JPS5852949A - Heat pump device driven by engine - Google Patents

Heat pump device driven by engine

Info

Publication number
JPS5852949A
JPS5852949A JP56149607A JP14960781A JPS5852949A JP S5852949 A JPS5852949 A JP S5852949A JP 56149607 A JP56149607 A JP 56149607A JP 14960781 A JP14960781 A JP 14960781A JP S5852949 A JPS5852949 A JP S5852949A
Authority
JP
Japan
Prior art keywords
engine
exhaust gas
heat
pump device
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56149607A
Other languages
Japanese (ja)
Inventor
健一 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56149607A priority Critical patent/JPS5852949A/en
Publication of JPS5852949A publication Critical patent/JPS5852949A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は外気を熱源とするエンジン駆動ヒートポンプ装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine-driven heat pump device that uses outside air as a heat source.

エンジンで圧縮機を駆動するヒートポンプはエンジンの
シリンダー冷却熱および排ガス熱を回収利用できること
から電気式ヒートポンプよりも更に省エネルギ効果が大
きく、日本や西ドイツで実用化と普及が進められている
。以下路tSを参照しながら従来の技術と問題点を説明
する。
Heat pumps, which use an engine to drive a compressor, can recover and use the engine's cylinder cooling heat and exhaust gas heat, so they have an even greater energy-saving effect than electric heat pumps, and are being put into practical use and widespread use in Japan and West Germany. The conventional technology and problems will be explained below with reference to the road tS.

エンジン(1)で駆動される圧縮機(2)で圧縮された
冷媒(1)は誦II器(3)、jll脹弁(4)、蒸発
器(5)を経て圧縮器1kRり冷凍サイクルを形成する
。蒸発器で冷媒を蒸発させるための熱源としては、エン
ジンで駆動されるファン(6)で吸い込まれる外気が利
用される。−万、温水タンク(7)中の温水(b)はポ
ンプ(8)で圧送され、凝縮器で冷媒の凝縮熱を吸収し
九のち、エンジンのシリンダー冷却部(9)でシリンダ
ー冷却熱を吸収し、さらに排ガス熱交換器(IIで排ガ
ス熱を吸収して昇温されてから温水タンクに戻る。
The refrigerant (1) compressed by the compressor (2) driven by the engine (1) passes through the refrigerant (3), the JLL expansion valve (4), and the evaporator (5), and then enters the 1kR refrigeration cycle. Form. As a heat source for evaporating the refrigerant in the evaporator, outside air drawn in by a fan (6) driven by the engine is used. - Hot water (b) in the hot water tank (7) is pumped by the pump (8), absorbs the condensation heat of the refrigerant in the condenser, and then absorbs the cylinder cooling heat in the engine cylinder cooling section (9). Then, the exhaust gas heat is absorbed by the exhaust gas heat exchanger (II) and the temperature is raised before returning to the hot water tank.

温水タンクの中には熱交換コイルαυが浸されておシ、
ここで熱交換した循環水(C)が暖房(あるいは給湯)
に利用される。
A heat exchange coil αυ is immersed in the hot water tank.
The circulating water (C) that exchanged heat here is used for heating (or hot water supply)
used for.

このような構成のと一トポンプでは一次エネルキ(エン
ジンの燃料の持つエネルギ)の150−180%もの熱
量を利用できる特徴があるが、一方、外気温が低下(た
とえば5℃以下)すると蒸発器の表面に外気中の水分が
着霜までは着水して運転できなくなるという欠点があっ
た。しかも外気温が低下したときには暖房負荷も大きく
なるため、従来はせっかくヒートポンプ装置を設置して
もそれ以上大自な容量を持つ補助ボイラー装置を設置し
て、外気温が低下し九と含にはヒートポンプ装置の運転
を中止して補助ボイラーの運転に切り換えねばならない
という欠点があった。
A toto pump with this type of configuration has the feature of being able to utilize as much as 150-180% of the heat of the primary energy (energy in the engine fuel), but on the other hand, when the outside temperature drops (for example, below 5 degrees Celsius), the evaporator There was a drawback that moisture from the outside air landed on the surface until frost formed, making it impossible to operate. Moreover, when the outside temperature drops, the heating load increases, so even if a heat pump device is installed, an auxiliary boiler device with a larger capacity has been installed, and when the outside temperature drops, the heating load increases. There was a drawback that the operation of the heat pump device had to be stopped and the operation of the auxiliary boiler had to be switched over.

本発明の目的はこのような従来の欠点を考1してなされ
f?−もので、外気温が低下してもヒートポンプ装置を
運転ciT能ならしめ、補助ボイラーを設置するとして
もこの容量が小さくてすむようにすることにおる。すな
わち、外気温が低下したともにはエンジン排ガスを温水
の昇温には利用せず、高温の11の排ガス熱で外気を昇
温し、原発器における着霜や着水を防止しようとする4
のである。
The object of the present invention is to take into account the drawbacks of the conventional art. - The aim is to make the heat pump device capable of operating even when the outside temperature drops, so that even if an auxiliary boiler is installed, its capacity will be small. In other words, when the outside temperature drops, the engine exhaust gas is not used to raise the temperature of hot water, but the outside air is heated with the heat of the high-temperature exhaust gas in order to prevent frost formation and water landing in the nuclear power plant.
It is.

以下、本発明の実施例を図を引用しながら説明する。な
お第2図および第3図では第1図のうち本発明に関連す
る部分だけを示し、同一構成要素は同一番号で示す。
Embodiments of the present invention will be described below with reference to the drawings. Note that in FIGS. 2 and 3, only the portions of FIG. 1 that are related to the present invention are shown, and the same components are designated by the same numbers.

第2図は本発明の一実施例を示し九もので、排ガス熱交
換器αQを出た排ガスは蒸発器(5)の前面に配設され
る排ガス放出筒α−に導かれる。排ガス放出筒には多数
の排ガス放出孔峙が開放しており、排ガス(d)はここ
から流出して、ファン(6)で吸い込まれる外気と混合
し、これを昇温する。温水の流路にはバイパス(14お
よび三方弁α9が設けられており、外気温が低下したと
きには温水は褪ガス熱交換器α・内を流れずにバイパス
α尋を流れる。外気温が上昇して蒸発器で着霜や着水の
恐れがなくなったときには三方弁が作動して温水は再び
排ガス熱交換器内を流れる。
FIG. 2 shows one embodiment of the present invention, in which the exhaust gas exiting the exhaust gas heat exchanger αQ is guided to the exhaust gas discharge pipe α- disposed in front of the evaporator (5). A large number of exhaust gas discharge holes are open in the exhaust gas discharge tube, and the exhaust gas (d) flows out from the exhaust gas discharge tube, mixes with the outside air sucked in by the fan (6), and heats up the air. The hot water flow path is provided with a bypass (14) and a three-way valve α9, and when the outside temperature drops, the hot water flows through the bypass α9 without flowing through the gas heat exchanger α. When there is no longer any risk of frost or water landing in the evaporator, the three-way valve is activated and the hot water flows through the exhaust gas heat exchanger again.

第3図は本発明による他の実施例を示し、排ガス(d)
は外気用熱交換器(leを介して外気を昇温する。
FIG. 3 shows another embodiment according to the present invention, in which exhaust gas (d)
raises the temperature of outside air via an outside air heat exchanger (le).

次に本発明による効果を説明する。第2図および第3図
において三方弁α$が作動して温水(b)がバイパスα
4を流れると排ガス熱交換器α値では熱交換が行なわれ
ないので排ガス温度は低下せず、従がって鳩温(約60
0“0)のままの排ガスが蒸発器に吸い込まれる外気を
昇温することになるので、従来は着霜や着水のため運転
不能だったほど外気温が低下しても運転を行なうことが
できる。補助ボイラーを設置するにしてもヒートポンプ
装置の容量を補うだけの容量があればよいので、従来の
ようにヒートポンプ装置の容量以上のものを設置する必
要はない。
Next, the effects of the present invention will be explained. In Figures 2 and 3, the three-way valve α$ operates and the hot water (b) enters the bypass α
4, the exhaust gas temperature does not decrease because heat exchange is not performed at the exhaust gas heat exchanger α value, and therefore the pigeon temperature (approximately 60
Since the exhaust gas remains at 0 (0) and increases the temperature of the outside air that is sucked into the evaporator, it is now possible to operate even when the outside temperature drops to such a low level that in the past it was impossible to operate due to frost formation or water splashing. Yes, even if you install an auxiliary boiler, it only needs to have enough capacity to supplement the capacity of the heat pump, so there is no need to install one that exceeds the capacity of the heat pump, unlike in the past.

なお、三方弁崗と外気温度センサーを運動させてバイパ
スα4’に流れる温水流量を連続的に制御してもよいこ
とは勿論である。
It goes without saying that the flow rate of hot water flowing into the bypass α4' may be continuously controlled by moving the three-way valve and the outside air temperature sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエンジン駆動ヒートポンプ装置を示す図
、第2図および第3図は本発明による装置で従来と真な
る部分を示す図である。 1・・・エンジン、   5・・・蒸発器、10・・・
排ガス熱交換器、 12・・・排ガス放出筒、13・・
・排ガス放出孔、14・・・バイパス、15・・・三方
弁、16・・・外気用熱交換器、1・・・冷 媒、  
   b・・・温 水、d・・・排ガス。 第1図 第2図 第3図
FIG. 1 is a diagram showing a conventional engine-driven heat pump device, and FIGS. 2 and 3 are diagrams showing the device according to the present invention, which is the same as the conventional device. 1...Engine, 5...Evaporator, 10...
Exhaust gas heat exchanger, 12...Exhaust gas discharge cylinder, 13...
・Exhaust gas discharge hole, 14...Bypass, 15...Three-way valve, 16...Outside air heat exchanger, 1...Refrigerant,
b...Hot water, d...Exhaust gas. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 外気を熱源とし、エンジンで圧縮機を駆動するヒートポ
ンプ装置において、蒸発器へ導かれる外気がエンジンの
排ガスの直接混合により昇温されるが、あるいは熱交換
器を介して昇温され、かつ排ガスと熱交換する温水の流
路にバイパスと三方弁を設けたことを特徴とするエンジ
ン駆動ヒートポンプ装置。
In a heat pump device that uses outside air as a heat source and drives a compressor with an engine, the outside air led to the evaporator is heated by direct mixing with engine exhaust gas, or is heated through a heat exchanger and mixed with exhaust gas. An engine-driven heat pump device characterized by providing a bypass and a three-way valve in the hot water flow path for heat exchange.
JP56149607A 1981-09-24 1981-09-24 Heat pump device driven by engine Pending JPS5852949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56149607A JPS5852949A (en) 1981-09-24 1981-09-24 Heat pump device driven by engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56149607A JPS5852949A (en) 1981-09-24 1981-09-24 Heat pump device driven by engine

Publications (1)

Publication Number Publication Date
JPS5852949A true JPS5852949A (en) 1983-03-29

Family

ID=15478900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56149607A Pending JPS5852949A (en) 1981-09-24 1981-09-24 Heat pump device driven by engine

Country Status (1)

Country Link
JP (1) JPS5852949A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871661U (en) * 1981-11-10 1983-05-14 株式会社クボタ Engine-driven heat pump
JPS5871659U (en) * 1981-11-10 1983-05-14 株式会社クボタ Engine-driven heat pump
JPS5969476A (en) * 1982-10-08 1984-04-19 三菱マテリアル株式会社 Manufacture of sialon base ceramic sintering material
JPS60182671U (en) * 1984-05-16 1985-12-04 日本鋼管株式会社 Heating and cooling equipment that utilizes gas engine waste heat
JPS6155673U (en) * 1984-09-18 1986-04-14
JPH0321549U (en) * 1989-07-13 1991-03-04
US8366558B2 (en) 2007-06-27 2013-02-05 Ntn Corporation Rolling contact member, rolling bearing, and method of producing rolling contact member
US8371758B2 (en) 2007-10-18 2013-02-12 Ntn Corporation Rolling contact member and rolling bearing
JP2017531764A (en) * 2014-10-03 2017-10-26 ユニバーシティ オブ マリボルUniversity Of Maribor Utilization method and apparatus of waste heat source of cogeneration power plant using water source high temperature heat pump
EP3757389A1 (en) * 2019-06-26 2020-12-30 Hamilton Sundstrand Corporation Motor cooling systems

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871659U (en) * 1981-11-10 1983-05-14 株式会社クボタ Engine-driven heat pump
JPS5871661U (en) * 1981-11-10 1983-05-14 株式会社クボタ Engine-driven heat pump
JPS5969476A (en) * 1982-10-08 1984-04-19 三菱マテリアル株式会社 Manufacture of sialon base ceramic sintering material
JPS6218514B2 (en) * 1982-10-08 1987-04-23 Mitsubishi Metal Corp
JPS60182671U (en) * 1984-05-16 1985-12-04 日本鋼管株式会社 Heating and cooling equipment that utilizes gas engine waste heat
JPH0451322Y2 (en) * 1984-09-18 1992-12-03
JPS6155673U (en) * 1984-09-18 1986-04-14
JPH0321549U (en) * 1989-07-13 1991-03-04
US8366558B2 (en) 2007-06-27 2013-02-05 Ntn Corporation Rolling contact member, rolling bearing, and method of producing rolling contact member
US9097280B2 (en) 2007-06-27 2015-08-04 Ntn Corporation Rolling contact member, rolling bearing, and method of producing rolling contact member
US8371758B2 (en) 2007-10-18 2013-02-12 Ntn Corporation Rolling contact member and rolling bearing
JP2017531764A (en) * 2014-10-03 2017-10-26 ユニバーシティ オブ マリボルUniversity Of Maribor Utilization method and apparatus of waste heat source of cogeneration power plant using water source high temperature heat pump
EP3757389A1 (en) * 2019-06-26 2020-12-30 Hamilton Sundstrand Corporation Motor cooling systems
US11201524B2 (en) 2019-06-26 2021-12-14 Hamilton Sundstrand Corporation Motor cooling systems

Similar Documents

Publication Publication Date Title
US5239838A (en) Heating and cooling system having auxiliary heating loop
US4070870A (en) Heat pump assisted solar powered absorption system
CN104949409A (en) System and method for flexibly defrosting air-source heat pump without starting compressor
JPS5852949A (en) Heat pump device driven by engine
KR0136768B1 (en) Heating apparatus for air-conditioner
JPS6155018B2 (en)
EP0035873A2 (en) Absorption type heat pump having radiators
JPS6310349B2 (en)
JPS5986846A (en) Hot water supply device of heat pump type
JPH07218016A (en) Absorption type chilled and warm water machine
JPS6343662B2 (en)
JPS6359062B2 (en)
JPS5563337A (en) Air conditioner by solar heat
KR100419480B1 (en) Multi heat pump system with advanced heating and cooling performance
JPH033902Y2 (en)
JPH0332712B2 (en)
JPS618574A (en) Air conditioner for heat pump of engine
JPS5810938Y2 (en) Ray Danbouki Yutousouchi
JPS6110149Y2 (en)
JPS633394Y2 (en)
JPS6256430B2 (en)
CN1355403A (en) Air conditioner with water heater
JP2000283598A (en) Method for controlling engine heat pump
KR100322260B1 (en) Absorption refrigerator
JPS6226428A (en) Heat pump type air conditioner