JPS5852998A - Optimum control of heat collecting system - Google Patents

Optimum control of heat collecting system

Info

Publication number
JPS5852998A
JPS5852998A JP15108281A JP15108281A JPS5852998A JP S5852998 A JPS5852998 A JP S5852998A JP 15108281 A JP15108281 A JP 15108281A JP 15108281 A JP15108281 A JP 15108281A JP S5852998 A JPS5852998 A JP S5852998A
Authority
JP
Japan
Prior art keywords
heat
amount
operating
variable
variables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15108281A
Other languages
Japanese (ja)
Other versions
JPS6017998B2 (en
Inventor
Takafumi Kuriyama
栗山 隆文
Norihiro Takama
高間 宣博
Ichiro Koshijima
一郎 越島
Katsuo Shiroko
城子 克夫
Tomio Umeda
梅田 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP15108281A priority Critical patent/JPS6017998B2/en
Publication of JPS5852998A publication Critical patent/JPS5852998A/en
Publication of JPS6017998B2 publication Critical patent/JPS6017998B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To make it possible to follow a circumstantial change sufficiently by a method wherein only the direction of change and the change itself of each of operation variables toward an optimum operating point of the titled system are determined by a computer and the precedure of setting a process input toward the determined direction is repeated to make the optimum operating point reached. CONSTITUTION:A controller H reads in measured values regarding the flow rate, the temperature or the like of each of the sections of the heat collecting system and judges whether or not the amount of the collection has reached an optimum value. For example, when the variation of the amount of heat collection goes below a predetermined value, the controller H judges the optimum value has been reached. On the other hand, when the optimum value is not reached, each of the operation variables is changed in different directions by unit amount and the amount of heat collection at that time is calculated as sensitivity. Then a set of main operation variables giving rise to the maximum value of the sensitivity is determined and a set of auxiliary operation variables is selected by estimating the amount of variations of each of the variables so as to change the variables by a predetermined amount. Thus, when the optimum amount of heat collection comes near the optimum value and becomes constant, the same operation is performed repreatedly. Accordingly, the program size can be made small and the time required for calculation can be shortened to thereby enable the heat collecting system to be controlled speedily.

Description

【発明の詳細な説明】 本発明は、熱回収システムの熱回収量を最適にするよう
に制御する最適化制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optimization control method for controlling a heat recovery system to optimize the amount of heat recovery.

石油類の蒸留装置等においては、原油等の低温流体と留
出油や循環還流液等の高温流体とをそれぞれ複数に分流
させて互いに熱交換させる熱回収システムを構成して熱
入力の節約を図り、省エネルギを図っている。蒸留装置
等圧従来から用いられていた熱回収システムは十字fi
K近い流れで熱交換を行なわせるものであったが、最近
になって向流形態回収システムの方が省エネルギの面か
ら優位であることが明らかにされ、大いに注目されつつ
ある。この向流形態交換システムは、熱回収の向上を期
待できるものではあるが、反面ネツトワーり構造が複雑
化するのを避けらJしず、このことが操作性の;酸化に
つながるという謙照が必る。
In petroleum distillation equipment, etc., heat input is saved by configuring a heat recovery system that divides low-temperature fluids such as crude oil and high-temperature fluids such as distillate oil and circulating reflux liquid into multiple parts and exchanges heat with each other. We are trying to save energy. Distillation equipment isobaric The conventionally used heat recovery system is a cross-fi
Previously, heat exchange was performed using a flow close to K, but recently it has been revealed that a countercurrent type recovery system is superior in terms of energy saving, and is attracting a lot of attention. Although this countercurrent form exchange system can be expected to improve heat recovery, it does not avoid complicating the network structure, which leads to poor operability and oxidation. Must have.

ここで、−レリとして原油の′W、圧蒸留装置を例に挙
げて向Mt形熱回収ンステムについ′C説明する。
Here, the Mt-type heat recovery system will be explained using a pressure distillation apparatus for crude oil as an example.

原油の常圧蒸留装置は、例えば第1図に示すように、蒸
留4Aと加熱炉Bと、複数の熱交換器nC2D及びEと
、更に必較に応じて設けられる冷却器Fとからンよって
お・す、ここで熱交換6 @ Cr D及びEにより向
尤形熱回収システムGが構成されている。原油は供給u
1から加熱炉Bを経て蒸留塔Aに供給され、蒸留4Aか
らは、留出管2,3゜4及び5と残油取出管6とをdし
て、ナフサ留分。
For example, as shown in FIG. 1, a crude oil atmospheric distillation apparatus includes a distillation 4A, a heating furnace B, a plurality of heat exchangers nC2D and E, and a cooler F provided as necessary. Here, the heat exchanger 6 @ Cr D and E constitute a directed heat recovery system G. Crude oil is supplied
1 is supplied to distillation column A via heating furnace B, and from distillation 4A, distillation pipes 2, 3, 4 and 5 and residual oil removal pipe 6 are connected to the naphtha fraction.

灯油留分、軽質経油留分及び臘質軽油留分の如き谷41
の留分と残油等とが留出さ扛る。また還流経路7,8及
び9が設けられていて、これらの還流経路を通して側線
還流液が循穢する。原油は供給管1を通して加熱;炉B
に至る間で向流形態回収システムGにより、各留分等と
熱交換され、各留分等が保有する熱−が原油に回収され
る。
Valley 41 such as kerosene fraction, light gas oil fraction and smelt gas oil fraction
The fraction and residual oil etc. are distilled out. Further, reflux paths 7, 8, and 9 are provided, and the side line reflux liquid circulates through these reflux paths. Crude oil is heated through feed pipe 1; Furnace B
During this period, heat is exchanged with each fraction etc. by the countercurrent type recovery system G, and the heat held by each fraction etc. is recovered to crude oil.

向流形態回収システムを構成する熱交換器群は、上記留
出管2〜5、残油取出・♂6及び還流経路7〜9に設け
た熱交換器の全てを対象として、所定の熱交換能を有す
る熱交換器をグループ化することにより構成されるもの
である。更に詳細に述べると、各熱交換器群は、各熱交
換器群に供給される原油の総量を変化させることなく、
各熱交換器群に供給される原油の供給量の範囲内で該熱
交換器群の熱交換器に原油を分流させて供給したときに
熱交換されて各熱交換器から出てくる原油の温度と熱交
換して熱交換器から出てぐる各留分等の温度とをそれぞ
れ略等しくすることが可能な熱交換能を有する熱交換器
をグループ化することにょシ構成される。第1図は3つ
の熱交換器#C,D及びEを構成した場合で、熱交換器
#Cは、比較的高温の留出油の留出管4,5及び残油取
出管6の熱交換器C4+Cg及びc6と還流経路9の熱
交換器C9とをグルーl化することにより構成されてい
る。また熱交換器#FDは、留出管2及び3の熱交換a
 D s及びDsと、熱交換4群Cを経由した留出−f
14.5及び残油取出f6の熱交換器D4゜D、及びD
・と、磁流経路7及び8の熱交S器り、及びDsと、熱
交換器群Cを経油した還流経路9の熱交換器D−とをグ
ルーl化することにより構成され、熱交換器群Eは、熱
交換器群りを経由した留出管2及び3の熱交換a E 
3及びEs と、熱交換器群C及びDを経由した留出管
4,5及び残油取出−#6の熱交換器E4 1g11及
びE・と、熱交換器群りを経由した還流経路7及び8の
熱交換器E7及びE・とをグループ化することにより構
成されている。
The heat exchanger group constituting the counter-current recovery system targets all of the heat exchangers installed in the distillation pipes 2 to 5, the residual oil extraction/♂ 6, and the reflux routes 7 to 9, and performs a predetermined heat exchange. It is constructed by grouping heat exchangers with different functions. To be more specific, each heat exchanger group can be operated without changing the total amount of crude oil supplied to each heat exchanger group.
When crude oil is divided and supplied to the heat exchangers of the heat exchanger group within the amount of crude oil supplied to each heat exchanger group, the amount of crude oil that is heat exchanged and comes out of each heat exchanger is It is constructed by grouping heat exchangers each having a heat exchange ability capable of substantially equalizing the temperature of each fraction, etc., which exits from the heat exchanger by exchanging heat with the heat exchanger. FIG. 1 shows a case where three heat exchangers #C, D and E are configured. Heat exchanger #C is used to heat distillate pipes 4 and 5 for relatively high-temperature distillate and residual oil removal pipe 6. It is constructed by gluing the exchangers C4+Cg and c6 and the heat exchanger C9 of the reflux route 9. In addition, heat exchanger #FD is a heat exchanger a of distillation pipes 2 and 3.
D s and Ds and distillate-f via heat exchange group 4 C
14.5 and residual oil removal f6 heat exchanger D4゜D, and D
・It is constructed by gluing together the heat exchangers S and Ds of the magnetic current paths 7 and 8, and the heat exchanger D- of the reflux path 9 which passed through the heat exchanger group C. Exchanger group E is a heat exchanger for distillation tubes 2 and 3 via heat exchanger group a E
3 and Es, distillation pipes 4 and 5 via heat exchanger groups C and D, and residual oil removal-#6 heat exchanger E4 1g11 and E, and reflux route 7 via heat exchanger group and eight heat exchangers E7 and E. are grouped together.

第1図には詳細に示してないが、供給管1を通して供給
される原油は、先ず熱交換6#Eの熱交換器E雪〜Ii
aに分流されてそれぞれ熱交換されたvt染められて次
の熱交換器群りの熱交換器D!〜D−に分流される。熱
交m器り、〜D−に分流されて熱交換された原油は再び
集められた後熱交換器#Cの熱交換器C4* C暴 r
 C・及びC・に分流され、熱交A6Ca  、Cs 
 、C・及びC−で熱交換された原油が再び集められて
〃口熱炉Bを経て蒸留塔Aに供給される。ここで熱交換
器群Cを例にとってその系統図を示すと第2図の通りで
めり、原油は、供給Vi1から分岐した管104゜10
5及び106を経て留出管4,5及び残油取出管6の熱
交換aC4* Cs及びC−に分流され、また分岐管1
09を経て還流経路9の熱交換器C―に分流される。熱
交換器C4+ CB  + CB及びC−に分流されて
熱交換された原油は再び集められて加熱炉に至る供給管
1′に流入する。他の熱交換器群り、gの系統図もこれ
と同様である。
Although not shown in detail in FIG. 1, the crude oil supplied through the supply pipe 1 is first transferred to the heat exchanger E~Ii of heat exchanger 6#E
The heat exchanger D of the next heat exchanger group is divided into a and the heat exchanged vt is dyed! ~D-. The crude oil that has been heat exchanged by being divided into the heat exchanger M and ~D- is collected again and then transferred to the heat exchanger C4*C of heat exchanger #C.
The heat exchanger A6Ca, Cs
, C., and C- are collected again and supplied to distillation column A via oral heating furnace B. Here, if we take heat exchanger group C as an example and show its system diagram, it will turn out as shown in Figure 2.
5 and 106, the heat exchange aC4*Cs and C- of the distillation pipes 4, 5 and the residual oil removal pipe 6 are divided into the branch pipe 1.
The heat exchanger C- in the reflux route 9 is divided into the heat exchanger C- through the reflux route 9. The crude oil that has been divided into heat exchangers C4+ CB + CB and C- for heat exchange is collected again and flows into the supply pipe 1' leading to the heating furnace. The system diagram of other heat exchanger groups, g, is also similar to this.

尚上記の熱回収システムでは、原油(低温流体)のみを
分流させているが、一般には低温流体に限らず、必要に
応じて高温流体を分流させてもよく、また低温流体と高
温流体の双方を分流させてもよい。
In the above heat recovery system, only crude oil (low-temperature fluid) is diverted, but in general, not only low-temperature fluid but also high-temperature fluid may be diverted as needed, and both low-temperature fluid and high-temperature fluid can be diverted. may be separated.

上記の熱交換器群においては、原油(低温流体)に回収
される熱盪が最大になるように各熱交換器群の熱交換器
への原油の分流量が64整されるのであるが、原油種の
切替や留分得率の変更等のために、蒸留塔Aの運転条件
が変更される場合には、再び回収熱量が最大になるよう
に原油の各分流量を調整し直すことが必要になる。しか
し、なから回収熱瞳は、各熱交換器への分流量が複雑に
影響し合って定まるものであるため、各分流量は一義的
には定まらず、最適な分流量の決定に当っては非常に複
雑な収束計算が必要になる。またこの分流量の決定に際
しては、熱回収システムの出口における側線還流液の温
度を所定の値に保持すること、特定された原油の合流点
の温度及び各留分の最終的な冷却温度を所定の限界内に
保つこと、等の!ロセス上の各種制約条件を満すように
配慮しなければならないため、最適な分流量の決定は一
ノー困難になる。したがって運転員が最適な原油分流蓋
を短時14に限定することは非常に1浦であるため、電
子#f謹機を利用した最適化制御が有効な手段として提
案されている。
In the above heat exchanger group, the divided flow rate of crude oil to the heat exchanger of each heat exchanger group is adjusted to 64 so that the heat exchanger recovered in the crude oil (cold fluid) is maximized. If the operating conditions of distillation column A are changed due to switching of crude oil type or change of fraction yield, etc., it is necessary to readjust the flow rate of each branch of crude oil so that the amount of heat recovered is maximized again. It becomes necessary. However, since the recovery heat pupil is determined by the complicated interaction of the divided flow rates to each heat exchanger, each divided flow rate cannot be uniquely determined, and when determining the optimal divided flow rate, requires very complex convergence calculations. In addition, when determining this divided flow rate, it is necessary to maintain the temperature of the side line reflux liquid at the outlet of the heat recovery system at a predetermined value, and to maintain the temperature of the specified crude oil confluence and the final cooling temperature of each fraction at a predetermined value. Keep within the limits of, etc.! Since consideration must be given to satisfying various process constraints, determining the optimal divided flow rate becomes extremely difficult. Therefore, it is very difficult for the operator to limit the optimum crude oil flow divider to 14 times in a short period of time, so optimization control using an electronic #f control machine has been proposed as an effective means.

従来の熱回収システムの最適化制御力法は、熱回収シス
テムに含まれる各熱交換器の特性を表現する基礎式から
、システム全体のグロセスモデルを構築し、このモデル
と山登り法等の最適点探索手法とを用いて最適条件を!
r′ts機で4出し、その最適条件によりグロセス入力
を設定する方法である。この方法においては、計算機で
最適解が得られるまで膨大な計算を繰り返すため、グロ
セス人力を設定するまでに多くの時間を要する。したが
って計算の途中でプラントの状態が変化した場合、得ら
れた最適解は意味を持たなくなり、計算をやり直さなく
てはならない。その結果計算時間はより一層長くなり、
事実上最適化制御の実施は不可能になる。またこの従来
の制御方法においては、最適化制御の精度が使用するモ
デルの精度に依存するため、モデルに誤差がある場合、
プラントは最適でない点で操作されることになる。更に
、モデルと最適点探索手法とを合せた計算機の!ログラ
ムのサイズが膨大になる上に、最適解を得るまでの計算
量も膨大になるため、使用する計X機としては、その日
己1容置及び計Jl能力ともに優れた大型のものが必要
になるという問題もある。更にまた、上記従来の制御方
法では、操作変数や制約条件の個数の増ノJlに伴って
計l/Itが指数関数的に増大し、場合によっては求解
が不可能になることもめる。
The conventional optimization control force method for heat recovery systems constructs a gross model of the entire system from basic equations expressing the characteristics of each heat exchanger included in the heat recovery system, and uses this model to search for optimal points using hill-climbing methods, etc. Optimal conditions using methods!
This is a method in which the r'ts machine outputs 4 outputs and the gross input is set according to the optimal conditions. In this method, a huge amount of calculation is repeated on a computer until an optimal solution is obtained, so it takes a lot of time to set the gross human power. Therefore, if the state of the plant changes during the calculation, the optimal solution obtained will no longer be meaningful and the calculation must be repeated. As a result, the calculation time becomes even longer.
In fact, it becomes impossible to implement optimization control. In addition, in this conventional control method, the accuracy of optimization control depends on the accuracy of the model used, so if there is an error in the model,
The plant will be operated at a non-optimal point. Furthermore, a computer that combines a model and an optimal point search method! Since the size of the program becomes enormous and the amount of calculation required to obtain the optimal solution is also enormous, a large machine with excellent capacity for 1 capacity per day and capacity for total JL is required as the machine to be used. There is also the issue of becoming. Furthermore, in the conventional control method described above, as the number of manipulated variables and constraint conditions increases, the total l/It increases exponentially, and in some cases, it may become impossible to solve the problem.

本発明の目的は、計算時間を短縮してシステムの状況変
化にも十分に追従させることができ、また操作変数及び
制約条件の個数の増ノJ口にも十分対応できるようにし
だ熱回収システムの最適化制御方法を提案することにあ
る。
An object of the present invention is to provide a heat recovery system that can shorten calculation time, sufficiently follow changes in system conditions, and that can sufficiently cope with an increase in the number of operating variables and constraint conditions. The purpose of this study is to propose an optimization control method.

本発明は、低温流体及び高温流体の少なくとも1万を?
J[故に分流させて互いに熱交換させる熱回収システム
の最適化制御方法であって、分流されている流体の各分
流!&を操作変数として21i!Iの操作変数の組合せ
からなる複数の操作度数組を考え、各操作度数組の2個
の操作変数を互いに逆の方向に等盪変化させた場合の回
収熱通の変化割合を回収熱祉に関するシステムの感度と
してgt算する過程と、前記感度の最大値を与える操作
変数組t−選択するとともに選択した操作度数組の各操
作変数の変化の方向を定める過程と、前a己選択した操
作度数組の各操作変数を!ロセス人力として所定鼠だけ
定められた方向に変化させる過程とを、Ail記回収熱
−が最適値に達するまで行なうことを特徴とするもので
おる。
The present invention provides at least 10,000 cold fluids and high temperature fluids.
J [Therefore, an optimization control method for a heat recovery system in which the fluids are divided and exchange heat with each other, and each division of the fluid being divided! 21i with & as the manipulated variable! Considering a plurality of operating frequency sets consisting of combinations of manipulated variables I, the rate of change in recovered heat flux when two operating variables of each operating frequency set are changed equidistantly in opposite directions is calculated with respect to the recovered heat efficiency. A process of calculating gt as the sensitivity of the system, a process of selecting a set of manipulated variables t- to give the maximum value of the sensitivity and determining the direction of change of each manipulated variable of the selected operating frequency set, and a process of determining the direction of change of each manipulated variable of the selected operating frequency set; Each manipulated variable of the set! This process is characterized in that the process of manually changing a predetermined amount in a predetermined direction is carried out until the recovered heat reaches an optimum value.

即ち本発明の制御方法では、先ず熱回収システムの現在
状態において、各操作度数組の2個の操作変数を互いに
逆の方向に等数置化させた場合の熱回収システムからの
回収熱量の変化割合(各操作変数を単位を変化させた場
合の回収熱量の変化値)を回収熱量に関するシステムの
感度として計4する。次に計算された感度のうち最大の
感度を与える操作度数組を選択するとともにその操作度
数組の2個の操作変数のそれぞれの変化の方向を定め、
選択した操作度数組の各操作変数を!ロセス人力として
定められた量だけ変化させる。次いで熱回収システムが
定常状態に達した時点で回収熱量が最適値に達していな
い場合には、上記の過程を再び行ない、回収熱量が最適
値に達するまでこれを繰り返す。
That is, in the control method of the present invention, first, in the current state of the heat recovery system, the change in the amount of heat recovered from the heat recovery system when the two operating variables of each operation frequency set are equalized in opposite directions. The ratio (change value of the amount of recovered heat when the unit of each operating variable is changed) is calculated as the sensitivity of the system regarding the amount of recovered heat. Next, select the operating frequency set that gives the maximum sensitivity among the calculated sensitivities, and determine the direction of change of each of the two manipulated variables of that operating frequency set,
Each manipulated variable of the selected manipulation frequency set! The process is changed by a predetermined amount. Next, if the amount of recovered heat has not reached the optimum value when the heat recovery system reaches a steady state, the above process is performed again and this process is repeated until the amount of recovered heat reaches the optimum value.

本発明においては、上記のように、最適化制御の各操作
において、各熱交換器群で分流されている流体の分流量
の中から回収熱量に関するシステムの感度の最大値を与
える2個の熱交換器の分流量の組合せ(操作度数組)を
選択し、この組合亡のうち一方の熱交換器に供給されで
いる分1M艦を増加(または減少)させるときには、こ
れと同時に他方の熱交換器に供給されている分流量を等
数だけ減少(または増加)させることにする。このよう
に、常に2個の分流量を1組として考えて両分流量を互
いに逆の方向に等置変化させるようにすれば、各熱交換
器群で分流されている流体の総tが変化するのを防ぐこ
とができる。
In the present invention, as described above, in each operation of optimization control, two heat sources that give the maximum sensitivity of the system regarding the amount of recovered heat are selected from among the divided flow rates of the fluid divided in each heat exchanger group. When selecting a combination of exchanger branch flow rates (operating frequency set) and increasing (or decreasing) 1M ship by the amount supplied to one heat exchanger among these combinations, simultaneously increase the heat exchange rate of the other heat exchanger. Decrease (or increase) the divided flow rate being supplied to the device by an equal amount. In this way, if you always consider two divided flow rates as one set and change both divided flow rates equidistantly in opposite directions, the total t of the fluid divided in each heat exchanger group will change. You can prevent it from happening.

本発明においては、一般には考え得るすべての操作度数
組について感度計算を行なうのが好ましいが、回収熱量
の最適化制御を行なう場合に変化させることが不適当で
あることが予めわかっている操作度数組は除外してもよ
いのは勿論でおる。
In the present invention, it is generally preferable to perform sensitivity calculations for all conceivable operating frequency pairs, but there are operating frequencies that are known in advance to be inappropriate to change when performing optimization control of the amount of recovered heat. Of course, groups may be excluded.

熱回収システムの感度は、システムを信号線図で表現し
て該信号線図を等価変換ルールを用いて簡略化した後、
各熱交換器の感度を適用することにより求めることがで
きる。ここで信号線図とは、温度や流1等のグロセス変
数を点で表わし、変数間の影響関係を点と点とを結ぶ有
向枝で表わしてその影響の度合を感度でもって有向枝上
に表示するものである。各熱交換器の感度は、熱交換器
の物性を表現する基礎式から求められる。尚信号線図を
用いた感度解析の方法自体は周知であるので、その詳細
な説明は省略する。
The sensitivity of the heat recovery system is determined by expressing the system as a signal diagram and simplifying the signal diagram using equivalent conversion rules.
It can be determined by applying the sensitivity of each heat exchanger. Here, a signal diagram is one in which gross variables such as temperature and flow are represented by points, and the influence relationships between variables are represented by directed branches connecting the points, and the degree of influence is expressed by the sensitivity of the directed branches. This is shown above. The sensitivity of each heat exchanger is determined from a basic equation expressing the physical properties of the heat exchanger. Note that the method of sensitivity analysis using a signal diagram is well known, so detailed explanation thereof will be omitted.

上記のように、本発明においては、システムの現在状態
に基づく感度計算からシステムを最適点にもっていくの
に適した操作度数組と該操作度数組の各操作変数を変化
させる方向とを決定し、直ちに該操作度数組の操作変数
を所定蓋だけ該方向に変化させる。ここでシステムの感
度は簡単に計算できるため、システムの状況変化にも十
分追従でき、最適点探索手法を用いた場合のように求解
が不可能になることがない。また回収熱量を制御変数と
した場合、最適点探索手法による従来の制御方法が全体
としてフィードフォワード制御方式であるのに対し、本
発明の制御方法はフィードパ、り制御方式で多るため、
モデルの誤差が蓄積することが無い。更に、本発明の方
法では、グロセスモデルとして簡単な感度式を用いるだ
けで、最適点探索手法を一切吏用しないため計算機のノ
ログラA?イズが小さくなり、収束ift算が不要のた
め計算1も大幅に少なくなる。したがってマイクロコン
ピュータ等の小型の計算機を用いて本発明を実施するこ
とができる。
As described above, in the present invention, a set of operating degrees suitable for bringing the system to an optimal point and a direction in which to change each operating variable of the set of operating degrees are determined from sensitivity calculations based on the current state of the system. , immediately change the operating variables of the operating frequency set by a predetermined amount in the direction. Here, since the sensitivity of the system can be easily calculated, it is possible to sufficiently follow changes in the system situation, and it does not become impossible to solve the problem, unlike when using the optimal point search method. Furthermore, when the amount of recovered heat is used as a control variable, the conventional control method using the optimal point search method is generally a feedforward control method, whereas the control method of the present invention is mostly a feedforward control method.
Model errors do not accumulate. Furthermore, the method of the present invention only uses a simple sensitivity formula as a gross model and does not use any optimum point search method, so the computer's nolog graph A? Since the size becomes smaller and no convergence ift calculation is required, the number of calculations is greatly reduced. Therefore, the present invention can be implemented using a small computer such as a microcomputer.

上記の説明では、制約条件について触れなかったが、実
際の熱回収システムでは種々の制約条件があることが多
い。例えば原油の常圧蒸留装置では、還R経路を循環す
る側線還流液(高温流体)の熱回収システム出口におけ
る温度を所定値に保つ必要がおり、低m流体との熱交換
により側線還流液の温度が所定値からずれることは避け
なければならない。前述のように、回収熱量に関するシ
ステムの感度を最大にする操作度数組を選択して、該操
作度数組の各操作変数を、回収熱量最適化の方向に所定
敏変化させた場合、当然制約乗件付の変数に変動が生じ
ることが考えられる。したがって制約条件がある場合に
は、該制約条件付の変数の変動を補償するための操作を
行なわなければならない。
Although constraint conditions were not mentioned in the above explanation, there are often various constraint conditions in an actual heat recovery system. For example, in a crude oil atmospheric distillation unit, it is necessary to maintain the temperature of the side line reflux liquid (high temperature fluid) circulating in the reflux R path at a predetermined value at the exit of the heat recovery system. Temperature deviations from predetermined values must be avoided. As mentioned above, if the operating frequency set that maximizes the sensitivity of the system regarding the amount of recovered heat is selected and each operating variable of the operating frequency set is changed with a predetermined sensitivity in the direction of optimizing the amount of recovered heat, naturally the constraint multiplier is It is conceivable that changes may occur in the subject variables. Therefore, if there is a constraint, it is necessary to perform an operation to compensate for variations in variables subject to the constraint.

制約条件付変数の変動を補償する一方法として、各操作
度数組に対して回収熱量に関するシステムの感度を計算
する過程で同時に各操作度数組の操作変数を異なる方向
に等量変化させた場合の各制約条件付変数の変化割合を
各制約条件付変数に関するシステムの感度として計算し
ておき、回収熱量に関するシステムの感度を最大にする
操作度数組の各操作変数をノロセス入力として所定の方
向に所定閂変化させる過程と、この操作により生じた制
御条件付変数の変動分が所定値に達したときにその変動
分を補償するのに適した操作度数組を上記制約条件付変
数に関するシステムの感度に基づいて選択して選択した
操作度数組の各操作変数をノロセス入力として所定量所
定の方向に変化させることにより制約条件付変数の変動
分を補償する過程とを交互に繰り返す方法が考えられる
。このような方法によれば、制約条件付変数の変動を所
定の許容範囲内に抑えつつ回収熱量の最適化制御を行な
うことができる。しかしながら、この方法では、制約条
件付変数の変動を補償するための操作を行なう過程で回
収熱量を最適直にもっていくための操作を中断せざるを
得ないため、最適点にもっていくまでに時間を要するこ
とになる。また制約条件付変数が変化してからその変化
分を補償するのであるから、制約条件付変数の許容変化
範囲が或程度ある場合でないと適用できない。
As a way to compensate for variations in constrained variables, in the process of calculating the sensitivity of the system with respect to the amount of heat recovered for each set of operating frequencies, we calculate The rate of change of each constrained variable is calculated as the sensitivity of the system with respect to each constrained variable, and each manipulated variable of the operation frequency set that maximizes the sensitivity of the system regarding the amount of recovered heat is set as a norocess input in a predetermined direction. The process of changing the bar and the set of operating degrees suitable for compensating for the variation when the variation of the control conditional variable caused by this operation reaches a predetermined value are determined based on the sensitivity of the system regarding the constrained variable. A conceivable method is to alternately repeat the process of compensating for the variation of the constrained variable by changing each manipulated variable of the set of operating frequencies selected based on the control input as a no-loss input by a predetermined amount in a predetermined direction. According to such a method, it is possible to perform optimization control of the amount of recovered heat while suppressing fluctuations in the constraint-conditioned variables within a predetermined allowable range. However, with this method, it is necessary to interrupt the operation to bring the recovered heat to the optimum point in the process of performing the operation to compensate for the fluctuation of the constrained variables, so it takes time to bring the recovered heat to the optimum point. It will require. Furthermore, since the variable with a constraint condition is compensated for after the variable changes, it cannot be applied unless the permissible change range of the variable with a constraint condition is to some extent.

そこで本願第2の発明においては、回収熱量を最適値に
もっていくための操作と制約条件付変数の変動を補償す
る操作とを同時に行なうものとする。
Therefore, in the second invention of the present application, an operation for bringing the amount of recovered heat to an optimum value and an operation for compensating for fluctuations in the constrained variables are performed simultaneously.

即ち本11m2の発明においては、前記回収熱量に関す
るシステムの感度を耐痺するだけでなく、各操作度数組
の操作変数を異なる方向に等量変化させたときの各種制
約条件付変数の変化割合を制約条件に関する感度として
計算しておく。そして前記回収熱量にIAするシステム
の感度を最大にする操作度数組を主操作変数組として選
択した後、該主操作変数組の各操作変数を変化させたと
きの制約条件付変数の変動を、先に計Hした制約条件に
関するシステムの感度を用いて予測し、その制約条件付
変数の変動を補償するのに適した操作度数組を補助操作
度数組として選択する。このとき同時に該制約条件付変
数の変動を補償するために必要な補助操作度数組の各操
作変数の変化量と変化の方向とを求めておく。この場合
も補助操作度数組の2個の操作変数を異なる方向に等量
変化させるのは勿論である。次いで前記主操作変数組及
び補助操作度数組の各操作変数をノロセス入力としてそ
れぞれ定められた量だけ所定の方向に変化させる。シス
テムが定常状態になった後回収熱量が最適値に達してい
ない場合には直ちに上記と同じ操作を繰り返す。
In other words, the invention of this 11m2 not only suppresses the sensitivity of the system regarding the amount of recovered heat, but also measures the rate of change of various constrained variables when the operating variables of each operating frequency set are changed by equal amounts in different directions. Calculate it as the sensitivity regarding the constraint conditions. After selecting the operating frequency set that maximizes the sensitivity of the IA system to the recovered heat amount as the main operating variable set, the variation of the constrained variable when each operating variable of the main operating variable set is changed is as follows: Prediction is made using the sensitivity of the system with respect to the constraint conditions calculated previously, and a set of operation frequencies suitable for compensating for fluctuations in variables subject to the constraints is selected as an auxiliary operation frequency set. At this time, at the same time, the amount and direction of change of each operating variable of the auxiliary operating frequency set necessary to compensate for the variation of the constrained variable is determined. In this case as well, it goes without saying that the two operating variables of the auxiliary operating frequency set are changed by equal amounts in different directions. Next, each of the operating variables of the main operating variable set and the auxiliary operating frequency set is changed by a predetermined amount in a predetermined direction as a control input. If the amount of recovered heat has not reached the optimum value after the system reaches a steady state, immediately repeat the same operation as above.

上記のように主操作変数組と補助操作度数組とを選択し
て両操作変数組の操作変数を所定量、所定の方向に変化
させるようにすれば、制約条件付変数を変動させること
なく、回収熱量を最適値にする最適化制御を行なうこと
ができる。
If the main manipulated variable set and the auxiliary manipulated frequency set are selected as described above and the manipulated variables of both manipulated variable sets are changed by a predetermined amount and in a predetermined direction, without changing the constraint conditional variables, Optimization control can be performed to set the amount of recovered heat to an optimal value.

尚操作変数及び制約条件の個数が増大すると計算に用い
る感度式の数も増加するが、各感度式は簡単なものであ
るので計算時間は殆んど変ることがなく、ま友氷解が不
可能になることもない0次に本発明の理解金谷易にする
ため、第3図を参照して本発明をより具体的に説明する
。第3図は第1図に示しだ熱回収システムのうち、鎮2
図に詳細に示した熱交換器群Cの温度とIMmに関する
1d号系統を示したものである。第3図において加熱炉
B及び熱交換器群りを示し、符号C4〜C・及びC,は
熱交換器群Cを構成する熱交換器を示している。また?
年号HはItts機を訝む回収熱艙慮犬化制御装置を示
しており、熱交A器C4〜cm及びC書のそれぞれの低
温流体(この場合は原油)の入口側に設けられたIc4
〜Ic、及びIa、は制御装置Hからの1を号に応じて
熱交換器C4〜C−及びC9への低温流体の分流量を調
節する流量調節弁である。図中Xを丸で囲んだ部分は流
量または温度の傍出肩を示しておp1各検出塙に設けら
れた検出器により1度を示す検出fd号または流mを示
t+jL出1冨号が発15される。図示された検出信号
を順に説明すると、tdは熱交換器群りから熱交換器群
Cに流入する低温流体の温度を示す検出信号であり、t
4〜t@及び1.はそれぞれ熱交*iC4〜C−及びC
9から出てきた低温流体の温度を示す検出信号である。
Note that as the number of manipulated variables and constraints increases, the number of sensitivity formulas used for calculation also increases, but since each sensitivity formula is simple, the calculation time hardly changes, making it impossible to solve the problem. In order to make it easier to understand the present invention, the present invention will be explained in more detail with reference to FIG. Figure 3 shows the heat recovery system shown in Figure 1.
1d system related to the temperature and IMm of heat exchanger group C shown in detail in the figure. In FIG. 3, the heating furnace B and the heat exchanger group are shown, and the symbols C4 to C. and C represent the heat exchangers constituting the heat exchanger group C. Also?
The year number H indicates the recovery heat transfer control device that is suspicious of the Itts machine, and it was installed on the inlet side of the low temperature fluid (in this case crude oil) of each heat exchanger A C4 ~ cm and C book. Ic4
~Ic and Ia are flow rate control valves that adjust the divided flow rate of the low temperature fluid to the heat exchangers C4 to C- and C9 in accordance with the number 1 from the control device H. In the figure, the circled part of 15 will be issued. Explaining the illustrated detection signals in order, td is a detection signal indicating the temperature of the low temperature fluid flowing into the heat exchanger group C from the heat exchanger group, and t
4~t@ and 1. are heat exchangers *iC4~C- and C, respectively.
9 is a detection signal indicating the temperature of the low temperature fluid coming out from.

またf4〜f・及びf−はそれぞれ熱交換器C4〜C@
及びCsへの低温流体の分流量を示す検出信号である。
In addition, f4~f・and f- are respectively heat exchangers C4~C@
and a detection signal indicating the divided flow rate of the cryogenic fluid to Cs.

更にT4+T1゜T・ 、T・及びTa + TI+ 
T・、T−はそれぞれ熱交換器C4r CB  r c
g  l C−の入口側及び出口側における高温流体の
温度を示す検出信号であり、F4  + Fl  r 
Fl  + Flは熱交換器C4+ CB  +C@、
C―に流れる高温流体の流量を示す検出(1号である。
Furthermore, T4+T1゜T・ , T・ and Ta + TI+
T・, T- are respectively heat exchangers C4r CB r c
g l is a detection signal indicating the temperature of the high temperature fluid at the inlet side and outlet side of C-, F4 + Fl r
Fl + Fl is heat exchanger C4+ CB +C@,
Detection indicating the flow rate of high temperature fluid flowing into C- (No. 1).

これらの検出信号はすべて制御装置Hに人力されて感度
計算のデータとされる。全く同様に他の熱交換器群から
のデータも制御装置Hに入力されている。
All of these detection signals are manually input to the control device H and used as data for sensitivity calculation. Data from other heat exchanger groups is also input to the control device H in exactly the same way.

第4図は回収熱電最大化制御装置Hが行なう処理の実行
順序を示したフローチャートである。システムが定常状
態になり、制御動作開始指令が与えられると、制御装置
itHは先ず#!4図に符号50で示したステ、fで各
データを読み込む、このデータは熱回収システムの各部
の流電や温度の現在値である。制御装置Hは次いで、符
号51で示したステップで読み込んだデータに基いてシ
ステムの動作点が最適点か否か、すなわち熱回収システ
ムからの回収熱蓋が最適値に到達したか否かを判定する
。例えば各操作費数組の操作変数を変化させた場合の回
収熱量の変化量が所定値以下になったときに蚊適値に達
したと判定する。その結果最適点に達していない場合に
は次のステ、グ52に進み、システムの現在の状態で各
操作費数組の操作変数を単位電ずつ異なる方向に変化さ
せた場合の回収熱量の変化量を回収熱量に関するシステ
ムの感度として!ttJ!する。tたこのステ、fでは
各操作費数組の操作変数を本位量ずつ異なる方向に変化
させた場合の制約条件付の各種流体温度等の変動量を各
制約条件に関するシステムの感度として計算しておく。
FIG. 4 is a flowchart showing the order of execution of processes performed by the recovery heat and electricity maximization control device H. When the system reaches a steady state and a control operation start command is given, the control device itH first selects #! Steps 50 and 5 in FIG. 4 read each data. This data is the current value of the current and temperature of each part of the heat recovery system. The control device H then determines whether the operating point of the system is the optimum point based on the data read in step 51, that is, whether the recovery thermal cover from the heat recovery system has reached the optimum value. do. For example, it is determined that the mosquito optimum value has been reached when the amount of change in the amount of recovered heat when varying the operating variables of each operating cost set becomes less than or equal to a predetermined value. As a result, if the optimum point has not been reached, proceed to the next step, step 52, and change the amount of recovered heat when the operating variables of each operating cost set are changed in different directions by unit electric current in the current state of the system. amount as the sensitivity of the system regarding the amount of heat recovered! ttJ! do. In Step t and Step f, the amount of variation in various fluid temperatures, etc. with constraint conditions when the operating variables of each set of operating costs are changed in different directions by the standard amount is calculated as the sensitivity of the system with respect to each constraint condition. put.

第1図に示した熱回収システムにおいては、低温流体の
みが被数の熱交換器に分流されているので、この熱回収
システムにおける操作変数は熱交換器C4〜C@*C會
 、D雪A、−1) 、  、 f)・及びE2〜Es
のそれぞれにおける低温流体の分流量である。従って2
個の熱交換器の組合せをすべて考えて各組の2個の熱交
換器における低温流体の流電を単位ml!%なる方向に
変化させたときのシステムからの回収熱蓋(第1図の列
では熱交換器群Cから出てきた低温流体に回収された熱
電)の変化量を回収熱蓋に関するシステムの感度として
計算する。また各組の熱交換器における・低温流体を単
位蓋異なる方向に変化させたときの各制約条件付の流体
温度の変化線、例えば還R経路7〜9をそれぞれ流れる
14線還流液のシステム出口における温度の変化量を制
約条件に関するシステムの感度としてgF算する。
In the heat recovery system shown in Fig. 1, only the low-temperature fluid is diverted to the heat exchangers, so the operating variables in this heat recovery system are the heat exchangers C4 to C@*C, D A, -1) , , f)・and E2~Es
is the divided flow rate of cryogenic fluid at each of Therefore 2
Considering all combinations of heat exchangers, calculate the flow current of the low temperature fluid in each pair of two heat exchangers in units of ml! The sensitivity of the system with respect to the recovery heat cover is calculated by calculating the amount of change in the heat recovery cover from the system (in the column of Figure 1, the heat electricity recovered in the cryogenic fluid coming out of heat exchanger group C) when the temperature is changed in the direction of %. Calculate as. In addition, the fluid temperature change line with each constraint condition when the low-temperature fluid in each set of heat exchangers is changed in different directions, for example, the 14-line reflux liquid system exit flowing through the reflux R paths 7 to 9, respectively. The amount of change in temperature in gF is calculated as the sensitivity of the system regarding the constraint condition.

上記の各感度の計−゛が完了した後、ステップ53にお
いては、回収熱量に関するシステムの感度の最大値を与
える1つの主操作変数組を選択するとともに該主操作変
数組の操作変数の変化の方向を定める。次(・こ箋テッ
f54では、選択された主操作変数組の操作変数を、定
められた方向に所定量変化させた1合の各制約条件付変
数(例えば流体温度)の変動量をステツノ52で計算し
た制約条件に関するシステムの感度を用いて予測し、そ
の変動を補償するのに適した所定の個数の操作費数組を
補助操作変数組として選択する。またこのステツノでは
主操作変数組の操作変数の変化により生じる各制約条件
付変数の変動を補償するために必要な補助操作変数組の
変化量と変化の方向とを定める。ステップ55では上記
のようにして選択された主操作変数組をグロセス入方と
じて所定の方向に所定il変化させると同時に補助操作
変数組を所定の方向に所定量変化させる。操作変数のす
べての組合せに対して回収di及び制約条件に関する7
ステムの感度を計算した結果例えば今回状熱着に関する
システム感度を最大にする操作費数組が熱交換器c4及
びcsに分流する低温流体の流量である場合には、この
熱交換器c4及びC5に分譲する低温流体の流電を主操
作変数組として選択し、制御装置Hは熱交換器c4及び
C。
After the calculation of each sensitivity described above is completed, in step 53, one main manipulated variable set that gives the maximum sensitivity of the system with respect to the amount of recovered heat is selected, and the changes in the manipulated variables of the main manipulated variable set are selected. Set direction. Next (・In Kojitek f54, the amount of change in each constrained variable (for example, fluid temperature) of the selected main manipulated variable set is changed by a predetermined amount in a predetermined direction. A predetermined number of operating cost sets suitable for compensating for the fluctuations are selected as the auxiliary operating variable set.In addition, in this step, the main operating variable set is The amount and direction of change in the set of auxiliary manipulated variables necessary to compensate for fluctuations in each constrained variable caused by changes in the manipulated variable are determined.In step 55, the set of main manipulated variables selected as described above is determined. is changed by a predetermined amount in a predetermined direction with gross entry, and at the same time the auxiliary manipulated variable set is changed by a predetermined amount in a predetermined direction.
As a result of calculating the sensitivity of the stem, for example, if the operating cost set that maximizes the system sensitivity regarding heat adhesion is the flow rate of the low-temperature fluid divided into the heat exchangers c4 and cs, then the heat exchangers c4 and c5 The current flow of the cryogenic fluid distributed to the heat exchangers C4 and C is selected as the main operating variable set.

の低温流体の入口側に設けられたMffi罐調節弁■c
4及びIc、を操作して熱交換器C4及び0番への低温
流体の分流献を調節する。まだこのように熱交換器C4
及びCSへの低温流体の分流菫を調節することにより熱
交換器C4及びC11の高温流体の出口温度が変動し、
これが熱交換器#D及びEを介して熱交換器群Cへの低
温流体の人口温度の変動を引き起すため還流経路9の側
線還流液のシステム出口における温度(制約条件性)が
変動するものとし、この温度の変動を補償するために、
熱交換器C・及びC6への低温流体の分流瀘を補助操作
変数組として変化させるのが適当であるとすると、この
場合は熱交換器04及びCSへの低温流体の分流鎗の調
節と同時に熱交換器C−及びC・への低温流体の分流駿
をも調節する。こnらの操作により、還流経路9の側線
禮流液のシステム出口における温度の変動が抑えられつ
つ回収熱祉が最J直へと近づけられる。システムが定帛
状態になった後再び制御動作開始指令が与えられ、制御
装置tHがr−夕を読み込む。読み込んだr −タに基
いて回収熱漬が最適値に達しているか否かの′開所がな
され、最適1直に達していれば制(II41itb作は
終了するが、最適直に達していない場合には前回と同じ
操作を反復する。尚この場合選択される操作度数組は前
1uと同じとは限らず、池の熱交換4群の熱交換4の低
温流体の滝着が操作度数組として選択されることも当然
あり得る。
Mffi can control valve installed on the inlet side of the low-temperature fluid ■c
4 and Ic to adjust the cold fluid diversion to heat exchangers C4 and 0. Still heat exchanger C4 like this
and by adjusting the diversion of the cold fluid to the CS, the outlet temperature of the hot fluid of the heat exchangers C4 and C11 is varied;
This causes fluctuations in the population temperature of the low-temperature fluid flowing through heat exchangers #D and E to heat exchanger group C, which causes the temperature at the system outlet of the lateral line reflux liquid in the reflux path 9 to fluctuate (constraint condition). And to compensate for this temperature variation,
If it is appropriate to vary the diverter filter of the cryogenic fluid to the heat exchangers C and C6 as an auxiliary set of operating variables, then in this case the adjustment of the diverter filter of the cryogenic fluid to the heat exchangers 04 and CS is simultaneously carried out. The diversion of cryogenic fluid to heat exchangers C- and C- is also controlled. Through these operations, temperature fluctuations at the system outlet of the lateral line effluent of the reflux route 9 are suppressed, and the recovery heat cycle is brought closer to the maximum temperature. After the system reaches a steady state, a command to start control operation is given again, and the control device tH reads r-time. Based on the r-data read, a check is made to determine whether the recovery heat pickling has reached the optimum value, and if it has reached the optimum 1st shift, it is controlled (II41itb production ends, but if the optimum shift has not been reached, Repeat the same operation as last time.In this case, the operating frequency set selected is not necessarily the same as the previous 1u, and the low temperature fluid waterfall of heat exchange 4 of the pond heat exchange group 4 is selected as the operating frequency group. Of course, it is possible that it will be selected.

ここで従来の制御法と本発明の方法とを比較すると下目
この種りでおる。
Here, when comparing the conventional control method and the method of the present invention, the results are as follows.

(a)  先ずiii制御に用いる計算機のグログラム
サイズについて見ると、従来の方法では3000ステッ
!僅度必袋なのに対し、本発明の方法では300ステッ
!程度で良く、グログラムサイズは実に1/lOに1宿
小される。またl走用dts機遣にもよるが、一般に従
来の刀j去では30分乃至数時間の計算時間を要したの
しこズ・jし、本発明の方?去でのイを縄時間は1分以
内である。
(a) First, looking at the program size of the computer used for iii control, the conventional method has a size of 3000 steps! While only a few bags are required, the method of the present invention requires only 300 steps! The size of the globulogram is actually reduced by 1/1O. Also, although it depends on the DTS mechanism used for l-running, in general, conventional katana-jing required calculation time of 30 minutes to several hours, but the present invention is better. It takes less than 1 minute to rope.

(b)  従来の方法ではシステム?tJ点までもって
いくため1〜3回の操作を行なっていたのに対し、本発
明の万人では通常3〜51回の操作を行なう必要がある
。本発明の方法では操作回数が従来より多くなるが、計
算時間が従来より大幅に短いので結局システムを最適点
にもっていくために要する時間は大幅に短縮される。
(b) Is the conventional method a system? In contrast to the 1 to 3 operations required to reach the tJ point, the present invention normally requires 3 to 51 operations for everyone. Although the method of the present invention requires more operations than the conventional method, the calculation time is significantly shorter than the conventional method, so the time required to bring the system to the optimum point is ultimately significantly reduced.

(c)  従来の方法ではノロセスモデルの誤差が最適
解に大きな影響を与えるが、本発明の方法ではモデル(
感度式)の誤差が最適SK影響を与えることは殆んどな
い。
(c) In the conventional method, the error of the Noroses model has a large influence on the optimal solution, but in the method of the present invention, the error of the model (
Errors in the sensitivity formula have almost no effect on the optimal SK.

(d)  従来の方法では操作変数の数や制約歪性の数
が増加した場合には対処することが非常に峻しいが、本
発明の方法ではきわめて容易に適応することができる。
(d) In the conventional method, it is very difficult to deal with an increase in the number of manipulated variables and the number of constraint skewness, but the method of the present invention can be adapted very easily.

上記の説明では、高温流体を分流させていないが、低温
流体を分流させずに高温流体のみを分流させる熱回収シ
ステムにも本発明を適用でき、また低温流体及び高温流
体の双方を分流させる熱回収システムにも本発明を適用
できる。
In the above explanation, high-temperature fluid is not divided, but the present invention can also be applied to a heat recovery system in which only high-temperature fluid is diverted without dividing low-temperature fluid. The present invention can also be applied to a recovery system.

本発明の制御方法はDDC(Direct Dlgit
alControl ) 、 SPC(Set pol
nt Control )等いずれの1tJ1機制御を
行なう場合にも好適である。
The control method of the present invention is based on DDC (Direct Dlgit).
alControl), SPC (Set pol
It is suitable for any type of 1tJ aircraft control such as nt Control).

上記の説明では原油の常圧蒸留装置における熱回収シス
テムを列にとったが、蒸留装置に1城らず、−低温流体
及び高!IA流体の少なくとも一方を分流させて熱交換
を行なう熱回収システムに広く本発明を適用することが
できる。また上記の例では所定の熱交換能と有する熱交
換器がグルー!化されているが、本発明は熱交換器のグ
ルーグ化を行なわない場合にも当然適用することができ
る。
In the above explanation, we have focused on the heat recovery system in an atmospheric distillation unit for crude oil. The present invention can be widely applied to heat recovery systems that perform heat exchange by dividing at least one of the IA fluids. In addition, in the above example, the heat exchanger with a predetermined heat exchange capacity is glue! However, the present invention can of course be applied even when the heat exchanger is not grouped.

以上のように、本発明のん1j御方法は、計′S磯では
最適点への操作度回数の移動方向及び移動縫のみを決定
してその方向へプロセス人力を設定するという手順全線
り返しながら最適点にもっていくものであるので、[J
雑な手法を用いて計算機で予め最適点を求めてからノロ
セス人力を設定する従来の方法に比べて8を4磯のグロ
グラムサイズの縮小と計算時間の短縮とを図ることがで
き、迅速に制御動作を行なわせることができる。したが
ってシステムの状況の変化にも十分に追従させることが
でき、常に熱回収システムを最適点で4転させるように
制御することができる。また操作変数や制約歪性の数の
増7+11にも容易に適応することができる。更に本発
明の方法は一種のフィードパ、り制御であって、感度の
計算等に誤差があっても誤差が蓄積することがなく、熱
回収システムが最適点から大きくずれたところで運転さ
れると・いった不都合が生じる虞れがない。また本発明
の実施に用いる計算機は小型のものでよいので、計算機
システムの構成及び運転に要するコストを安くすること
ができる。
As described above, the method of controlling the sewing machine of the present invention involves repeating the entire procedure of determining only the moving direction of the number of operations and moving stitches to the optimum point and setting the process human power in that direction. [J
Compared to the conventional method of determining the optimal point in advance with a computer using a complicated method and then setting the number of steps manually, it is possible to reduce the grogram size by 8 to 4 and shorten the calculation time. Control operations can be performed. Therefore, it is possible to sufficiently follow changes in the system situation, and it is possible to control the heat recovery system so that it always rotates four times at the optimum point. Furthermore, it can be easily adapted to an increase in the number of manipulated variables and constraint skewness by 7+11. Furthermore, the method of the present invention is a type of feedper control, and even if there are errors in sensitivity calculations, errors will not accumulate, and if the heat recovery system is operated at a point far away from the optimum point, There is no risk of any inconvenience occurring. Further, since the computer used to implement the present invention may be small, the cost required for configuring and operating the computer system can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱回収システムの全体的な構成の一ガを概略的
に示した系統図、第2図は第1図のシステム中の1つの
熱交換器群の更に詳細な構成を示す系統図、第3図は第
1図のシステムに本発明を適用する場合の1δ号系統を
示した系統図、第4図は本発明の一施例における計**
処理の実行順序を示したフローチャートである。 A・・・蒸留塔、B・・・ツノ0熱炉、C,D、E・・
・熱交換器群、F・・・冷却器、G・・・熱回収システ
ム、H・・・回収熱量最大化制御装置、1・・・原油供
給管、2〜5・・・留出管、6・・・残油堰出管、7〜
9・・・[、d還流経路。 手続補正書(自発) 昭和56年10月20日 特許庁長官島田春樹  殿 1、事件の表示 特願昭56−151082号 2、発明の名称  熱回収システムの最適化制御方法3
、補正をする者 事件との関係 特許出願人 (328)千代田化工建設株式会社 4、代 理 人 〒105東京都港区新橋40131番
6号 文山ビル6階明細書の発明の詳細な説明の欄、図
面の簡単な(1)j1113頁#!19行の[向流形態
5e換シy、、 t−A J。 を「向流形態回収システム」に訂正する。 (2)第6a第2行の「軽油」を「経由−IK訂正する
0 (3)第8頁第13行の「限定Jを「決定」に訂正する
。 (4)  第9頁第5行及び同第11行の[プラント、
1を「システム」に訂正する。 (5)  第18頁第11行〜同第12行、第19頁第
17行及び第27頁第18行〜同第19行の「回収熱量
最大化制御装置」を「回収熱量最大化制御装置」に訂正
する。 以上 第1頁の続き 0発 明 者 梅田富雄 横浜市鶴見区鶴見中央二丁目12 番1号千代田化工建設株式会社 内 □
Figure 1 is a system diagram schematically showing the overall configuration of the heat recovery system, and Figure 2 is a system diagram showing a more detailed configuration of one heat exchanger group in the system in Figure 1. , Fig. 3 is a system diagram showing the 1δ system when the present invention is applied to the system shown in Fig. 1, and Fig. 4 is a system diagram showing the total ** in one embodiment of the present invention.
3 is a flowchart showing the order of execution of processing. A... Distillation column, B... Horn zero heat furnace, C, D, E...
- Heat exchanger group, F... Cooler, G... Heat recovery system, H... Recovery heat amount maximization control device, 1... Crude oil supply pipe, 2-5... Distillation pipe, 6...Residual oil weir outlet pipe, 7~
9... [, d reflux path. Procedural amendment (spontaneous) October 20, 1980 Haruki Shimada, Commissioner of the Patent Office 1, Indication of the case Patent application No. 151082/1982 2, Title of the invention Optimization control method for heat recovery system 3
, Relationship with the case of the person making the amendment Patent applicant (328) Chiyoda Corporation 4, Agent 6th floor, Bunzan Building, 40131-6 Shinbashi, Minato-ku, Tokyo 105 Column for detailed explanation of the invention in the specification , simple drawing (1) j1113 page #! Line 19 [Countercurrent form 5e exchange y, t-A J. is corrected to "countercurrent recovery system". (2) Correct “light oil” in line 2 of 6a to “via-IK0” (3) Correct “restriction J” in line 13 of page 8 to “determined”. (4) [Plant, page 9, line 5 and line 11]
Correct 1 to "system". (5) "Recovered heat amount maximization control device" on page 18, lines 11 to 12, page 19, line 17, and page 27, lines 18 to 19 ” is corrected. Continuation of page 1

Claims (2)

【特許請求の範囲】[Claims] (1)低温流体及び高温流体の少なくとも一万を複数に
分流させて互いに熱交換させる熱回収システムの最適化
制御方法において、分流されている流体の各分流量を操
作変数として2個の操作変数の組合せからなる複数の操
作室数組を考え、各操作室数組の2個の操作変数を互い
に逆の方向に等量変化させ九場合の回収熱量の変化割合
を回収熱量に関するシステムの感度として計算する過程
と、前記感度の最大値を与える操作室数組を選択すると
ともに選択して操作室数組の各操作変数の変化の方向を
定める遇根と、前記選択した操作室数組の各操作変数を
グロセス入力として所定量だけ定められた方向に変化さ
せる過程とを、前記回収熱量が最適値に達するまで行な
うことを%徴とする熱回収システムの最適化制御方法。
(1) In an optimization control method for a heat recovery system in which at least 10,000 low-temperature fluids and high-temperature fluids are divided into a plurality of parts to exchange heat with each other, two manipulated variables are set, with each divided flow rate of the divided fluid being a manipulated variable. Considering multiple sets of operating rooms consisting of the following combinations, the rate of change in the amount of recovered heat when the two operating variables of each set of operating rooms are changed by equal amounts in opposite directions is taken as the sensitivity of the system regarding the amount of recovered heat. The process of calculating, selecting the set of operating rooms that give the maximum value of the sensitivity, and determining the direction of change of each operating variable of the set of operating rooms by selecting, and each set of operating rooms of the selected set of operating rooms. An optimization control method for a heat recovery system, the method comprising: changing a manipulated variable by a predetermined amount in a predetermined direction as a gross input until the amount of recovered heat reaches an optimum value.
(2)低温流体及び高温流体の少なくとも一万を複数に
分流させて互いに熱交換させる熱回収システムのj&適
化制御方法において、分流されている流体の各分流量を
操作変数として2個の操作変数の組合せから々る複数の
操作室数組を考え、各操作室数組の2個の操作変数を互
いに逆の方向に等量変化させた場合の回収熱量の変化割
合を回収熱量に関するシステムの感度として計算すると
ともに各操作室数組の2個の操作変数を互いに逆の方向
に等量変化させた場合の制約条件付変数の変化割合を制
約条件に関するシステムの感度として計算する過程と、
前記回収熱量に関するシステムの感度の最大値を与える
操作室数組を主操作変数組として選択するとともに該主
操作変数組の各操作変数の変化の方向を定める過程と、
前記主操作変aMiの各操作変数を所定量定められた方
向に変化させ九と暑の#記制約条件付変数の変動を前記
制約条件に関するシステムの感度を用いて予測して該制
約条件付変数の変動を補償するのに適した操作室数組を
補助操作度数組として選択するとともに該制約条件付変
数の変動を補償する丸めに必要な該補助操作度数組の各
操作変数の変化量及び変化の方向を定める過程と、前記
主操作変数組の各操作度数及び補助操作度数組の各操作
変数をグロセス入力としてそれぞれ所定量だけ変化させ
る過程とを、紡記回収熱量が最適値に達するまで行なう
ことを特徴とする熱回収システムの最適化制御方法。
(2) In the j&optimization control method for a heat recovery system in which at least 10,000 low-temperature fluids and high-temperature fluids are divided into a plurality of parts to exchange heat with each other, two operations are performed using each divided flow rate of the divided fluid as a manipulated variable. Considering multiple sets of operating rooms based on the combination of variables, the rate of change in the amount of recovered heat when two operating variables of each set of operating rooms are changed by equal amounts in opposite directions is calculated as the rate of change in the amount of recovered heat in the system regarding the amount of recovered heat. a process of calculating the change rate of the variable with the constraint condition as the sensitivity of the system with respect to the constraint condition when the two operating variables of each control room set are changed by equal amounts in opposite directions;
a step of selecting a set of operating chambers that provides a maximum value of the sensitivity of the system regarding the amount of recovered heat as a set of main operating variables, and determining a direction of change of each operating variable of the set of main operating variables;
Change each manipulated variable of the main operation variable aMi by a predetermined amount in a predetermined direction, predict the fluctuation of the constraint condition variable of 9 and heat using the sensitivity of the system regarding the constraint condition, and calculate the constraint condition variable. Select a set of operating chambers suitable for compensating for the fluctuations in the auxiliary operating frequency set as the auxiliary operating frequency set, and the amount of change and change in each operating variable of the auxiliary operating frequency set necessary for rounding to compensate for the fluctuation of the constrained variable. The process of determining the direction of the main operating variable set and the step of changing each operating variable of the auxiliary operating frequency set by a predetermined amount as a gross input is carried out until the spinning recovery heat amount reaches the optimum value. An optimization control method for a heat recovery system characterized by:
JP15108281A 1981-09-24 1981-09-24 Optimized control method for heat recovery system Expired JPS6017998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15108281A JPS6017998B2 (en) 1981-09-24 1981-09-24 Optimized control method for heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15108281A JPS6017998B2 (en) 1981-09-24 1981-09-24 Optimized control method for heat recovery system

Publications (2)

Publication Number Publication Date
JPS5852998A true JPS5852998A (en) 1983-03-29
JPS6017998B2 JPS6017998B2 (en) 1985-05-08

Family

ID=15510918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15108281A Expired JPS6017998B2 (en) 1981-09-24 1981-09-24 Optimized control method for heat recovery system

Country Status (1)

Country Link
JP (1) JPS6017998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054163A (en) * 2009-08-31 2011-03-17 Fisher-Rosemount Systems Inc Heat exchange network heat recovery optimization in process plant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154195U (en) * 1987-03-30 1988-10-11
JPS63245390A (en) * 1987-12-24 1988-10-12 高木 弘 Method of cutting hollow plastic molded form

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054163A (en) * 2009-08-31 2011-03-17 Fisher-Rosemount Systems Inc Heat exchange network heat recovery optimization in process plant

Also Published As

Publication number Publication date
JPS6017998B2 (en) 1985-05-08

Similar Documents

Publication Publication Date Title
Colberg et al. Area and capital cost targets for heat exchanger network synthesis with constrained matches and unequal heat transfer coefficients
Linnhoff et al. Cost optimum heat exchanger networks—1. Minimum energy and capital using simple models for capital cost
US4574870A (en) Method and apparatus for controlling a counter-flow heat exchanger
Onishi et al. Retrofit of heat exchanger networks with pressure recovery of process streams at sub-ambient conditions
Yang et al. Heat exchanger network synthesis for batch processes by involving heat storages with cost targets
US4381814A (en) Control of heat transfer from heat exchangers in parallel
Ziyatdinov et al. Method for the synthesis of optimum multistage heat exchange network
JP6213855B2 (en) Heat recovery equipment
JPS5852998A (en) Optimum control of heat collecting system
Maghsoudi et al. Thermoeconomic optimization and comparison of plate-fin heat exchangers using louver, offset strip, triangular and rectangular fins applied in 200 kW microturbines
Ziyatdinov et al. Method of automated synthesis of optimal heat exchange network (HEN) based on the principle of fixation of variables
Swaney Thermal integration of processes with heat engines and heat pumps
Hernández et al. Controllability and operability analysis of heat exchanger networks including bypasses
Delatore et al. Multivariable optimal control of a heat exchanger network with bypasses
Lai et al. Flexible heat exchanger network design for low‐temperature heat utilization in oil refinery
Menzies et al. Synthesis of optimal energy recovery networks using discrete methods
CN107429951A (en) Control device, control method and program
Wang et al. Simulation and analysis of heat exchanger networks with Aspen Energy Analyzer
Shukla et al. Energy Efficiency Analysis Using Pinch Technology
Jez̆owski et al. A simple approach for maximum heat recovery calculations
Narataruksa et al. Dynamic simulation of plate and frame heat exchanger undergoing food fouling: coconut milk fouling case study
JPS62186200A (en) Heat exchanging efficiency optimizing device
Eskandari et al. Higher efficiency targeting in a steam power plant by using pinch technology
Phipps et al. Experiences from using heat integration software to determine retrofit opportunities within a refinery process
Roetzela et al. Optimal control process of heat exchanger networks