JPS5853643A - Control method of two-shaft gas turbine - Google Patents

Control method of two-shaft gas turbine

Info

Publication number
JPS5853643A
JPS5853643A JP15055381A JP15055381A JPS5853643A JP S5853643 A JPS5853643 A JP S5853643A JP 15055381 A JP15055381 A JP 15055381A JP 15055381 A JP15055381 A JP 15055381A JP S5853643 A JPS5853643 A JP S5853643A
Authority
JP
Japan
Prior art keywords
compressor
signal
pressure
output
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15055381A
Other languages
Japanese (ja)
Inventor
Yukizumi Tani
谷 幸純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15055381A priority Critical patent/JPS5853643A/en
Publication of JPS5853643A publication Critical patent/JPS5853643A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

PURPOSE:To improve efficiency of a gas turbine, by performing temperature control of exhaust gas through angle control of a stationary blade in a low pressure turbine and improving efficiency of a compressor. CONSTITUTION:A signal from an atmospheric pressure transmitter 32 is multiplied with a planned air flow quantity from a signal generator 16 by a multiplier 15, and the product is added to a multiplier 17, while output of the multiplier 17 is added with output of a signal generator 19 by an adder 18, and multiplied with an output, corrected with output of an atmospheric temperature detector 33 by a function generator 22 in a multiplier 21, through a function generator 20, then an actual air flow quantity is obtained under the peripheral condition. On the other hand, output of delivery pressure signal 31 of a compressor is divided by an atmospheric pressure signal in a divider 23, and added to a multiplier 23 through a correction function generator 14, then output of the multiplier 23 becomes a maximum efficiency angle signal of an inlet guide vane of the compressor. Then a difference between this angle signal and a signal from an inlet guide vane angle transmitter 34 of the compressor is obtained from a subtractor 24, and its output is added to a controller 26 through a proportional integrator 25, thus the inlet guide vane 1 of the compressor can be controlled.

Description

【発明の詳細な説明】 本発明は二輪ガスタービンの制御方法に関し、4IK圧
縮機の効率改善をはかるととによって、ガスタービンの
効率向上を達成するようにした二軸ガスタービンの制御
1嫁に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for a two-wheel gas turbine, and more particularly, to a control method for a two-shaft gas turbine that improves the efficiency of the gas turbine by improving the efficiency of a 4IK compressor. .

ガスタービンの効率を最大にすることは、今日最も重!
!な課題となっている。
Maximizing gas turbine efficiency is the most important task today!
! This has become a major issue.

一般に、タービンの効率ηTFi、速度比U及び圧力比
ρ丁の関数として、(1)式で表わされる。
Generally, it is expressed by equation (1) as a function of turbine efficiency ηTFi, speed ratio U, and pressure ratio ρ.

ηt=f(UR)・f(へ)・η0 ・・曲間・・・・
・ (1)ここで、UR海U/UD UD:設計速度 ρTD二股二股方圧 力比M設計効率 しかしながら、速度一定制御のため、通常タービンの効
率は、圧縮機効率に比べて、かなり広範囲にわた9変化
が少なく、定常運転状態からの変動は無視することが出
来ると言われているO従って、力、・タービンの効率の
向上は、圧縮機の効率を最高にすることによ〉実現出来
る。
ηt=f(UR)・f(to)・η0...Between songs...
・ (1) Here, UR sea U/UD UD: Design speed ρTD Two-way pressure ratio M Design efficiency However, due to constant speed control, the efficiency of the turbine usually varies over a much wider range than the compressor efficiency. It is said that there are few changes and that fluctuations from steady-state operating conditions can be ignored. Therefore, improvements in power and turbine efficiency can be achieved by maximizing the efficiency of the compressor.

圧縮機の効率は、その性能に関連する基本的なパラメー
ターすなわち、回転数N1圧力比ρ。および空気流量Q
との間K、下記(2) (3)式のような関連がある。
The efficiency of a compressor is determined by the basic parameters related to its performance: rotation speed N1 pressure ratio ρ. and air flow rate Q
There is a relationship between K and Equations (2) and (3) below.

(<−j(NpρC)・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・ (2)η(−
fl (N #ρC)・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・ (3)この関
係上第111に示す。
(<-j(NpρC)・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・ (2) η(−
fl (N #ρC)・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・ (3) This relationship is shown in No. 111.

ここで、二輪ガスタービンでは、高圧タービン速度は、
低圧タービン靜翼角度により制御され一定と考えること
が出来る。
Here, for a two-wheel gas turbine, the high pressure turbine speed is
It is controlled by the low pressure turbine blade angle and can be considered constant.

従来は、入口案内翼角度制御は、部分負荷での効率向上
のため、第2図の如く、排気ガス―度制御を行っていた
Conventionally, the angle of the inlet guide vane was controlled by controlling the exhaust gas angle as shown in FIG. 2 in order to improve efficiency under partial load.

すなわち、二輪ガスタービンの起動後、圧!ili機吐
出圧力Padおよび燃焼11度T、は上昇する。この間
、燃焼濃度TFがある一定の予定値に遮するまでは排ガ
ス湯度TxFi一定値に保たれ、圧縮機入口案内翼の開
角度も一定に保たれている。燃焼湯度T。
In other words, after starting the two-wheel gas turbine, the pressure! ili machine discharge pressure Pad and combustion temperature 11 degrees T, increase. During this time, the exhaust gas temperature TxFi is kept constant until the combustion concentration TF reaches a certain predetermined value, and the opening angle of the compressor inlet guide vanes is also kept constant. Combustion temperature T.

が予定値に達すると、その&は、前記1度T、を予定値
に保持するために、圧縮吐出圧力の増加に伴なって、圧
縮機入口案内翼の開角tを大きくシ。
When reaches the scheduled value, the opening angle t of the compressor inlet guide vanes is increased to keep the 1 degree T at the scheduled value as the compression discharge pressure increases.

また燃料供給量を減じて排ガス湿度を低下させるように
、それぞれの制御を実行していた。
In addition, various controls were executed to reduce the amount of fuel supplied and the humidity of the exhaust gas.

部分負荷時の効率向上を目的とした。圧縮機入口案内翼
を有する従来の二軸ガスタービンの概略構成を、第3図
に示す。
The purpose was to improve efficiency during partial loads. FIG. 3 shows a schematic configuration of a conventional two-shaft gas turbine having compressor inlet guide vanes.

第3図において、1は圧編機入口案内翼、2it圧縮嶺
、3Fi燃料流量調整弁、4は燃焼器、5は負荷、6F
i高圧タービン、7は低圧タービン静翼、8は低圧ター
ビン、9Fi燃料の流れ、10は空気の流れ、110起
動装置、12はクラッチである。
In Fig. 3, 1 is a knitting machine inlet guide vane, 2it compression ridge, 3Fi fuel flow regulating valve, 4 is a combustor, 5 is a load, 6F
1 is a high pressure turbine, 7 is a low pressure turbine vane, 8 is a low pressure turbine, 9 is a fuel flow, 10 is an air flow, 110 is a starting device, and 12 is a clutch.

インレットハウス(図示せず)より流入した空気は、圧
縮機入口案内翼11通り、圧縮$2で圧縮されて、燃焼
器4に供給される。一方、起動制御ループ、排ガス温度
制御ループおよび速度制御ループよシなる制御装置より
の信号を受けて、ストローク変化する燃料流量調整弁3
よりの燃料も。
Air flowing in from an inlet house (not shown) is compressed through compressor inlet guide vanes 11 at a compression rate of $2, and then supplied to the combustor 4 . On the other hand, the fuel flow rate regulating valve 3 changes its stroke in response to signals from control devices such as a startup control loop, an exhaust gas temperature control loop, and a speed control loop.
More fuel too.

燃焼器4に供給される。It is supplied to the combustor 4.

燃焼器4では、前記のように供給された空気と燃料が、
混合されて点火膨張し、高圧タービン6へ流入する。こ
の燃焼ガスは、高圧タービン6で仕事をした後、高圧タ
ービン6の速度を一定とするように%高圧タービン6と
低圧タービン8の膨張比(仕事の配分比)を調整する可
変の低圧タービン静翼7を通過し、低圧タービン8に4
人されるO そして、さらに、負荷5を駆動する低圧タービン8で仕
事をし九後、大気へ放出される。
In the combustor 4, the air and fuel supplied as described above are
The mixture is ignited, expanded, and flows into the high-pressure turbine 6. After this combustion gas performs work in the high-pressure turbine 6, it is transferred to a variable low-pressure turbine generator that adjusts the expansion ratio (work distribution ratio) of the high-pressure turbine 6 and the low-pressure turbine 8 so as to keep the speed of the high-pressure turbine 6 constant. 4 through the blade 7 and into the low pressure turbine 8.
Then, after performing work in the low-pressure turbine 8 that drives the load 5, it is released into the atmosphere.

この時、前述のように、排ガス湿度(TX)は、第2図
(力で示される関係となるように、圧縮機吐出圧力(p
ed)の関数として制御される。また。
At this time, as mentioned above, the exhaust gas humidity (TX) is determined by the compressor discharge pressure (p
ed). Also.

一方、燃焼器4の燃焼111(Ty)が、第2図(イ)
で示されるように、一定となるように燃料流量を制御し
てい良。
On the other hand, the combustion 111 (Ty) of the combustor 4 is shown in Fig. 2 (A).
As shown in , the fuel flow rate can be controlled to be constant.

又、圧縮機入口案内翼1は、上記の排ガス―皺制御にか
かる前に、効率を上げるために、用いられていた。すな
わち、排ガス湯度が高くなると、圧縮機入口案内翼1の
開度#vt大きくし、空気流量を多くして排ガス−[を
下げ、反対に、排ガス湿度が低くなると、圧縮機入口案
内翼1のIn [e、を小さくして空気流量を紋り込み
、排ガス湿度を^くするように制御していた。
Also, the compressor inlet guide vane 1 was used to increase efficiency before the above-mentioned exhaust gas-wrinkle control was applied. That is, when the exhaust gas temperature increases, the opening degree #vt of the compressor inlet guide vane 1 is increased to increase the air flow rate and lower the exhaust gas - The exhaust gas humidity was controlled by reducing In [e, and increasing the air flow rate.

一方、低圧タービン静翼7の角度制御は、所定の圧力比
を得る九めに必ll!な速度となるように。
On the other hand, controlling the angle of the low-pressure turbine stator blade 7 is essential for obtaining a predetermined pressure ratio! so that the speed is as high as possible.

高圧タービン6にいくらかのパワーを供給し、残りのパ
ワーを低圧タービン8に分配するように、制御される。
It is controlled to provide some power to the high pressure turbine 6 and distribute the remaining power to the low pressure turbine 8.

すなわち、負荷(プロセス)制御Kより燃料が増加する
と、高圧タービン6の速度が所定の速度より高くなろう
とする。したがって、この場合は低圧タービン静翼7を
閉じて高圧タービン6へのパワー分配を少なくシ、低圧
タービン8へのパワー分配を増加させる。これにより、
相対的に低圧タービン8の速wILは増加する。
That is, when the fuel increases more than the load (process) control K, the speed of the high pressure turbine 6 tends to become higher than a predetermined speed. Therefore, in this case, the low-pressure turbine stationary blades 7 are closed to reduce power distribution to the high-pressure turbine 6 and increase power distribution to the low-pressure turbine 8. This results in
Relatively, the speed wIL of the low pressure turbine 8 increases.

又逆に、負荷側−により燃料が減少すると、高圧タービ
ン6の速度が低下しようとする。し九がって、この場合
は、低圧タービン静翼7の−at大きくシ、高圧タービ
ン6へのパワ分配を相対的に多くし、相対的に低圧ター
ビン8の速度を減少させる。
Conversely, if the fuel decreases on the load side, the speed of the high pressure turbine 6 tends to decrease. Therefore, in this case, the -at of the low-pressure turbine stationary blades 7 is increased, the power distribution to the high-pressure turbine 6 is relatively increased, and the speed of the low-pressure turbine 8 is relatively decreased.

又、低圧タービン静翼7Fi、圧縮機入口案内翼lと同
様に、部分負荷時の効率向上の機能をも有していた。
Also, like the low-pressure turbine stationary vane 7Fi and the compressor inlet guide vane 1, it also had the function of improving efficiency during partial loads.

すなわち、排ガス温度が高くなつ九場合Ktj、低圧タ
ービン静翼7を開けて高圧タービン6での仕事を多くす
る。これにより、排ガスgIAfLを下げてやり1反対
に、排ガス温度が低くなると、低圧タービン静翼7を閉
じ、高圧タービン6での仕事を少くして、排ガス温度を
上けていた。
That is, when the exhaust gas temperature becomes high, the low-pressure turbine stationary blades 7 are opened to increase the work done by the high-pressure turbine 6. This lowers the exhaust gas gIAfL, and conversely, when the exhaust gas temperature becomes low, the low-pressure turbine stationary blades 7 are closed, the work in the high-pressure turbine 6 is reduced, and the exhaust gas temperature is increased.

このため、従来の二輪ガスタービンにおいて#1゜大気
温度、大気圧力による圧縮比の変化及び排ガス湿度制御
による空気流量変化畔々のため効率は愚〈なっていた。
For this reason, in the conventional two-wheeled gas turbine, the efficiency was poor due to the compression ratio changing due to atmospheric temperature and atmospheric pressure, and the air flow rate changing due to exhaust gas humidity control.

本発明の目的は、前述の従来装置の欠点を改善し、圧縮
機の効率改善をはかることによってガスタービンの効率
向上を達成し九二軸ガス〉−ビン制御方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a 92-axis gas-bin control method that improves the efficiency of a gas turbine by improving the efficiency of the compressor and improving the above-mentioned drawbacks of the conventional device.

前記目的を達成するために、本発明においては、入口案
内翼で従来行っていた排ガス湿度制御を、低圧タービン
靜翼角度制御で行ない、入口案内翼角度制御は圧縮機効
率向上に使えることに着目し・圧力比ρ。を設定値とし
てまず固定し、その条件で、圧縮機の効率を蛾高とする
空気流量となるようr(、圧縮機入口案内翼の開角度を
制御することにより、ガスタービンの効率向上tFiか
つている。
In order to achieve the above object, the present invention uses low-pressure turbine silent blade angle control to control exhaust gas humidity, which was conventionally performed using inlet guide vanes, and focuses on the fact that inlet guide vane angle control can be used to improve compressor efficiency.・Pressure ratio ρ. is first fixed as a set value, and under that condition, the air flow rate that makes the efficiency of the compressor is the same as r(, and by controlling the opening angle of the compressor inlet guide vanes, the gas turbine efficiency is There is.

なお、この場合、実空気流量は、理論的Ktl、設計針
自値空気流量に、大気湯度大気圧力、大気温度及び圧縮
機入口案内翼角度補正を行うことによって、求めること
が出来るものである。
In this case, the actual air flow rate can be determined by correcting the theoretical Ktl, the design needle self-value air flow rate, the atmospheric hot water temperature, the atmospheric temperature, and the compressor inlet guide vane angle. .

つぎに、本発明の動作製造について説明する。Next, the operational manufacturing of the present invention will be explained.

従来のガスタービンでは、空気流量の算出は行っていな
いので、本発明の実施にあたっては、まず下記(4) 
(5)式を導入して実空気流量を演算する。
In conventional gas turbines, the air flow rate is not calculated, so when implementing the present invention, first the following (4) is carried out.
Equation (5) is introduced to calculate the actual air flow rate.

ここで、W&:実空気流量 W&m:空気流量計−値 PI:大気圧力 fl:大気一度補正係数 f1諺(K、Ml −に、 ) T、 +に@ぬ+4 
・・・・・・・・・・・・・・・ (5)ζこで、x、
、に、、に、、に4 :定数Mi:IE縮機入ロ縮機入
角案 内翼角度気igtt 前記(4)(5)式によシ、夾空気流量鵠が求まる。す
なわち実空気流量W&は、定数%S、大気111Ts。
Here, W&: Actual air flow rate W&m: Air flow meter - value PI: Atmospheric pressure fl: Atmospheric once correction coefficient f1 Proverb (K, Ml - to, ) T, + to @nu +4
・・・・・・・・・・・・・・・ (5) ζHere, x,
, , , , , 4: Constant Mi: IE compressor input angle Guide vane angle igtt According to equations (4) and (5) above, the included air flow rate is determined. That is, the actual air flow rate W& is a constant %S, and the atmosphere is 111Ts.

大気圧力Plおよび圧縮機案内翼角度M1の関数として
、(6)式のように表示される。
It is expressed as a function of the atmospheric pressure Pl and the compressor guide vane angle M1 as shown in equation (6).

Wa=f(Wa畠 #PI#Tl、Mi)   ・・・
・・・・・・・・・・・・・・・・・・・・・   (
6)又、圧力比は、圧縮機の吐出圧力及び大気圧力の比
を求めればよいことになる。
Wa=f(Wa Hatake #PI#Tl, Mi)...
・・・・・・・・・・・・・・・・・・・・・ (
6) Also, the pressure ratio can be determined by finding the ratio between the discharge pressure of the compressor and the atmospheric pressure.

以上の1析結果から明らかなように、低圧タービン静翼
の角度制御により、高圧タービンの速度を所定値に調整
した時の、圧縮機の最高効率は。
As is clear from the results of the first analysis above, when the speed of the high-pressure turbine is adjusted to a predetermined value by controlling the angle of the low-pressure turbine vanes, the maximum efficiency of the compressor is:

検出及び演算された圧縮機の吐出圧力および大気圧力の
圧力比より、最適空気fILillf:求め、得られた
最適空気流量とするよりに、圧縮機入口案内翼の開tを
制御すれば得られる。そして、このとき、ガスタービン
は最高効率で運転されることになる。
The optimum air fILIllf: is determined from the detected and calculated pressure ratio between the discharge pressure of the compressor and the atmospheric pressure, and the obtained optimum air flow rate can be obtained by controlling the opening t of the compressor inlet guide vanes. At this time, the gas turbine will be operated at maximum efficiency.

第4図に、本発明の一実施例の制御ブロック図を示す。FIG. 4 shows a control block diagram of an embodiment of the present invention.

1中、第3図と同一の符号は同一または同等部分をあら
れしている。
1, the same reference numerals as in FIG. 3 represent the same or equivalent parts.

図において、13Fi除算器、14..20,22は開
数発生器、Is、17.21.23F1乗算器。
In the figure, 13Fi divider, 14. .. 20, 22 are numerical number generators, Is, 17.21.23F1 multipliers.

16.19Fi信号発生器、18は加SS、24tlj
減算器、25tl比例積分1!!、26Fiポジション
コントローラ、31#i圧縮機吐出圧力発信器、32は
大気圧力発信器、33は大気0!A度検出器、34は圧
縮機入口案内翼角度である。
16.19Fi signal generator, 18 is added SS, 24tlj
Subtractor, 25tl proportional integral 1! ! , 26Fi position controller, 31#i compressor discharge pressure transmitter, 32 is atmospheric pressure transmitter, 33 is atmospheric 0! A degree detector 34 is the compressor inlet guide vane angle.

大気圧力発信器32よりの信号PIIFi、信号発生器
16の出力(計画空気流量)と乗算器15で担け合わさ
れる。
The signal PIIFi from the atmospheric pressure transmitter 32 is combined with the output (planned air flow rate) of the signal generator 16 in the multiplier 15.

その積は、さらに乗算器17に加えられる。乗算器17
の出力(積)は、加算1y18において、信号発生器1
9の出力と加算され、その和は関数発生器20に入力さ
れる。関数発生器20の出力は、大気ii*検出器33
よシの信号を関a発生器22で補正した値と乗算器21
 において乗算され、その周囲条件での実空気流量Wa
となる。
The product is further added to multiplier 17. Multiplier 17
The output (product) of signal generator 1 in addition 1y18
9 and the sum is input to the function generator 20. The output of the function generator 20 is the atmosphere ii*detector 33
The value obtained by correcting the correct signal by the function a generator 22 and the multiplier 21
is multiplied by the actual air flow rate Wa at that ambient condition.
becomes.

一方、圧縮機吐出圧力発信I!31よシの信号−を除算
fF13に供給し、大気圧力信号Pgで除算して圧力比
管求める。求め九圧力比は補正用関数発生IB14に入
力し、その出力を乗算器23 K加える。
On the other hand, compressor discharge pressure transmission I! The signal from 31 is supplied to the divider fF13 and divided by the atmospheric pressure signal Pg to obtain the pressure ratio tube. The calculated pressure ratio is input to the correction function generator IB14, and its output is added to the multiplier 23K.

前記出力を、乗算器23にて、*空気tM、意と掛は合
わせることによって、最高効率となる圧jII横入口案
内翼1の角度信号を求める。
The above output is multiplied by *air tM in a multiplier 23 to obtain the angle signal of the pressure jII side inlet guide vane 1 that provides the highest efficiency.

この角度信号と、圧縮機入口案内翼角度発信器34より
の信号とを減算″824でつき合わせて間座を求め、比
例積分62&で前記−差に基づいた圧縮機入口案内^角
度信号を演算する。
This angle signal and the signal from the compressor inlet guide vane angle transmitter 34 are subtracted and matched at ``824'' to obtain the spacer, and the compressor inlet guide angle signal based on the difference is calculated using the proportional integral 62 &. do.

以上のようにして得られた圧縮機入口省内翼角度信号は
、圧縮機入口案内翼角度のポジションコントローラ26
に、目標値として供給され、ポジションフィードバック
信号とともにマイナループを組み、圧縮機入口案内翼角
度を目標値に調整する0 以上の説明から明らかなように、本発明によれは、所望
の運転条件において、圧縮機の効率を大幅〕に改善する
ことかで色、これに伴なってガスタービンの効率を蝦大
に保持することが可能となる。
The compressor inlet inner blade angle signal obtained in the above manner is transmitted to the compressor inlet guiding blade angle position controller 26.
is supplied as a target value, forms a minor loop with the position feedback signal, and adjusts the compressor inlet guide vane angle to the target value. By significantly improving the efficiency of the compressor, it becomes possible to maintain the efficiency of the gas turbine at a high level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧縮機の効率と回転数、空気流量および圧力比
との関係を示す効率特性図。第2図は圧縮機の吐出圧力
に対する11度制御特性を示す図、第3図は二軸ガスタ
ービンの榊成を示す概略図、第4図は本発明の一実施例
を示す制御ブロック図である。 l・・・圧Jili礪入口案内翼、 2・・・圧縮機、
  3・・・燃料流量調整弁、  4・・・燃焼器、 
 5・・・負荷、6・・・高圧タービン、  7・・・
低圧タービン静翼・8・・・低圧タービン、  11・
・・起動装置、 12・・・クラッチ、  31・・・
圧縮機吐出圧力発信器、32・・・大気圧力発信器、 
 33・・・大気1度検出器、  34・・・圧縮機入
口案内翼角度代1人弁珊士 平 木 道 人 才 1  図 才 2 図 xJ 23図 才 + 閃
FIG. 1 is an efficiency characteristic diagram showing the relationship between compressor efficiency, rotation speed, air flow rate, and pressure ratio. Fig. 2 is a diagram showing the 11 degree control characteristic for the discharge pressure of the compressor, Fig. 3 is a schematic diagram showing the Sakaki construction of a two-shaft gas turbine, and Fig. 4 is a control block diagram showing an embodiment of the present invention. be. l... Pressure Jili trench inlet guide vane, 2... Compressor,
3...Fuel flow rate adjustment valve, 4...Combustor,
5...Load, 6...High pressure turbine, 7...
Low pressure turbine stationary blade・8...Low pressure turbine, 11・
...Starting device, 12...Clutch, 31...
Compressor discharge pressure transmitter, 32... atmospheric pressure transmitter,
33...Atmospheric 1 degree detector, 34...Compressor inlet guide vane angle 1 person valve engineer Michi Hiraki 1 figure 2 figure xJ 23 figure + flash

Claims (1)

【特許請求の範囲】[Claims] (1)  吸入空気を圧縮する圧縮機と、前記吸入空気
の量を制御する圧縮機入口案内翼と、圧縮空気および燃
料を供給されて、これらを混合、燃焼させる燃焼器と、
燃焼器で発生された燃焼ガスを供給され、m配圧縮機を
駆動する高圧タービンと、低圧タービン静翼を通して#
記高圧タービンから出される燃焼ガスを供給され、負荷
を駆動する低圧タービンとを具備した二輪ガスタービン
の制御方法であって、圧縮機の吐出圧力と大気圧力との
圧力比を設定し、me圧力比において圧縮機の効率を最
大とする空気流量を演算し、圧縮機において前記の空気
量が得られるように、圧縮機入口案内翼の開at制御す
るととを特徴とする二軸ガスタービンの制御方法。
(1) A compressor that compresses intake air, a compressor inlet guide vane that controls the amount of intake air, and a combustor that is supplied with compressed air and fuel and mixes and burns them;
The combustion gas generated in the combustor is supplied to the high-pressure turbine that drives the m-distributor compressor, and the low-pressure turbine stator blade.
A method for controlling a two-wheel gas turbine equipped with a low-pressure turbine that is supplied with combustion gas discharged from a high-pressure turbine and drives a load, in which the pressure ratio between the discharge pressure of the compressor and the atmospheric pressure is set, and the me pressure is set. Control of a two-shaft gas turbine, characterized in that the air flow rate that maximizes the efficiency of the compressor is calculated at a ratio, and the opening of the compressor inlet guide vane is controlled so that the air amount is obtained in the compressor. Method.
JP15055381A 1981-09-25 1981-09-25 Control method of two-shaft gas turbine Pending JPS5853643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15055381A JPS5853643A (en) 1981-09-25 1981-09-25 Control method of two-shaft gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15055381A JPS5853643A (en) 1981-09-25 1981-09-25 Control method of two-shaft gas turbine

Publications (1)

Publication Number Publication Date
JPS5853643A true JPS5853643A (en) 1983-03-30

Family

ID=15499388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15055381A Pending JPS5853643A (en) 1981-09-25 1981-09-25 Control method of two-shaft gas turbine

Country Status (1)

Country Link
JP (1) JPS5853643A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083614A1 (en) * 2013-12-04 2015-06-11 三菱重工業株式会社 Control device for turbocharger
US10006348B2 (en) 2013-12-04 2018-06-26 Mitsubishi Heavy Industries, Ltd. Turbocharger device
US10047666B2 (en) 2013-12-04 2018-08-14 Mitsubishi Heavy Industries, Ltd. Control system for turbo-compound system
US10197003B2 (en) 2013-12-04 2019-02-05 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system
US10428748B2 (en) 2013-12-04 2019-10-01 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083614A1 (en) * 2013-12-04 2015-06-11 三菱重工業株式会社 Control device for turbocharger
JP2015108333A (en) * 2013-12-04 2015-06-11 三菱重工業株式会社 Turbocharger control device
EP3037641A4 (en) * 2013-12-04 2016-08-03 Mitsubishi Heavy Ind Ltd Control device for turbocharger
US9903296B2 (en) 2013-12-04 2018-02-27 Mitsubishi Heavy Industries, Ltd. Control device for turbocharger
US10006348B2 (en) 2013-12-04 2018-06-26 Mitsubishi Heavy Industries, Ltd. Turbocharger device
US10047666B2 (en) 2013-12-04 2018-08-14 Mitsubishi Heavy Industries, Ltd. Control system for turbo-compound system
US10197003B2 (en) 2013-12-04 2019-02-05 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system
US10428748B2 (en) 2013-12-04 2019-10-01 Mitsubishi Heavy Industries, Ltd. Control device for supercharging system

Similar Documents

Publication Publication Date Title
US7549292B2 (en) Method of controlling bypass air split to gas turbine combustor
US6226974B1 (en) Method of operation of industrial gas turbine for optimal performance
US7100357B2 (en) System for controlling gas turbine by adjusting a target exhaust temperature
CN105849392B (en) The control method of the control device of gas turbine, gas turbine and gas turbine
EP1533573A1 (en) Method for controlling fuel splits to a gas turbine combustor
JPH0842361A (en) Operating method of gas turbine and gas-turbine control system
JPH01285608A (en) Method and device of operating combined plant
US20160153365A1 (en) Method of Operation of a Gas Turbine Engine
JP3869490B2 (en) Adjustment setting method of main control amount during operation of gas turbine group
JP3677536B2 (en) Gas turbine power generation control device
JP3730275B2 (en) Variable guide vane control device for gas turbine
JPS5853643A (en) Control method of two-shaft gas turbine
JP2954754B2 (en) Operation control device for gas turbine system and pressurized fluidized bed boiler power plant
JP3716014B2 (en) Pressure control equipment for gasification plant
JP3716018B2 (en) Variable inlet guide vane control method
JPH08121194A (en) Gas turbine control device
JPH03185222A (en) Compressed air power-generation device
JPS6125897B2 (en)
JP3491967B2 (en) Gas turbine exhaust gas temperature control device
JP2692978B2 (en) Start-up operation method of combined cycle plant
JPS6246681B2 (en)
EP1835592A1 (en) Method and system for controlling a combination-cycle electric power plant, in particular a single-shaft plant
JPH03185223A (en) Compressed air power-generation device
JPS6073017A (en) Controller for reheat gas turbine
JPS62241990A (en) Generation plant coal gasification power