JPS5852685B2 - Desulfurization method for flue gas with large fluctuations in SO↓2 concentration - Google Patents

Desulfurization method for flue gas with large fluctuations in SO↓2 concentration

Info

Publication number
JPS5852685B2
JPS5852685B2 JP55041003A JP4100380A JPS5852685B2 JP S5852685 B2 JPS5852685 B2 JP S5852685B2 JP 55041003 A JP55041003 A JP 55041003A JP 4100380 A JP4100380 A JP 4100380A JP S5852685 B2 JPS5852685 B2 JP S5852685B2
Authority
JP
Japan
Prior art keywords
liquid
absorption
neutralization
oxidation
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55041003A
Other languages
Japanese (ja)
Other versions
JPS56136626A (en
Inventor
秀来 阿部
圭 佐藤
正美 桜庭
利秋 山内
健治 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP55041003A priority Critical patent/JPS5852685B2/en
Publication of JPS56136626A publication Critical patent/JPS56136626A/en
Publication of JPS5852685B2 publication Critical patent/JPS5852685B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 本発明は塩基性硫酸アルミニウム溶液をSO2吸収液と
する排煙脱硫法に関し、特に、同一出願人に係る特願昭
47−36089号明細書(特開昭48−103094
号公報)および特公昭53−15835号公報に記載し
た塩基性硫酸アルミニウム水溶液の循環により石膏を得
る排煙脱硫法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flue gas desulfurization method using a basic aluminum sulfate solution as an SO2 absorption liquid, and in particular, the present invention relates to a flue gas desulfurization method using a basic aluminum sulfate solution as an SO2 absorption liquid, and in particular, to
This invention relates to an improvement in the flue gas desulfurization method for obtaining gypsum by circulating a basic aluminum sulfate aqueous solution described in Japanese Patent Publication No. 53-15835.

特開昭48−103094号公報記載の排煙脱硫法は、
塩基性硫酸アルミニウム溶液のSO2吸収能を利用しな
がら石膏を回収するもので、SO2吸収能が高く完全ク
ローズドシステムであり、長期安定模様が可能である等
の優れた長所を有し、消石灰吸収方式等に比べて数数の
利点を有している。
The flue gas desulfurization method described in JP-A-48-103094 is as follows:
This method recovers gypsum while utilizing the SO2 absorption capacity of basic aluminum sulfate solution.It has excellent advantages such as high SO2 absorption capacity, completely closed system, and long-term stable pattern. It has several advantages compared to other methods.

このプロセスは、大きく分類すると、次の吸収工程、酸
化工程および中和工程からなる。
Broadly speaking, this process consists of the following absorption step, oxidation step, and neutralization step.

(1)吸収工程 吸収塔でSO2含有排ガスと塩基性硫酸アル□ニウム溶
液とを気液接触させ、気相中のSO2を(1)式の反応
によって液相中に吸収させる。
(1) Absorption step SO2-containing exhaust gas and basic aluminum sulfate solution are brought into gas-liquid contact in an absorption tower, and SO2 in the gas phase is absorbed into the liquid phase by the reaction of formula (1).

(2)酸化工程 吸収工程で塩基性硫酸アルミニウム溶液に吸収させたS
O2は、亜硫酸イオンとなって液中に存在する。
(2) S absorbed in basic aluminum sulfate solution in oxidation process absorption process
O2 exists in the liquid as sulfite ions.

この液中に圧縮空気を微細気泡として吸込み、この亜硫
酸イオンを硫酸イオンにする。
Compressed air is sucked into this liquid as fine bubbles to convert the sulfite ions into sulfate ions.

この酸化(式2)を酸化塔で行ない、酸化後の液は吸収
塔に繰返し、一部は中和工程に送液する。
This oxidation (Formula 2) is performed in an oxidation tower, and the oxidized liquid is repeatedly sent to the absorption tower, and a portion is sent to the neutralization step.

(3)中和工程 吸収工程と酸化工程を循環している塩基性硫酸アルミニ
ウム溶液は次第に硫酸イオンが増加し、下式で定義する
塩基度が低下する。
(3) Neutralization step In the basic aluminum sulfate solution circulating through the absorption step and oxidation step, sulfate ions gradually increase, and the basicity defined by the following formula decreases.

このため、その一部をSO2負荷の変動に応じて抜き出
して中和槽に送り、炭酸カルシウムと反応させて所定の
塩基度まで中和し、硫酸イオンは石膏として循環液から
除外する(式3)。
For this reason, a part of the SO2 is extracted according to fluctuations in the SO2 load and sent to the neutralization tank, where it is reacted with calcium carbonate and neutralized to a predetermined basicity, and the sulfate ions are removed from the circulating fluid as gypsum (Equation 3 ).

生成した石膏は沈殿槽で濃縮させ、スラリー状のものを
遠心分離機で済過脱水する。
The generated gypsum is concentrated in a settling tank, and the slurry is dehydrated in a centrifuge.

ろ液および洗浄水は全量工程水として再利用する。All of the filtrate and washing water will be reused as process water.

本発明の目的は、この方法を例えば銅製錬排ガス処理硫
酸工場の排ガス等の如く排ガス量が太きくしかもそのS
O2濃度が例えば転炉の操業状況により急激に変化する
ような排ガス系に有利に適用できるように改良すること
である。
The object of the present invention is to apply this method to a process where the amount of exhaust gas is large and its S
The object of the present invention is to improve the method so that it can be advantageously applied to an exhaust gas system in which the O2 concentration changes rapidly depending on the operating conditions of a converter, for example.

この目的において本発明は、排ガス中のSO2負荷の変
動に無関係に最大SO2負荷に合わせて吸収工程と酸化
工程を循環する循環液を一定量づつ連続的に抜き出して
中和工程に供給し、中和工程でのアルカリ剤添加量を中
和工程出口液の塩基度により制御する排煙脱硫法を提供
する。
For this purpose, the present invention continuously extracts a fixed amount of the circulating fluid that circulates between the absorption process and the oxidation process in accordance with the maximum SO2 load, regardless of fluctuations in the SO2 load in the exhaust gas, and supplies it to the neutralization process. Provided is a flue gas desulfurization method in which the amount of alkaline agent added in the neutralization step is controlled by the basicity of the exit liquid from the neutralization step.

以下に本発明法の詳細を操業実施例に従って具体的に説
明する。
The details of the method of the present invention will be specifically explained below according to operational examples.

第1図は、K製錬所転炉排ガス硫酸工場の排ガスに本発
明を適用した設備フローシートである。
FIG. 1 is an equipment flow sheet in which the present invention is applied to the exhaust gas from the converter furnace of the K smelter and the exhaust gas from the sulfuric acid factory.

第1図において、1はAI吸収塔、2はA2吸収塔、3
はA1ポンプタンク、4はA2ポンプタンク、5は酸化
塔、6は中和塔、7はシックナー、8は遠心分離機、9
はろ液タンク、BMは塩基度計を示している。
In Figure 1, 1 is an AI absorption tower, 2 is an A2 absorption tower, and 3 is an AI absorption tower.
is A1 pump tank, 4 is A2 pump tank, 5 is oxidation tower, 6 is neutralization tower, 7 is thickener, 8 is centrifugal separator, 9
indicates the filtrate tank, and BM indicates the basicity meter.

この排煙脱硫設備の処理能力は、125000 Nd/
Hrであり、硫酸製造設備が2系列に構成されている事
から排煙脱硫吸収塔も2系列となっている。
The processing capacity of this flue gas desulfurization equipment is 125,000 Nd/
Hr, and since the sulfuric acid production equipment is configured in two lines, the flue gas desulfurization absorption tower is also in two lines.

酸化、中和系は、運転管理および保守の面からl系列と
なっている。
The oxidation and neutralization systems are in the L series from the standpoint of operation management and maintenance.

硫酸工場の吸収塔(図示せず)を出たガスは、排煙脱硫
吸収塔1,2(以下、吸収塔と呼ぶ)に入りSO2を除
去後排出される。
Gas leaving the absorption tower (not shown) of the sulfuric acid factory enters flue gas desulfurization absorption towers 1 and 2 (hereinafter referred to as absorption towers) and is discharged after removing SO2.

吸収塔1,2を出た循環液は、ポンプタンク3に入り、
循環ポンプで酸化塔5に送られる。
The circulating liquid that has left the absorption towers 1 and 2 enters the pump tank 3,
It is sent to the oxidation tower 5 by a circulation pump.

酸化塔5では循環液中の亜硫酸アルミニウムを空気酸化
し、オーバーフローした液はポンプタン、り4に入り、
循環ポンプで再び吸収塔2,1にスプレーされる。
In the oxidation tower 5, the aluminum sulfite in the circulating fluid is oxidized with air, and the overflowing fluid enters the pump sump tank 4.
The circulation pump sprays the absorption towers 2 and 1 again.

循環液の一部は連続的に酸化塔5かも中和設備6に一定
量抜き出し、炭酸カルシウムパルプで所定の塩基度まで
中和する。
A certain amount of the circulating liquid is continuously extracted from the oxidizing tower 5 or into the neutralization equipment 6, and neutralized with calcium carbonate pulp to a predetermined basicity.

中和設備6より液はオーバーフローし、シックナー7に
入る。
The liquid overflows from the neutralization equipment 6 and enters the thickener 7.

ここで石膏は10〜15%程度のスラリーとなってシッ
クナーアンダーフローとして抜き出され、一部は中和設
備6へ種晶として、残りは遠心分離機8に送られる。
Here, the gypsum becomes a slurry of about 10 to 15% and is extracted as a thickener underflow, a part of which is sent to the neutralization equipment 6 as a seed crystal, and the rest to the centrifuge 8.

遠心分離機8で分離された石膏は、付着水10〜13優
で系外に排出される。
The gypsum separated by the centrifugal separator 8 is discharged from the system with 10 to 13 yen of adhering water.

一方シックナーオーバーフローは再び吸収、酸化工程の
循環液として使用される。
On the other hand, the thickener overflow is used again as a circulating fluid for the absorption and oxidation processes.

A1吸収塔1は、直径2.9m、高さ12.0777.
0大きさであり、内部は三段となっており上段はデ□ス
タ一部として使用し、それぞれの段にはS型テラレット
が充填されている。
A1 absorption tower 1 has a diameter of 2.9 m and a height of 12.0777 m.
0 size, and has three stages inside, the upper stage is used as part of the data storage, and each stage is filled with S-type terraret.

A2吸収塔は、巾4.14m、長さ6.5m、高さ12
.9mの木製の内部耐酸ライニング構造となっており、
AI吸収塔1と同様内部は三段になっている。
The A2 absorption tower has a width of 4.14 m, a length of 6.5 m, and a height of 12 m.
.. It has a 9m wooden internal acid-resistant lining structure,
Like the AI absorption tower 1, the interior has three stages.

従来の塩基性硫酸アルミニウムー石膏法における排煙脱
硫設備での吸収塔への循環液の装入は、トレイ方式が普
通であるが本発明法では気液接触率を大きくする為にス
プレ一方式とした。
In the conventional basic aluminum sulfate-gypsum method, the circulating liquid is normally charged to the absorption tower in flue gas desulfurization equipment using a tray method, but in the present method, a spray method is used to increase the gas-liquid contact ratio. And so.

この方式にした事と排ガス中の酸素濃度が8〜10係と
高い事により、吸収塔内での自己酸化率が95%以上と
なり、吸収塔入口ガス中のSO2が3000泗以下では
酸化塔を経由しなくても操業にはさしつかえない。
Due to this method and the high oxygen concentration in the exhaust gas of 8 to 10%, the self-oxidation rate in the absorption tower is over 95%, and when the SO2 in the absorption tower inlet gas is less than 3000 cm, the oxidation tower is closed. Even if you do not go through it, there will be no problem in operation.

酸化塔5は直径3.6m、高さ10.6mの大きさであ
り、吸収液の滞留時間は13分となっている。
The oxidation tower 5 has a diameter of 3.6 m and a height of 10.6 m, and the residence time of the absorption liquid is 13 minutes.

空気圧縮機は吐出圧カフ贅、風量16.4 m37 m
inのものが3基ありl基常用、2基予備となっている
The air compressor has a discharge pressure cuff and an air volume of 16.4 m37 m
There are three in-type units, one for regular use and two for spare.

中和設備6は、第1中和槽、第2中和槽共直径5.0?
7Z、高さ5.0?7Z、内容積90m3である。
The neutralization equipment 6 has a first neutralization tank and a second neutralization tank both having a diameter of 5.0?
7Z, height 5.0~7Z, internal volume 90m3.

液の滞留時間を増す為に攪拌機の回転方向が、第1と第
2が逆にしており、その滞留時間は約1時間である。
In order to increase the residence time of the liquid, the rotation directions of the first and second stirrers are reversed, and the residence time is about 1 hour.

炭酸カルシウムは、−200meShOものを使用して
いる。
The calcium carbonate used is -200meShO.

従来の塩基性硫酸アルミニウム石膏法における排煙脱硫
設備でのコントロール方式は、酸化塔から中和槽への循
環液の抜き出し量を循環液の塩基度によりコントロール
していたが、つまり、SO2負荷の変動によりその抜き
出し量ヲコントロールしていたが、本発明では、急激な
SO7負荷変動に追従させる為と、コントロール操作を
簡略化する為に、酸化塔から中和槽への抜き出し量をS
O2負荷が最大の点に合わせて一定とした。
In the conventional control system for flue gas desulfurization equipment using the basic aluminum sulfate gypsum method, the amount of circulating fluid withdrawn from the oxidation tower to the neutralization tank was controlled by the basicity of the circulating fluid. Previously, the amount of SO7 extracted was controlled by fluctuations, but in the present invention, in order to follow sudden SO7 load fluctuations and to simplify control operations, the amount of SO7 extracted from the oxidation tower to the neutralization tank is controlled by S.
The O2 load was set constant at the maximum point.

例えば、同一出願人に係る特公昭5315835号公報
に示されているように、従来の塩基性アルミニウムー石
膏法による脱硫法では。
For example, in the conventional desulfurization method using the basic aluminum-gypsum method, as shown in Japanese Patent Publication No. 5315835 filed by the same applicant.

酸化系塩基度は5φ以下にならないように、酸化塔から
の液の抜き出し量がコントロールされ、中和系塩基度は
30%を越えないように、CaCO3の添加量がコント
ロールされていた。
The amount of liquid withdrawn from the oxidation tower was controlled so that the oxidation basicity did not fall below 5φ, and the amount of CaCO3 added was controlled so that the neutralization basicity did not exceed 30%.

しかし、この従来法によると、急激なSO2負荷の変動
に追従することができない。
However, according to this conventional method, it is not possible to follow sudden changes in the SO2 load.

なぜなら、急激にSO2負荷が増加 た場合でも保有液
量の関係から酸化系塩基度が即時に下降するわけではな
く、従って酸化塔抜き出し量もSO2負荷に追従するこ
とができない。
This is because even if the SO2 load suddenly increases, the basicity of the oxidizing system does not immediately decrease due to the amount of retained liquid, and therefore the amount extracted from the oxidation tower cannot follow the SO2 load.

さらに、酸化塔抜き出し量を増加させたとしても、その
抜き出し液は中和槽6、シックナー7を経由して流れる
ので、即時に酸化系への液量を増加させることは困難で
あり、酸化系塩基度も即時に上昇しない。
Furthermore, even if the amount of liquid extracted from the oxidation tower is increased, the liquid extracted from the oxidation tower flows through the neutralization tank 6 and the thickener 7, so it is difficult to immediately increase the amount of liquid to the oxidation system. Basicity also does not increase immediately.

それゆえ、特公昭5315835号公報に示されたコン
トロール方式では、SO2負荷が急激に高くなり酸化系
塩基度が下降してもそれを即時適切な塩基度に戻すこと
ができず、結局、急激なSO2負荷変動に追従ができな
かった。
Therefore, with the control method shown in Japanese Patent Publication No. 5315835, even if the SO2 load suddenly increases and the oxidation system basicity decreases, it is not possible to immediately return it to the appropriate basicity, and in the end, the sudden increase in It was not possible to follow SO2 load fluctuations.

本発明はこれらの点を改善し、酸化塔抜き出し量を最大
SO2負荷に設定した。
The present invention has improved these points and set the oxidation tower withdrawal amount to the maximum SO2 load.

この方式によると、酸化塔抜き出し量は常に最大SO2
負荷に合わせて一定量としているので、SO2負荷が急
激に増加しても、それ以前にすでに酸化系塩基度は最大
SO2負荷に対応できるものとなっている。
According to this method, the amount of SO2 extracted from the oxidation tower is always the maximum.
Since the amount is kept constant according to the load, even if the SO2 load increases rapidly, the oxidation basicity is already at a level that can correspond to the maximum SO2 load.

これにより、急激なSO2負荷変動に対して追従するこ
とが可能となった。
This makes it possible to follow sudden SO2 load fluctuations.

つまり、急激なSO2負荷変動に対応するには、特公昭
53−15835号公報に示された中和系塩基度により
CaCO3の添加量をコントロールする方式だけでは無
理があり、酸化塔抜き出し量を常に最大SO2負荷に設
定して初めて可能となったものである。
In other words, in order to cope with rapid SO2 load fluctuations, it is impossible to control the amount of CaCO3 added by using the basicity of the neutralization system as shown in Japanese Patent Publication No. 15835/1983, and the amount of CaCO3 extracted from the oxidation tower must be constantly adjusted. This was only possible after setting the maximum SO2 load.

また、中和槽6への炭酸カルシウムパイプの装入は、中
和槽出口の塩基度を塩基度計BMによって計測してこれ
に応じて制御弁■によってコントロールするようにした
Furthermore, the charging of the calcium carbonate pipe into the neutralization tank 6 was controlled by the control valve ① by measuring the basicity at the outlet of the neutralization tank using a basicity meter BM.

これにより急激なS02負荷変動があっても、吸収塔出
口ガス中のSO2濃度はあまり変化しないようになった
As a result, even if there is a sudden change in the S02 load, the SO2 concentration in the gas at the outlet of the absorption tower does not change much.

遠心分離機8は、バスケット内径55インチの立型遠心
分離機が2台、48インチが2台、計4台設置されてお
り、1バッチ当りの石膏分離能力は、55インチが40
0@、48インチが300に7となっており、常時2台
運転としている。
The centrifuge 8 has a total of four centrifuges, two with a 55-inch basket inner diameter and two with a 48-inch basket, and the gypsum separation capacity per batch is 40 centrifuges with a 55-inch basket.
0 @, 48 inch is 7 in 300, and two units are always in operation.

ここで石膏は水分10〜13oI)に脱水される。Here, the gypsum is dehydrated to a moisture content of 10 to 13 oI).

本発明は完全クローズドシステムであるが、製品石膏に
混入したアルミニウム分は補充しなげればならない。
Although the present invention is a completely closed system, the aluminum content mixed into the product gypsum must be replenished.

この補充アルミニウム分を製錬所で創製されるアンモニ
ウム明パン中のアルミニウムを使用することができる。
The aluminum in the ammonium bright bread produced in the smelter can be used for this supplementary aluminum content.

アンモニウム明パンからアルミニウムイオンとアンモニ
ウムイオンの分離工程を次に示す。
The process of separating aluminum ions and ammonium ions from ammonium bread is shown below.

アンモニウム明パン結晶を溶解槽10で水に溶解し、そ
の溶解液を中和槽11において炭酸カルシウムにて中和
し、水酸化アルミニウムの沈殿を生成させる。
Ammonium bright bread crystals are dissolved in water in a dissolution tank 10, and the solution is neutralized with calcium carbonate in a neutralization tank 11 to form a precipitate of aluminum hydroxide.

そして沈殿槽12にて固液分離した後、上澄液は鉱水処
理場に送られる。
After solid-liquid separation in the settling tank 12, the supernatant liquid is sent to a mineral water treatment plant.

中和工程で生成した水酸化アルミニウムは、中和槽6に
送られ液中の硫酸イオンと反応し硫酸アルミニウムとな
り、これに所定の炭酸カルシウムを加え塩基性硫酸アル
ミニウム溶液とする。
The aluminum hydroxide produced in the neutralization step is sent to the neutralization tank 6 and reacts with sulfate ions in the liquid to become aluminum sulfate, and a predetermined amount of calcium carbonate is added to this to form a basic aluminum sulfate solution.

上記の各工程を化学反応式で示すと次の様になる。The chemical reaction formula for each of the above steps is as follows.

このアンモニウム明パンは脱硫率および製品石膏の品質
にも何ら問題はないことがわかった。
It was found that this ammonium bright bread had no problems with the desulfurization rate or the quality of the product gypsum.

操業成績の一例を第2図に示すが、本発明による塩基度
の適正な管理と定量抜き出しコントロール方式により、
急激なガス量、およびSO2濃度の変化があっても脱硫
率はほぼ一定となっており、良好な成績が得られている
An example of the operational results is shown in Figure 2, which shows that due to the proper management of basicity and quantitative extraction control method according to the present invention,
Even with sudden changes in the gas amount and SO2 concentration, the desulfurization rate remained almost constant, and good results were obtained.

産出される石膏の分析例、および粒度分布を第1表およ
び第2表に示すが、品質よくスタートして以来順調な操
業を続けることができた。
Tables 1 and 2 show examples of analysis and particle size distribution of the gypsum produced, and since the plant started with good quality, it has been able to continue smooth operations.

操業成績(1ケ月間の平均) 処理ガス量 117000 Nm3/ Hr入ロガス
中のSO21450卿 出ロガス中のSO220pp[l 脱 硫 率 98.6多
Operation results (average for one month) Processed gas amount 117,000 Nm3/Hr SO2 in the log gas containing 1,450 SO2 in the log gas exiting 20 pp [l] Desulfurization rate 98.6

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の実施例を示すフローシート、第2図
は本発明法の実施例の成績図である。 1.2・・・・・・吸収塔、5・・・・・・酸化塔、6
・・・・・・中和槽、7・・・・・・シックナー 8・
・・・・・遠心分離機。
FIG. 1 is a flow sheet showing an example of the method of the present invention, and FIG. 2 is a results chart of an example of the method of the present invention. 1.2... Absorption tower, 5... Oxidation tower, 6
... Neutralization tank, 7 ... Thickener 8.
·····centrifuge.

Claims (1)

【特許請求の範囲】 1 SO2含有排ガスと塩基性硫酸アルミニウム水溶液
とを気液接触させて気相中のSO2を液相に吸収させる
吸収工程と;吸収液中の亜硫酸イオンを硫酸イオンに液
相酸化させる酸化工程と;酸化工程を経た液を吸収工程
に循環すると共に、この酸化工程を経た液の一部を排ガ
ス中のSO2負荷の変動とは無関係に最大SO2負荷に
合わせて一定量連続的に抜き出す工程と;この抜き出し
液に炭酸カルシウムを加えて中和する工程と;この中和
工程を出た液の塩基度により中和工程で添加する炭酸カ
ルシウム量を制御する工程と;中和工程を経た液をシッ
クナーに導きそのオーバーフローを前記吸収および酸化
工程の循環液に合液させかつそのアンダーフローの少な
くとも1部を中和工程に繰返す工程と;からなるSO2
濃度の変動が激しい排煙の脱硫法。 2 SO2含有排ガスと塩基性硫酸アルミニウム水溶液
とを気液接触させて気相中のSO2を液相に吸収させる
吸収工程と;吸収液中の亜硫酸イオンを硫酸イオンに液
相酸化させる酸化工程と;酸化工程を経た液を吸収工程
に循環すると共に、この酸化工程を経た液の一部を排ガ
ス中のSO2負荷の変動とは無関係に最大SO2負荷に
合わせて一定量連続的に抜き出す工程と;この抜き出し
液に炭酸カルシウムを加えて中和する工程と;この中和
工程を出た液の塩基度により中和工程で添加する炭酸カ
ルシウム量を制御する工程と;アンモニウム明パンを溶
解および中和して水酸化アルミニウムを生成させ、これ
を前記酸化液中の硫酸イオンと反応させて硫酸アルミニ
ウムを生成させ、これを炭酸カルシウムと反応させて系
内袖充用塩基性硫酸アルミニウム水溶液を形成させる工
程と;中和工程を経た液をシックナーに導きそのオーバ
ーフローを前記吸収および酸化工程の循環液に合液させ
かつそのアンダーフローの少なくとも1部を中和工程に
繰返す工程と;からなるSO2濃度の変動が激しい排煙
の脱硫法。
[Claims] 1. An absorption step in which SO2-containing exhaust gas and a basic aluminum sulfate aqueous solution are brought into gas-liquid contact and SO2 in the gas phase is absorbed into the liquid phase; An oxidation step in which the liquid that has undergone the oxidation step is circulated to the absorption step, and a portion of the liquid that has undergone the oxidation step is continuously pumped in a constant amount to match the maximum SO2 load, regardless of fluctuations in the SO2 load in the exhaust gas. A step of adding calcium carbonate to the extracted liquid to neutralize it; A step of controlling the amount of calcium carbonate added in the neutralization step depending on the basicity of the liquid exiting the neutralization step; a neutralization step a step of introducing the liquid through a thickener and combining the overflow with the circulating liquid of the absorption and oxidation step, and repeating at least a part of the underflow to the neutralization step;
Desulfurization method for flue gas whose concentration fluctuates widely. 2. An absorption step in which SO2-containing exhaust gas and a basic aluminum sulfate aqueous solution are brought into gas-liquid contact and SO2 in the gas phase is absorbed into the liquid phase; An oxidation step in which sulfite ions in the absorption liquid are oxidized to sulfate ions in the liquid phase; A step in which the liquid that has undergone the oxidation process is circulated to the absorption process, and a part of the liquid that has undergone the oxidation process is continuously extracted in a fixed amount in accordance with the maximum SO2 load, regardless of fluctuations in the SO2 load in the exhaust gas; A process of adding calcium carbonate to the extracted liquid to neutralize it; a process of controlling the amount of calcium carbonate added in the neutralization process depending on the basicity of the liquid exiting the neutralization process; and a process of dissolving and neutralizing the ammonium light bread. producing aluminum hydroxide, reacting this with sulfate ions in the oxidizing solution to produce aluminum sulfate, and reacting this with calcium carbonate to form a basic aluminum sulfate aqueous solution for refilling the system; a step in which the liquid that has undergone the neutralization process is led to a thickener, the overflow is combined with the circulating liquid from the absorption and oxidation process, and at least a part of the underflow is repeated in the neutralization process; the SO2 concentration fluctuates rapidly; Flue gas desulfurization method.
JP55041003A 1980-03-29 1980-03-29 Desulfurization method for flue gas with large fluctuations in SO↓2 concentration Expired JPS5852685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55041003A JPS5852685B2 (en) 1980-03-29 1980-03-29 Desulfurization method for flue gas with large fluctuations in SO↓2 concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55041003A JPS5852685B2 (en) 1980-03-29 1980-03-29 Desulfurization method for flue gas with large fluctuations in SO↓2 concentration

Publications (2)

Publication Number Publication Date
JPS56136626A JPS56136626A (en) 1981-10-26
JPS5852685B2 true JPS5852685B2 (en) 1983-11-24

Family

ID=12596218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55041003A Expired JPS5852685B2 (en) 1980-03-29 1980-03-29 Desulfurization method for flue gas with large fluctuations in SO↓2 concentration

Country Status (1)

Country Link
JP (1) JPS5852685B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242378B2 (en) * 2019-03-28 2023-03-20 三菱重工業株式会社 Separation and recovery system and separation and recovery method
CN114591761A (en) * 2022-03-17 2022-06-07 鄂尔多斯职业学院 Method for preparing hydrogen by coal gasification and acid gas removing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315835A (en) * 1976-07-28 1978-02-14 Iwatsu Electric Co Ltd Magnetic latent image recording and its controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315835A (en) * 1976-07-28 1978-02-14 Iwatsu Electric Co Ltd Magnetic latent image recording and its controller

Also Published As

Publication number Publication date
JPS56136626A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
DK172817B1 (en) Process for desulphurizing flue gas by the wet method
US4690807A (en) Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate
EP0414094B1 (en) Flue gas desulfurization
US2813000A (en) Removal of hydrogen fluoride from gases
CN1057712C (en) Magnesium-enhanced sulfur dioxide scrubbing with gypsum formation
US3966877A (en) Method of processing of waste gases
CN112299386A (en) Method for removing sulfate radical in wet-process dilute phosphoric acid by using phosphate slurry
US4040803A (en) Wet waste flue gas desulfurizing process using lime as absorbent
FI62002B (en) REFERENCE FITTING FOR SEPARATION OF A QUANTIFIED HYDRAULIC ACID WITH A GASER
CZ56196A3 (en) Desulfurizing process of exhausted waste gaseous products
JPS5852685B2 (en) Desulfurization method for flue gas with large fluctuations in SO↓2 concentration
AU720867B2 (en) A method and apparatus for removing gaseous elementary mercury from a gas
CA1214310A (en) Method of producing calcium sulfate dihydrate in connection with the desulfurization of flue gases
US4290998A (en) Washing apparatus in chlorine dioxide production
JPS62193630A (en) Method and equipment for wet stack-gas desulfurization
CA1117731A (en) Washing procedure in chlorine dioxide production
JP3132641B2 (en) Gypsum production method
US4411875A (en) Dual alkali process for combustion gas cleaning
JPS62225226A (en) Wet stack-gas desulfurization facility
JPS6244734Y2 (en)
CN211133540U (en) Novel ammonia process desulfurization device
CN218232124U (en) High-concentration waste acid recycling process device
JP2719322B2 (en) Exhaust gas desulfurization method
CN207659109U (en) A kind of device improving magnesium sulfate concentration
JPS5820888B2 (en) Higasutyuuno Iousankabutuno Shiyorihohou