JPS5853599A - Changeover mechanism in direction of thrust in direction that form angle to vertical central surface of aircraft with buoyancy body - Google Patents

Changeover mechanism in direction of thrust in direction that form angle to vertical central surface of aircraft with buoyancy body

Info

Publication number
JPS5853599A
JPS5853599A JP15349181A JP15349181A JPS5853599A JP S5853599 A JPS5853599 A JP S5853599A JP 15349181 A JP15349181 A JP 15349181A JP 15349181 A JP15349181 A JP 15349181A JP S5853599 A JPS5853599 A JP S5853599A
Authority
JP
Japan
Prior art keywords
aircraft
wind
thrust
vertical central
buoyancy body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15349181A
Other languages
Japanese (ja)
Inventor
俊裕 新原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15349181A priority Critical patent/JPS5853599A/en
Publication of JPS5853599A publication Critical patent/JPS5853599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Toys (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 一般に浮力体付の飛行体は風の影響を強く受ける。この
種の飛行体はななめ前方から横方向の風では、特にその
影響は顕著であり、強風時には目的地への飛行が不可能
な場合が生じていた。この不便さを解決したのが、この
機体垂直中心面に対して角度をなす方向への推進力方向
切換機構の発明である。
DETAILED DESCRIPTION OF THE INVENTION Generally, flying vehicles with buoyancy bodies are strongly affected by wind. This type of aircraft is particularly affected by diagonal forward to sideways winds, and in strong winds it may be impossible to fly to the destination. This inconvenience was solved by the invention of a mechanism for switching the direction of propulsion force in a direction forming an angle with the vertical center plane of the aircraft body.

図1.2は垂直上昇、降下時の状態を示したものである
。この場合、横風Wが吹いており、ここで推進力Fで上
昇している飛行体を仮定すると、図1ではWとFの合成
力Aの方向へと飛行体は横へ流れながら上昇する。そこ
で、図2の状態のように、推進力Fを垂直上向きから風
の吹いて来る方向へ角度θだけかたむけることにより、
合成力Aは風の力の成分Wを完全に打ち消し垂直上昇が
可能となる。
Figure 1.2 shows the situation during vertical ascent and descent. In this case, assuming that a crosswind W is blowing and the flying object is ascending with a propulsive force F, the flying object rises while flowing sideways in the direction of the resultant force A of W and F in FIG. Therefore, as shown in Figure 2, by deflecting the propulsive force F from vertically upward to the direction in which the wind is blowing, by an angle θ,
The resultant force A completely cancels out the wind force component W, making vertical ascent possible.

降下時もほぼ同じ状態が得られる。ただ降下時にはその
降下力の成分が小さい為、風は強く影響をおよぼし、機
体は横へ流れ易くなる。その為、推進力方向切換機構は
その効果をより有効なものとする。この機構により安定
性に優れた離着陸を可能とする。
Almost the same condition is obtained when descending. However, when descending, the component of the descending force is small, so the wind has a strong influence, and the aircraft tends to drift sideways. Therefore, the propulsive force direction switching mechanism makes its effect more effective. This mechanism enables highly stable takeoff and landing.

また、水平飛行時、風上に向かって飛行を行う際、その
風力が強く、その風向きが飛行体のななめ前方から横方
向である場合、飛行体は浮力体を具備している為、風の
抵抗により期待に回転モーメントが生じ、機体が風と平
行な方向を向き、目的地への進行がさまたげられる場合
、従来では目的の方向への飛行が不可能であったが、図
3から図4のように推進機の方向を切換えて、飛行体の
機首を風の方向に向けたまま、機体を横にすべらせる方
法によって、飛行体は風の吹いて来る方向のななめ前方
へ進むことが可能となる。この方法により目的地がいか
なる場所にあっても確実に到達、着陸を行なうことがで
きる機構である。
Additionally, when flying upwind during horizontal flight, if the wind is strong and the direction of the wind is from diagonally in front of the aircraft to the side, the aircraft is equipped with a buoyant body, so the wind Conventionally, it was impossible to fly in the desired direction if a rotational moment was generated due to the resistance, causing the aircraft to point in a direction parallel to the wind and hinder its progress toward the destination. By switching the direction of the propulsion plane and sliding the aircraft sideways while keeping the nose of the aircraft pointing in the direction of the wind, the aircraft can move diagonally forward in the direction the wind is blowing. It becomes possible. This method allows the aircraft to reach and land safely no matter where the destination is.

その機構を詳しく説明すると、風が力の成分W′で前方
から吹いている。そして、機体が風に向かってθ′の角
度をなして進んでいると仮定する。その際、風による機
体の回転モーメントMが生じている。その風の力が小さ
い場合には方向舵を切換えることにより、その回転モー
メントMを完全に打ち消すことが可能となりθ′の方向
に飛行することが可能となる。それが図3の状態である
To explain the mechanism in detail, the wind is blowing from the front with a force component W'. Assume that the aircraft is heading into the wind at an angle θ'. At this time, a rotational moment M of the aircraft body is generated due to the wind. When the force of the wind is small, by switching the rudder, it is possible to completely cancel out the rotational moment M, and it becomes possible to fly in the direction of θ'. This is the state shown in FIG.

しかし風がその力の成分を増して、回転モーメントMを
打ち消すことが不可能な場合、機体は風の方向と平行に
回転させられ、ほとんど風の吹く方向へ機首をむけて、
風の吹く方向へしか進行不可能となる。
However, if the wind increases its force component and it is impossible to cancel the rotational moment M, the aircraft will be rotated parallel to the direction of the wind, with the nose pointing almost in the direction of the wind.
You can only move in the direction the wind blows.

その場合、推進力を図4の状態のように風の吹く方向と
θ″かたむけた方向に切換えることにより機体は風の吹
く方向に機首を向けた状態を保ちながら、機体はθ′の
方向へと横すべりをする状態で進行が可能となる。
In that case, by switching the propulsion force to a direction θ'' away from the direction in which the wind blows, as shown in Figure 4, the aircraft will maintain its nose in the direction in which the wind blows, and the aircraft will move in the direction θ'. It is now possible to proceed while skidding sideways.

これにより目的地がいかなる地点にあっても、その地点
への到達が可能となる。
This allows you to reach your destination no matter where it is.

図5、6、7はそれの実施の一例である。Figures 5, 6 and 7 are examples of its implementation.

図5は推進機の向きを直接切換える方法の一例であり、
油圧、電気モーターによるギャー式の例であるが、その
他油圧シリンダー方式等がある。
Figure 5 is an example of a method for directly switching the direction of the propulsion machine.
This is an example of a gear type that uses hydraulic pressure or an electric motor, but there are other types such as hydraulic cylinder types.

図6はダクトをもうけ、その出口に偏向板を設けたもの
である。この類似例としてはダクトそのものの方向を切
換えるものがある。
In FIG. 6, a duct is provided and a deflection plate is provided at the outlet of the duct. A similar example is one in which the direction of the duct itself is switched.

図7は推進機の後方に方向切換板を設けたものである。FIG. 7 shows a configuration in which a direction switching plate is provided at the rear of the propulsion device.

推進機はこの図ではプロペラ式を例示しているがその他
の推進機でも同様である。
Although a propeller-type propulsion device is shown as an example in this figure, other propulsion devices are also applicable.

【図面の簡単な説明】[Brief explanation of the drawing]

図1、2は前面図 図3、4は下面図 図5、6、7は推進機部分図 1.浮力体 2.推進機 3.キャビン 4.車輪(フロート、ソリの場合もある。)5.水平尾
翼と昇降舵 6.油圧、電気モータ駆動ギャー部 7.ダクト 8.偏向板 9.方向切換板 10.垂直尾翼と方向舵 11.主翼
Figures 1 and 2 are front views. Figures 3 and 4 are bottom views. Figures 5, 6, and 7 are partial views of the propulsion unit. Buoyant body 2. Propulsion machine 3. Cabin 4. Wheels (may be floats or sleds) 5. Horizontal stabilizer and elevator6. Hydraulic and electric motor drive gear section7. Duct 8. Deflection plate 9. Direction switching plate 10. Vertical stabilizer and rudder11. Main wing

Claims (1)

【特許請求の範囲】[Claims] 浮力体付の飛行物体で、その垂直中心面に対して角度を
なす可変方向への推進力方向切換機能をもつもの
A flying object with a buoyant body that has the ability to switch the direction of propulsion force in variable directions that form an angle to its vertical center plane.
JP15349181A 1981-09-27 1981-09-27 Changeover mechanism in direction of thrust in direction that form angle to vertical central surface of aircraft with buoyancy body Pending JPS5853599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15349181A JPS5853599A (en) 1981-09-27 1981-09-27 Changeover mechanism in direction of thrust in direction that form angle to vertical central surface of aircraft with buoyancy body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15349181A JPS5853599A (en) 1981-09-27 1981-09-27 Changeover mechanism in direction of thrust in direction that form angle to vertical central surface of aircraft with buoyancy body

Publications (1)

Publication Number Publication Date
JPS5853599A true JPS5853599A (en) 1983-03-30

Family

ID=15563721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15349181A Pending JPS5853599A (en) 1981-09-27 1981-09-27 Changeover mechanism in direction of thrust in direction that form angle to vertical central surface of aircraft with buoyancy body

Country Status (1)

Country Link
JP (1) JPS5853599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048632A (en) * 2013-06-27 2019-03-28 イーガン エアシップス,インコーポレーテッド Hybrid vtol vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048632A (en) * 2013-06-27 2019-03-28 イーガン エアシップス,インコーポレーテッド Hybrid vtol vehicle
US10894591B2 (en) 2013-06-27 2021-01-19 Egan Airships, Inc. Hybrid VTOL vehicle

Similar Documents

Publication Publication Date Title
US11305873B2 (en) Air, sea and underwater tilt tri-rotor UAV capable of performing vertical take-off and landing
US4408737A (en) Method and apparatus enabling a horizontal landing of a flying body
US3089666A (en) Airplane having changeable thrust direction
US3081964A (en) Airplanes for vertical and/or short take-off and landing
JP2534666B2 (en) High mobility aircraft and their flight methods
US4685641A (en) Transient air and surface contact vehicle
US3276722A (en) Flight craft
CN108725777B (en) Amphibious unmanned aerial vehicle based on ducted vector propulsion
JPH0478516B2 (en)
US2747816A (en) Canard type airplane and controls therefor
CN103192984A (en) V-shaped empennage device suitable for sea and air across amphibious unmanned aerial vehicle
CN106005394A (en) Rescue aircraft
US2108093A (en) Aircraft
WO1988000898A1 (en) Heli-hover amphibious aircraft
US3249322A (en) Air train
US3987982A (en) Wind-powered flying boat
US3652035A (en) Channel tail aircraft
US2068618A (en) Sea gyroplane
US3522785A (en) Semiairborne vehicle
CN106741933A (en) A kind of amphibious unmanned plane
US4781341A (en) Flying wing aircraft
JPS5853599A (en) Changeover mechanism in direction of thrust in direction that form angle to vertical central surface of aircraft with buoyancy body
US3253809A (en) Ultra low speed aircraft
JP2020147286A (en) Flying body
WO2020059155A1 (en) Aircraft