5,10等
の接続部からの油もれなどを点検していた。
However, even if a refueling test is carried out on these individual parts, the connection of these parts, that is, the piping work, is done within the equipment of the lubricated body 12, so dust cannot be adequately controlled, and dust may be generated during piping work. Because of this, after the installation of each part and piping work are completed, fill the tank 2 with oil, connect the motor 3, and rotate the pump 4 in the same way as in the actual oil supply condition. The condition of oil discharge from the nozzle 11 and oil leakage from the connections of the pipes 5, 10, etc. were checked.

例えば、被給油体12の本体装置にあらかじめ低圧自動
給油装置を装着して、その本体装置を出荷する場合には
、その出荷前に目詰まりや油もれ等の給油点検を行って
おかなければならない。
For example, if a low-pressure automatic lubrication device is installed in advance on the main unit of the lubricated body 12 and the main unit is shipped, a lubrication check for clogging, oil leaks, etc. must be performed before shipping. No.

しかしながら、こうした給油点検はタンク2に油を入れ
たり、モータ3に配線を行うなどの試験準備、試験完了
後配線を外したり、タンク2から油を抜いたりする後始
末、また、継ぎ部分からの油もれを確認するためには1
0分あるいは20分という長時間に渡り給油を続けなけ
ればならないという労力と時間の問題点と共に、試験中
に吐出する油で被給油体12の本体装置内が油で汚れて
しまうという問題点があり、低圧自動給油装置の取付は
上の重要な課題の一つとなっていた。
However, these refueling inspections include test preparations such as adding oil to tank 2 and wiring to motor 3, cleanup such as removing wiring and draining oil from tank 2 after the test is completed, and cleaning up from joints. To check for oil leaks 1
In addition to the labor and time problem of having to continue refueling for a long period of time, such as 0 or 20 minutes, there is also the problem that the inside of the main unit of the lubricated object 12 becomes dirty with oil discharged during the test. Therefore, the installation of a low-pressure automatic lubrication system was one of the important issues.

本発明の目的は、上記の従来技術の問題点を解決し、極
めて効率的に、かつ、油等の汚れの起きない低圧自動給
油装置の吐出試験装置を提供するにあり、その要旨は、
分配器に圧縮空気を送り込むことにより複数以上のノズ
ルの目詰まりを同時に点検すると共に、油もれ等を容易
に発見できるようにしたことにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a discharge test device for a low-pressure automatic oil supply device that is extremely efficient and free from oil and other contamination.
By sending compressed air into the distributor, clogging of a plurality of nozzles or more can be checked at the same time, and oil leaks can be easily discovered.

以下、本発明について説明する。The present invention will be explained below.

一般に自動給油装置は油の粘性を利用してポンプ4で吸
い上げ、かつ、流量制御弁9等で制御している。
Generally, an automatic oil supply device uses the viscosity of oil to suck up oil with a pump 4 and controls it with a flow control valve 9 or the like.

従って粘性の極めて低い水とか空気はこうした自動給油
装置に応用できないとされている。
Therefore, it is said that water and air with extremely low viscosity cannot be applied to such automatic oil supply devices.

実際タンク2に洗浄液を入れてポンプ4を回転しても、
圧力がほとんど発生せず洗浄液は吸出しない。
Even if you actually put cleaning liquid into tank 2 and rotate pump 4,
Almost no pressure is generated and the cleaning liquid is not sucked out.

また、ポンプ4の吐出側から水とか空気を送っても、導
通しやすい部分のみを径路してしまい、複数以上のノズ
ル11に分散されないのが一般である。
Furthermore, even if water or air is sent from the discharge side of the pump 4, it is common that the water or air is routed only through the easily conductive parts, and is not distributed to the plurality of nozzles 11 or more.

しかしながら、本低圧自動給油装置は極めて細い溝Sを
有する流量制御弁9とノズル11により構成されている
ため、そうした粘性の低い水とか空気でも粘性抵抗が作
用し、分配器7内で水や空気が分散されやすいというこ
とが着目された。
However, since this low-pressure automatic oil supply device is composed of a flow control valve 9 and a nozzle 11 having an extremely thin groove S, viscous resistance acts even on such low-viscosity water or air, and the water or air inside the distributor 7 It has been noted that the particles are easily dispersed.

このことから分配器7に圧縮空気を送り込むことを試み
た。
Based on this, an attempt was made to feed compressed air into the distributor 7.

第5図は本発明の試験装置の一実施例を示すもので、低
圧自動給油装置の系統としては一部を徐き従来と全く同
じである。
FIG. 5 shows an embodiment of the test apparatus of the present invention, in which the system of the low-pressure automatic oil supply system is completely the same as the conventional one except for a part.

すなわち、タンク2、モータ3およびポンプ4等で構成
される本体ユニット1、分配器7とそれに取付けた流量
制御弁9、およびノズル11も従来と全く同様で、配管
5゜10についても従来と同じである。
That is, the main unit 1 consisting of the tank 2, motor 3, pump 4, etc., the distributor 7 and the flow rate control valve 9 attached to it, and the nozzle 11 are also the same as before, and the piping 5° 10 is also the same as before. It is.

ただ従来と異なる点は本体ユニット1のポンプ4の吐出
側に逆流防止弁19を追加したことである。
However, the difference from the conventional method is that a check valve 19 is added to the discharge side of the pump 4 of the main unit 1.

次に目詰まりや油もれの確認試験方法について説明する
Next, we will explain how to test for clogging and oil leakage.

試験装置13は塵埃等を除去するフィルタ14、空気圧
を制御する圧力調整弁16、制御された圧力を計測する
圧力計15、ならびに空気を清浄するオイラー等で構成
し、矢印i側から圧縮空気を取り入れ適宜圧力を調整し
てホース18により分配器7に導通させるという方法で
ある。
The test device 13 consists of a filter 14 for removing dust, etc., a pressure regulating valve 16 for controlling air pressure, a pressure gauge 15 for measuring the controlled pressure, and an oiler for cleaning the air. This method involves taking in the water, adjusting the pressure as appropriate, and connecting it to the distributor 7 through the hose 18.

ここで、分配器7の圧縮空気取り入れ口きしては第2図
に示した分配器7のメクラ栓8を外して、この部分にホ
ース18の先端をねじ込みして行う。
Here, the compressed air intake of the distributor 7 is made by removing the blind stopper 8 of the distributor 7 shown in FIG. 2, and screwing the tip of the hose 18 into this part.

このため、低圧自動給油装置の各部品あるいは配管等は
一切動かすことなく、かつ、被給油体12の本体装置内
に完全に装着した状態で試験装置13をセットすること
ができる。
Therefore, the test device 13 can be set in a state where it is completely installed in the main body of the lubricated body 12 without moving any parts or piping of the low-pressure automatic oil supply device.

試験装置13を分配器7にセットした後、圧力調整弁1
6を徐々に開いて空気を分配器7に送ると、当初は流量
制御弁9の導通しやすい部分のみ空気が導通し、その流
量制御弁9と配管されたノズル11部分から空気が吐出
する。
After setting the test device 13 on the distributor 7, the pressure regulating valve 1
6 is gradually opened to send air to the distributor 7, the air is initially conducted only in a portion of the flow control valve 9 that is easily conductive, and air is discharged from the nozzle 11 portion that is connected to the flow control valve 9.

圧力調整弁16をさらに開いて空気圧を上昇すると、や
がて導通ずる流量制御弁9の本数が増加し、一定空気圧
に至ると全ての流量制御弁9が導通し、ノズル11から
圧縮空気が吐出することが確認された。
When the pressure regulating valve 16 is further opened to increase the air pressure, the number of flow control valves 9 that become conductive eventually increases, and when a constant air pressure is reached, all the flow control valves 9 become conductive and compressed air is discharged from the nozzle 11. was confirmed.

7方、分配器7に送られた圧縮空気の一部は配管5によ
りポンプ4側に抜けようとするが、逆流防止弁19が閉
じるためポンプ4側には抜けられず、全ての圧縮空気は
流量制御弁9を径路してノズル11から吐出される。
A part of the compressed air sent to the distributor 7 tries to escape to the pump 4 side through the piping 5, but because the check valve 19 closes, it cannot escape to the pump 4 side, and all the compressed air is It passes through the flow rate control valve 9 and is discharged from the nozzle 11.

このように分配器7に圧縮空気を導通することにより、
各ノズル11の先端に手などをかさせば圧縮空気がノズ
ル11から廃山しているかどうかが容易に判別できる。
By conducting compressed air to the distributor 7 in this way,
By placing a hand or the like on the tip of each nozzle 11, it can be easily determined whether or not compressed air is being discharged from the nozzle 11.

万一、配管5,10の作業中に塵埃が進入し、これが流
量制御弁9の溝Sやノズル11の吐出口内径d、に詰ま
っていれば空気の廃山がなく、あるいは極度に洗出圧力
が弱まっているため異常であることが容易に判別できる
In the unlikely event that dust enters the pipes 5 and 10 during work and clogs the groove S of the flow rate control valve 9 or the inner diameter d of the discharge port of the nozzle 11, there will be no waste air, or the dust will be thoroughly washed out. Since the pressure has weakened, it can be easily determined that there is an abnormality.

また、配管5,10の継ぎ部分や分配器7と流量制御弁
9の取付は部等に間隙があれば、その微小な間隙から圧
縮空気がもれるため、例えばセッケン水などをハケ等に
より、そうした継き部に塗ってやれば気泡等が発生し、
欠陥の有無が容易に判別できる。
In addition, if there is a gap between the joints of the pipes 5 and 10 or the installation of the distributor 7 and flow rate control valve 9, compressed air may leak from the small gap. If you apply it to such joints, bubbles etc. will occur,
The presence or absence of defects can be easily determined.

以上の一実施例によれば、試験装置13を分配器7のメ
クラ栓8の部分にねじ込みするという簡単な試験準備と
、ノズル11から圧縮空気が廃山するかどうかを手でか
ざすという簡単な方法で流量制御弁9やノズル11の目
詰まりが確認でき、かつ、セッケン水等を継ぎ部分に塗
る程度で油もれの要因が迅速に、かつ、確実に判別でき
る。
According to the above-mentioned embodiment, the test preparation is as simple as screwing the test device 13 into the blank stopper 8 of the distributor 7, and simply as holding the test device 13 over the nozzle 11 by hand to see if compressed air is discarded. By this method, clogging of the flow control valve 9 and nozzle 11 can be confirmed, and the cause of oil leakage can be quickly and reliably determined by applying soapy water or the like to the joint.

さらに圧縮空気を廃山するため被給油体12の本体装置
内の汚れは全く発生しないという効果があり、目詰まり
や油もれの確認試験が大巾に短縮され、極めて効率的と
なる。
Furthermore, since the compressed air is discarded, there is an effect that no dirt is generated inside the main unit of the oiled body 12, and the test to confirm clogging and oil leakage is greatly shortened, making it extremely efficient.

なお、以上説明した一実施例によって初期の目的は達成
されるが、流量制御弁9に異なった吐出量のものを並設
した場合、すなわち、吐出量の多いものと少ない流量制
御弁9を組合わせて分配器7に取付けた場合に、その吐
出量の少ない流量制御弁9を分配器7の枝管側に取付け
ると、しばしばその流量制御弁9から圧縮空気が吐出し
ないということが実験により確認された。
Although the initial purpose is achieved by the embodiment described above, if flow control valves 9 with different discharge volumes are arranged side by side, that is, one with a large discharge volume and one with a low discharge volume are combined. It has been confirmed through experiments that if a flow control valve 9 with a small discharge amount is installed on the branch pipe side of the distributor 7 when the flow control valve 9 is also installed in the distributor 7, compressed air often does not discharge from the flow control valve 9. It was done.

このように、吐出量の異なる流量制御弁9を組合わせて
用いる場合には、吐出量の少ない流量制御弁9を分配器
7の主管側に、吐出量の多い流量制御弁9を枝管側に配
置することにより、全ての流量制御弁9に圧縮空気が分
散されることが実験で確認された。
In this way, when using a combination of flow control valves 9 with different discharge volumes, the flow control valve 9 with a lower discharge volume is placed on the main pipe side of the distributor 7, and the flow control valve 9 with a higher discharge volume is placed on the branch pipe side. It has been confirmed through experiments that compressed air can be dispersed to all the flow control valves 9 by arranging the flow control valves 9.

これにより、本目的はさらに効果的に達成される。Thereby, this objective can be achieved even more effectively.

また、本試験方法の実験に際し、導通している圧縮空気
を急激に開放すると、流量制御弁9内の抵抗体9aが分
配器7内に抜は出すというトラブルが発生した。
Furthermore, during the experiment of this test method, when the compressed air that was being conducted was suddenly released, a problem occurred in that the resistor 9a in the flow control valve 9 was drawn out into the distributor 7.

これは、流量制御弁9の細い溝Sを圧縮空気が通過し、
さらにノズル11に至って細い吐出口内径d1を通過し
て廃山しているため、この両者間すなわち配管10内の
空気圧がかなり高くなっており、圧縮空気を急激に開放
することにより流量制御弁9の抵抗体9aの前後に圧力
差が発生し、軽く打込みされた抵抗体9aが分配器7側
に押し出されるためと考えられる。
This is because compressed air passes through the narrow groove S of the flow control valve 9,
Furthermore, since it reaches the nozzle 11 and passes through the narrow discharge port inner diameter d1, the air pressure between the two, that is, inside the pipe 10, is considerably high, and by rapidly releasing the compressed air, the flow rate control valve 9 This is thought to be because a pressure difference occurs before and after the resistor 9a, and the lightly implanted resistor 9a is pushed out toward the distributor 7.

従って、このような問題は第6図に示す方法により解決
される。
Therefore, such a problem can be solved by the method shown in FIG.

すなわち、第6図において流量制御弁9や抵抗体9aは
従来と全く同じであるが、その抵抗体9aの下側に抜は
止め体20を強く打込んだことに特徴がある。
That is, in FIG. 6, the flow rate control valve 9 and the resistor 9a are exactly the same as the conventional one, but the feature is that a removal stopper 20 is strongly driven into the lower side of the resistor 9a.

これにより抵抗体9aが逆圧で分配器7側に抜けようと
しても、抜は止め体20が抵抗体9aを支えることにな
る。
As a result, even if the resistor 9a tries to escape toward the distributor 7 due to the reverse pressure, the pull-out stopper 20 supports the resistor 9a.

また、再度圧縮空気や油が分配器7に送られれば、その
圧力で抵抗体9aは上側に押されるため、流量を制御す
る効果は全く異なることはない。
Moreover, if compressed air or oil is sent to the distributor 7 again, the pressure will push the resistor 9a upward, so the effect of controlling the flow rate will not change at all.

この抜は止め体20を設けたことにより、圧縮空気の操
作上の問題が解消され、初期の目的がより一層達成され
るようになる。
The provision of this stopper 20 eliminates the problem in operating the compressed air and further achieves the initial objective.

ここで上記の一実施例では逆流防止弁19を本体ユニッ
ト1のポンプ4の吐出側に配置したが、第7図のように
分配器7の入口側に配置し、あるいは配管5の一部に1
9aのように設けてもよく、要するにポンプ4と分配器
7の間に配置されていれば目的は達成される。
Here, in the above embodiment, the check valve 19 is arranged on the discharge side of the pump 4 of the main unit 1, but it is arranged on the inlet side of the distributor 7 as shown in FIG. 1
9a may be provided, and in short, if it is placed between the pump 4 and the distributor 7, the purpose is achieved.

また、圧縮空気を送る手段として試験装置13を用いて
説明したが、圧縮空気源において塵埃や清浄が管理され
ている場合には必ずしも、第5図のような試験装置を必
要とするものではなく、その圧縮空気源の空気をそのま
ま分配器に接続してもよい。
Furthermore, although the explanation has been made using the test device 13 as a means for sending compressed air, if dust and cleanliness are controlled in the compressed air source, a test device like the one shown in Fig. 5 is not necessarily required. , the air from the compressed air source may be directly connected to the distributor.

以上述べた本発明によれば、最終的に低圧自動給油装置
を装着した後の、目詰まりや油もれ等の確認が極めて効
率的にできると共に、その確認試験による油汚れ等が発
生しないという効果が得られる。
According to the present invention described above, it is possible to extremely efficiently check for clogging, oil leakage, etc. after the low-pressure automatic oil supply device is finally installed, and it is said that no oil stains will occur during the confirmation test. Effects can be obtained.

また、逆流防止弁19を設けたため、配管5を取外す手
数が減少し、確認試験の効率をより一層向上することが
できる。
Further, since the check valve 19 is provided, the number of steps required to remove the pipe 5 is reduced, and the efficiency of the confirmation test can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は低圧自動給油装置の系統図、第2図は分配器の
断面図、第3図は流量制御弁の断面図、第4図はノズル
の断面図、第5図は本発明の一実施例を示すもので第1
図と同様の系統図、第6図第7図は、本発明の他の実施
例を示すもので第6図は第3図と同様の断面図、第7図
は第5図と同様の系統図である。 符号の説明 2・・・・・・タンク、4・・・・・・ポ
ンプ、7・・・・・・分配器、7a・・・・・・主管側
、7b・・・・・・枝管側、9・・・・・・流量制御弁
、9a・・・・・・抵抗体、11・・・・・・ノズル、
12・・・・・・被給油体、19・・・・・・逆流防止
弁、20・・・・・・抜は止め体。
Fig. 1 is a system diagram of a low-pressure automatic oil supply system, Fig. 2 is a cross-sectional view of a distributor, Fig. 3 is a cross-sectional view of a flow control valve, Fig. 4 is a cross-sectional view of a nozzle, and Fig. 5 is a cross-sectional view of a part of the present invention. The first example shows an example.
6 and 7 show other embodiments of the present invention. FIG. 6 is a sectional view similar to FIG. 3, and FIG. 7 is a system diagram similar to FIG. 5. It is a diagram. Explanation of symbols 2... Tank, 4... Pump, 7... Distributor, 7a... Main pipe side, 7b... Branch pipe side, 9...flow control valve, 9a...resistor, 11...nozzle,
12... Lubricated body, 19... Backflow prevention valve, 20... Removal stop body.

Claims (1)

【特許請求の範囲】 1 タンク内の油を圧送するポンプ、この圧送された油
を複数以上に分岐する分配器、分岐された油の吐出油を
制御する抵抗体を有する流量制御弁この流量制御弁を介
して吐出する油を被給油体に導くノズルとを備えた給油
装置において、前記ポンプと分配器間に逆流防止弁を設
け、かつ、前記分配器に、常時は閉鎖され、目詰り試験
の時開放される圧縮空気給入口を設け、しかして、給油
装置の全体組立後、前記分配器、流量制御弁およびノズ
ル、これらの部品を連結する配管の夫々の目詰り試験時
、前記圧縮空気給入口より圧縮空気を分配器に給入し、
ノズルへの圧縮空気流出により自詰り状態を試験するよ
うにしたことを特徴とする給油装置の試験装置。 2 タンク内の油を圧送するポンプ、この圧送された油
を複数以上に分岐する分配器、分岐された油の吐出油を
制御する抵抗体を有する流量制御弁この流量制御弁を介
して吐出する油を被給油体に導くノズルとを備えた給油
装置において、前記ポンプと分配器間に逆流防止弁を設
け、かつ、前記分配器に、常時は閉鎖され、目詰り試験
の時開放される圧縮空気給入口を設け、一方、前記流量
制御弁の内部に前記抵抗体の抜は止め体を設け、しかし
て、給油装置の全体組立後、前記分配器、流量制御弁お
よびノズル、これらの部品を連結する配管の夫々の目詰
り試験時、前記圧縮空気給入口より圧縮空気を分配器に
給入し、ノズルへの圧縮空気流出により目詰り状態を試
験するようにしたことを特徴とする給油装置の試験装置
[Claims] 1. A pump that pressure-feeds oil in a tank, a distributor that branches the pressure-fed oil into multiple or more parts, a flow control valve that has a resistor that controls the discharge of the branched oil, and a flow control valve that controls the flow rate. A refueling device including a nozzle that guides oil discharged through a valve to an oiled body, wherein a check valve is provided between the pump and the distributor, and the distributor is closed at all times and subjected to a clogging test. A compressed air inlet is provided that is opened when the oil supply system is completely assembled, and when testing for clogging of the distributor, flow control valve, nozzle, and piping connecting these parts, the compressed air is removed. Supply compressed air to the distributor from the inlet,
A test device for a refueling device, characterized in that a self-clogging condition is tested by outflowing compressed air into a nozzle. 2. A pump that pressure-feeds oil in a tank, a distributor that branches this pressure-fed oil into multiple or more parts, a flow control valve that has a resistor that controls the discharge of the branched oil, and discharges the oil through this flow control valve. A refueling device equipped with a nozzle that guides oil to an oiled body, wherein a check valve is provided between the pump and the distributor, and the distributor is provided with a compression valve that is normally closed and opened during a clogging test. An air supply inlet is provided, and a stopper for removing the resistor is provided inside the flow control valve, so that after the overall assembly of the oil supply device, the distributor, flow control valve, nozzle, and these parts are removed. A refueling device characterized in that, when testing each connected pipe for clogging, compressed air is supplied to the distributor from the compressed air supply port, and the clogging state is tested by the compressed air flowing out to the nozzle. test equipment.
JP9482676A 1976-08-11 1976-08-11 Refueling equipment testing equipment Expired JPS585373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9482676A JPS585373B2 (en) 1976-08-11 1976-08-11 Refueling equipment testing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9482676A JPS585373B2 (en) 1976-08-11 1976-08-11 Refueling equipment testing equipment

Publications (2)

Publication Number Publication Date
JPS5321366A JPS5321366A (en) 1978-02-27
JPS585373B2 true JPS585373B2 (en) 1983-01-31

Family

ID=14120846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9482676A Expired JPS585373B2 (en) 1976-08-11 1976-08-11 Refueling equipment testing equipment

Country Status (1)

Country Link
JP (1) JPS585373B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284204A (en) * 1985-06-11 1986-12-15 久保田 安比古 Slide brush
KR100645806B1 (en) 2004-11-26 2006-11-23 엘지전자 주식회사 Apparatus and method for testing a performance of hr unit

Also Published As

Publication number Publication date
JPS5321366A (en) 1978-02-27

Similar Documents

Publication Publication Date Title
US4877043A (en) Internal combustion engine scrubber
US2454585A (en) Flushing device for engine lubricating systems
US6298947B1 (en) Engine oil cleaning system
US5246086A (en) Oil change system and method
US2685347A (en) Method of cleaning lubricant chambers and the lubricant therein
US10557410B2 (en) Apparatus and method for engine cleaning
US1552998A (en) Pump apparatus
US3029898A (en) Method and apparatus for cleaning used lubricant oil and lubricating oil chambers
JPS585373B2 (en) Refueling equipment testing equipment
US6213173B1 (en) Engine air purge apparatus and method
US1820552A (en) Motor cleaning means
US20040020720A1 (en) Engine oil cleaning system
NZ226266A (en) System for cleaning adhesive applicator conduits: air operated pump recirculates solvent through conduits
US2266288A (en) Flushing apparatus
US1526001A (en) Liquid-fuel-delivery apparatus
DE102007047071A1 (en) Compressor cleaning method for turbocharger of diesel engine of vehicle, involves attaching compressor to ventilation circuit during cleaning process, injecting fluid into circuit, and arranging separator for solute deposits in circuit
US2302907A (en) Lubricating and sealing drain device
US1613467A (en) Lubricating system
CN104941965B (en) A kind of conduit under fluid pressure on-line rinsing device for preventing oil emulsion and purging method
DE2140096A1 (en) TURBO COMPRESSOR THAT SUCKS THE WORKING MEDIUM AT LOW TEMPERATURE
CN210800664U (en) Oil filler drip-proof device and oil filling device
CN105863846A (en) Method for removing air plug of lubricating oil pump of engine
US2274029A (en) Flow responsive device
US1666992A (en) Apparatus for forcing lubricant from motor-vehicle lubricantcontaining cases
DE3724276C2 (en)