JPS5852475A - Method and device for monitoring and measuring thin film in thin film former - Google Patents

Method and device for monitoring and measuring thin film in thin film former

Info

Publication number
JPS5852475A
JPS5852475A JP14945481A JP14945481A JPS5852475A JP S5852475 A JPS5852475 A JP S5852475A JP 14945481 A JP14945481 A JP 14945481A JP 14945481 A JP14945481 A JP 14945481A JP S5852475 A JPS5852475 A JP S5852475A
Authority
JP
Japan
Prior art keywords
thin film
light
monitoring
substrate
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14945481A
Other languages
Japanese (ja)
Inventor
Akihiko Toku
昭彦 悳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nihon Shinku Gijutsu KK filed Critical Ulvac Inc
Priority to JP14945481A priority Critical patent/JPS5852475A/en
Publication of JPS5852475A publication Critical patent/JPS5852475A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To control the optical characteristics of thin films efficiently in the stage of forming said films by vacuum deposition on the surface of a substrate while transferring the substrate with respect to vapor sources and by measuring the spectral characteristics of the the films simultaneously with respect to many wavelengths which include or do not include specific wavelengths. CONSTITUTION:The light from a light projector 23 of an optical monitoring device 34 is reflected by a semitransparent mirror 24, is reflected by the thin film on a substrate 14 and passes through the window 26 and the mirror 24 backward. This light is split to three luminous fluxes by semitransparent mirrors 35a, b and a reflecting mirror 5c. The split luminous fluxes pass through narrow band filters 36a-c of lambdaa-c transmission wavelengths respectively and enter photodetectors 25a-c. After the output signals from the photodetectors 25a-c are amplified with amplifiers 37a-c for supervising of film thicknesses, these signals are inputted to a multipens recorder 29 for displaying the outputs for monitoring the film thicknesses. The recorder 29 constitutes the monitoring part for film thicknesses together with a control board 28, and in said monitoring part, monitoring and controlling are accomplished by conventional methods.

Description

【発明の詳細な説明】 この発明に、基体を蒸発源に対して移送させて基体表面
上に真空蒸NKよって薄膜を形成する際に特定波長の光
についての薄膜の反射率またに透過率の変化に基いて薄
膜の膜厚を監視する方法に関する。この発明はまた。蒸
発源およびこれに対して基体を移送させる機構を真空槽
の中に配置して移送中の基体表面上に真空蒸着によって
薄膜を形成できるようにした薄膜形成装置に、投光器か
ら光を薄膜に投射しこれを透過したまたはこれで反射さ
れた光から膜厚監視用の特定波長の光を抜き出して受光
器にいれるようにした光学監視器を付属した装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION In this invention, when a substrate is transferred to an evaporation source and a thin film is formed on the surface of the substrate by vacuum evaporation NK, the reflectance or transmittance of the thin film for light of a specific wavelength is determined. The present invention relates to a method for monitoring the thickness of a thin film based on changes. This invention also. Light is projected onto the thin film from a projector into a thin film forming apparatus in which an evaporation source and a mechanism for transferring the substrate to the source are placed in a vacuum chamber so that a thin film can be formed by vacuum evaporation on the surface of the substrate being transferred. The present invention also relates to a device equipped with an optical monitor that extracts light of a specific wavelength for film thickness monitoring from the light transmitted through or reflected by the optical monitor and inputs it into a light receiver.

従来のかかる方法および装置の例について第1図によっ
て略示すれば、第1図において10ij薄膜形成装置の
真空槽を示し、これの内部下方には、蒸着物質入および
Bをそれぞれ収容し電気加熱器11aおよび11bによ
ってそれぞれ加熱できる蒸発源12aおよび12bが配
置される・蒸発源12aおよび12 bij開閉可能の
シャッタ13mおよび13bをそれぞれ備える。真空槽
10の内部上方には長尺の基体14のための移送機構1
5が配備される。移送機構15において基体14け、両
巻きロール16と17の間で案内ロール1日、19、冷
却回転筒20、案内ロール21.22′を経て往復移送
される。基体14が1方向にすなわち右へ向って移送さ
れるときには蒸発源12mが付勢されて(またけシャッ
タ15aが開かれて)蒸着物質Aの薄膜が基体14の表
面上に蒸着形成され、基体14が他方向にすなわち左へ
向って移送されるときには蒸発源12bが付勢されて(
またにシャッタ13bが開かれて)蒸着物質Bの薄膜が
蒸着形成され、かくして基体14の往復移送によって蒸
着物質AとBの多層膜が形成される。
An example of such a conventional method and apparatus is schematically illustrated in FIG. 1. FIG. 1 shows a vacuum chamber of a 10ij thin film forming apparatus, and the lower part of the vacuum chamber contains vapor deposition substances and B, and is electrically heated. Evaporation sources 12a and 12b, which can be heated by vessels 11a and 11b, respectively, are arranged.Evaporation sources 12a and 12 bij are provided with shutters 13m and 13b, which can be opened and closed, respectively. Inside and above the vacuum chamber 10, there is a transfer mechanism 1 for a long substrate 14.
5 will be deployed. In the transfer mechanism 15, the substrate 14 is transferred back and forth between the two winding rolls 16 and 17 via guide rolls 19, 20, and guide rolls 21 and 22'. When the substrate 14 is transferred in one direction, that is, to the right, the evaporation source 12m is energized (the straddle shutter 15a is opened), and a thin film of the vapor deposition substance A is vapor-deposited on the surface of the substrate 14. 14 is transferred in the other direction, that is, to the left, the evaporation source 12b is energized (
Further, the shutter 13b is opened) to deposit a thin film of the deposition material B, and thus a multilayer film of the deposition materials A and B is formed by reciprocating the substrate 14.

上述した薄膜形成装置す力わち真空蒸着装置は2個の光
学監視器22aおよび22bを有し、これらは投光器2
3、半透明鏡2Aおよび受光器25を備える。投光器2
3から放射される光は半透明gp2aで反射され、真空
槽10に設けられた監視窓26f通過したのちに基体1
4上の薄膜で反射され、監視窓26を逆に通過したのち
に半透明鏡24を透過して受光器25にはいる。受光器
25はこれKFsいる光すなわち反射された光の強弱に
応じて従って薄膜の反射率に応じて強弱する出力信号を
発する自上述の構成の代)K受光器25は、薄膜を透過
した光を受けこの強弱に応じて従って薄膜の透過率に応
じて強弱する出力信号?発生するように構成配備されて
もよい。
The thin film forming apparatus described above, ie, the vacuum evaporation apparatus, has two optical monitors 22a and 22b, which are connected to the light projector 2.
3. Equipped with a semi-transparent mirror 2A and a light receiver 25. Floodlight 2
The light emitted from the substrate 1 is reflected by the translucent GP 2a, passes through the monitoring window 26f provided in the vacuum chamber 10, and then reaches the substrate 1.
The light is reflected by the thin film on 4, passes through the monitoring window 26 in the opposite direction, and then passes through the semi-transparent mirror 24 and enters the light receiver 25. The photoreceiver 25 has the above-mentioned configuration, which outputs an output signal that varies in strength depending on the intensity of the KFs light, that is, the reflected light, and thus depending on the reflectance of the thin film. Does the output signal become stronger or weaker depending on the strength of the received signal and therefore the transmittance of the thin film? The configuration may be arranged to occur.

図示の例において薄膜は冷却回転筒20の区域において
基体14の表面上に形成され、基体14が右へ移行する
ときにはかくして形成された薄膜に対して右側の光学監
視器22bによる監視が行なわれる。基体14が左へ移
行するときKH左側の光学監視器22mが作動される。
In the illustrated example, a thin film is formed on the surface of the base body 14 in the area of the cooling rotating barrel 20, and as the base body 14 moves to the right, the thin film thus formed is monitored by the right-hand optical monitor 22b. When the base body 14 moves to the left, the optical monitor 22m on the left side of the KH is activated.

両投光器25からの出力信号は増幅器27でそれぞれ増
幅されたのちに、多イン記録aまたは表示器など28と
ン二コンビスーメのような自動制御回路を必要に応じ付
属する制御操作盤29とに入力する。制御操作盤29t
Cはさらk、回転筒200回転速度の制御部30、圧力
などの検出部31、蒸発源121.12bの電気加熱器
11a。
The output signals from both floodlights 25 are each amplified by an amplifier 27, and then inputted to an attached control operation panel 29 and an automatic control circuit such as a multi-input recorder or display 28 and a two-way combination system as required. do. Control operation panel 29t
C is further k, a controller 30 for controlling the rotation speed of the rotating cylinder 200, a detecting unit 31 for detecting pressure, etc., and an electric heater 11a of the evaporation source 121.12b.

11bの電力制御部32、および蒸発速度のモニタ部3
3などが接続される・ 以下、従来の技術およびこの発明の説明において主とし
て光学監視器22m、22btj反射光について従って
反射率について監視するとして述べられるが、この代シ
に透過光について従って透過率について監視することも
全く同様にして可能である・ 上述した従来のものにおいては光学監視器22によって
反射率(透i*)を監視して膜厚を制御することが行な
われるが、そのためKFi一般に、薄膜%に誘電体薄膜
の反射率(または透過率)Rが入射する光の波長の1/
4毎に極値となルこの波長の1/2を周期とする光学的
膜厚nd(nH薄膜の屈折率、dは実際の厚さ)の周期
関数であることが利用される。この点を考慮して所望の
膜厚に対応する光学的膜厚nd oに対して ndo =j4/J (jzl、2.5−−−)を充す
ような波長λ。が特定波長として選ばれる。
11b power control section 32 and evaporation rate monitor section 3
Hereinafter, in the description of the prior art and the present invention, it will be mainly described that the reflected light of the optical monitors 22m and 22btj is monitored, and accordingly, the reflectance is monitored. Monitoring can also be done in exactly the same way.In the conventional system described above, the reflectance (transmission i*) is monitored by the optical monitor 22 to control the film thickness. The reflectance (or transmittance) R of the dielectric thin film is 1/1/ of the wavelength of the incident light in the thin film%.
It is utilized that it is a periodic function of the optical film thickness nd (the refractive index of the nH thin film, d is the actual thickness) with a period of 1/2 of this wavelength. Taking this point into consideration, the wavelength λ is such that ndo = j4/J (jzl, 2.5---) is satisfied for the optical film thickness ndo corresponding to the desired film thickness. is selected as the specific wavelength.

薄膜の厚さが0から次第に増大するような立上ヤ部につ
いて監視を行なうようKすればこの際に反射率(透過率
)Rが増減して第j番目の極値を取ったときK (j 
m 1の場合KViRが最初の極値を取ったときK)光
学的膜厚が所望の値1xd□ Kなる・その後はこの極
値を維持するように膜厚が制御される。
If K monitors the rising part where the thickness of the thin film gradually increases from 0, then when the reflectance (transmittance) R increases or decreases and takes the jth extreme value, K ( j
In the case of m 1, when KViR takes the first extreme value, K) the optical film thickness reaches a desired value of 1xd□K. After that, the film thickness is controlled so as to maintain this extreme value.

しかしながらこの従来の技術によれば、得ようとする特
性特に光学的特性が膜厚または光学的膜厚だけによって
決定されかつ特定波長すなわち監視波長λ0 の光の反
射率(透過率)Rが上述した場合のように判然とした極
値を有する場合に限って所望の特性の薄膜が形成できる
。このことによって従来の技術は例えば174波長交互
多層膜のような限られた光学膜の形成だけに適する・ま
た、一般の反射防止膜、選択吸収膜、不均質膜などの光
学的特性は一般に膜厚以外に膜組成、膜組成分布、反応
蒸着の際の反応気体の分圧と流量、蒸着物質の蒸発速度
などの要因によって著しく変化するので、特定波長によ
る反射率(透過率)だけを監視しても所望の光学的特性
を得ることは困難である。
However, according to this conventional technique, the characteristics to be obtained, especially the optical characteristics, are determined only by the film thickness or optical film thickness, and the reflectance (transmittance) R of light at a specific wavelength, that is, the monitoring wavelength λ0, is determined by the above-mentioned A thin film with desired characteristics can be formed only when it has a clear extreme value, such as in the case. For this reason, the conventional technology is suitable only for forming a limited number of optical films, such as a 174-wavelength alternating multilayer film.In addition, the optical properties of general antireflection films, selective absorption films, inhomogeneous films, etc. In addition to thickness, it varies significantly depending on factors such as film composition, film composition distribution, partial pressure and flow rate of the reaction gas during reactive deposition, and evaporation rate of the deposited material, so it is important to monitor only the reflectance (transmittance) at a specific wavelength. However, it is difficult to obtain desired optical properties.

さらに従来の技術によれば形成された薄膜の分光特性を
求めるためには形成された長尺の薄膜がら試料を切〕取
ることのような破壊試験が必要である。
Furthermore, according to the prior art, in order to determine the spectral characteristics of the formed thin film, a destructive test such as cutting a sample from the formed long thin film is required.

よって、この発明は上述したような従来の欠点を除去す
ることを目的とする・ この目的の達成のためこの発明によれば、基体を蒸発源
に対して移送させて基体表面上に真空蒸着によって薄膜
を形成する際に%定波長の光にっbての薄膜の反射率ま
たは透過率の変化に基すて薄膜の膜厚を監視する方法に
おいて、前記特定波長を含むまたは含まない多くの波長
について薄膜の分光特性を同時に測定してこれによって
薄膜の光学的特性を制御できるようにしたことを特徴と
1111 する薄膜形成装置における薄膜監視測定方法が提供され
るー また上記方法を達成する装置の1例として、蒸発源およ
びこれに対して基体を移送させる機構を真空槽の中に配
置して移送中の基体表面上に真空蒸着によって薄膜を形
成できるようにした薄膜形成装置に、投光器から光を薄
膜に投射しこれを透過したまたはこれで反射された光か
ら膜厚監視用の特定波長の光を抜き出して1つまたは多
くの受光器にいれるようにした光学監視器を付属したも
のにシいて、前記の1つまたは多くの受光器からの出力
信号を膜厚監視部および分光特性測定部の双方に入力で
きるようにしたことを特徴とする薄膜形成装置における
薄膜監視測定装置が提供される・ 別の例によれば蒸発源およびこれに対して基体を移送さ
せる機構を真空槽の中に配置して移送中の基体表面上に
真空蒸着によって薄膜を形成できるようにした薄膜形成
装置に%投光器から光を薄膜に投射しこれ全透過したま
たはこれで反射された光から膜厚監視用の特定波長の光
を抜き出して1つtたは多くの受光器にいれるようにし
九光学監視器を付属したものにおいて、前記の透過した
または反射された光力・ら前記%定波長以外の波長の光
を抜き出して前記の1つまたに多くの受光器以外の別の
1つまたは多くの受光器にいれることができるように光
学監視器を構成配置し、特定波長の光の受光器からの出
力信号および別の受光器からの出力信号を膜厚監視部お
よび分光特性測定部またはそのいずれかに入力できるよ
うにしたことを特徴とする薄膜形成装置における薄膜監
視測定装置が提供される。
Therefore, it is an object of the present invention to eliminate the above-mentioned drawbacks of the prior art. To achieve this object, according to the present invention, a substrate is transferred to an evaporation source, and a vacuum evaporation process is performed on the surface of the substrate. A method for monitoring the film thickness of a thin film based on a change in reflectance or transmittance of the thin film with respect to light of a constant wavelength when forming a thin film, wherein a number of wavelengths including or not including the specific wavelength are used. A method for monitoring and measuring a thin film in a thin film forming apparatus is provided, which is characterized in that the optical properties of the thin film can be controlled by simultaneously measuring the spectral characteristics of the thin film. As an example, light from a projector is applied to a thin film forming apparatus in which an evaporation source and a mechanism for transferring a substrate to the source are placed in a vacuum chamber so that a thin film can be formed by vacuum deposition on the surface of the substrate being transferred. It is equipped with an optical monitor that extracts light of a specific wavelength for film thickness monitoring from the light that is projected onto the thin film and transmitted through or reflected from the thin film and inputs it into one or more receivers. There is provided a thin film monitoring and measuring device for a thin film forming apparatus, characterized in that output signals from one or more of the light receivers described above can be input to both a film thickness monitoring section and a spectral characteristic measuring section. Another example is a thin film forming apparatus in which an evaporation source and a mechanism for transferring a substrate to the source are placed in a vacuum chamber so that a thin film can be formed by vacuum deposition on the surface of the substrate being transferred. Projects light onto a thin film, extracts light of a specific wavelength for film thickness monitoring from the light that is completely transmitted through the thin film, and sends it to one or many receivers.Nine optical monitors are included. in which light having a wavelength other than the constant wavelength is extracted from the transmitted or reflected light power and transmitted to another one or more receivers other than the one or more receivers. The optical monitor is configured and arranged so that the optical monitor can be input into the film thickness monitoring unit and/or the spectral characteristic measuring unit. There is provided a thin film monitoring and measuring device for a thin film forming apparatus, which is characterized in that it is capable of:

以下図面を参照しながらこの発明の実施例について詳述
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

この発明の実施例によれば光学監視器およびこれに関連
した部材を除き第1図の従来の装置と同様にS+成され
作動する装置が使用できる・第2図に示す実施例におい
て光学監視器34の投光器23から放射される光は半透
明fi24で反射され、真空槽に設けられた監視窓26
を通過したのちに基体14上の薄膜で反射され、監視窓
26を逆に通過して(放射された光が薄膜を透過するよ
うにしてもよい)%半透明鈍24を透過する。半透明鏡
2At−透過した光は半透明鏡35m、35bおよび反
射鏡55cKよって3つの光束処分けられたのちに通過
波長がλa、λbおよびλCの狭帯域フィルタ36m、
56bおよび56eをそれぞれ通過して受光器25m、
25bおよび25cKijいる。波長λa、λbおよび
λCの光束の強度にそれぞれ対応する受光器25m、2
5bおよび25Cからの出力信号は1方においては膜厚
監視用増幅器37m、37bおよび37eでそれぞれ増
幅されたのちに膜厚監視出力表示用多ペン記録器または
表示器29と必要に応じ自動制御回路を付属する制御操
作盤28とに入力する・記i&lSまたは表示器29は
制御操作盤28の1部と共に膜厚璧視部を構成し、かつ
各波長λa、λbyよびλcKつbて増幅器37m、3
7bおよび37eで増幅され九出力信号(ロ)の時間(
1)豹変化を表示また灯記鍮する。この膜厚監視部にお
いて従来の方法と同様にして膜厚の監視シよび制御が達
成される・前述した受光器25a、2Sbおよび25c
からの出力信号は他方において分光特性測定用増幅器3
8a、38bおよび38cでそれぞれ増幅されたのち処
分光特性表示用多ペン記録器または表示器39と前記の
制御操作盤28と九人力する。
According to an embodiment of the invention, an apparatus can be used which is S+ constructed and operates in the same manner as the conventional apparatus of FIG. 1 except for the optical monitor and related components.In the embodiment shown in FIG. The light emitted from the floodlight 23 of 34 is reflected by the semi-transparent fi 24, and is reflected by the monitoring window 26 provided in the vacuum chamber.
The emitted light is reflected by a thin film on the substrate 14, passes back through a monitoring window 26 (the emitted light may also be transmitted through the thin film), and is transmitted through a semi-transparent obtuse 24. Semi-transparent mirror 2At - The transmitted light is divided into three beams by semi-transparent mirrors 35m, 35b and reflecting mirror 55cK, and then passed through a narrow band filter 36m whose passing wavelengths are λa, λb and λC.
56b and 56e respectively to the receiver 25m,
There are 25b and 25cKij. Receivers 25m and 2 correspond to the intensities of the light beams of wavelengths λa, λb and λC, respectively.
The output signals from 5b and 25C are amplified by film thickness monitoring amplifiers 37m, 37b and 37e, respectively, and then sent to a multi-pen recorder or display 29 for film thickness monitoring output and an automatic control circuit if necessary. The display 29 and a part of the control panel 28 constitute a film thickness viewing section, and each wavelength λa, λby, and λcK are input into an amplifier 37m, 3
7b and 37e amplified and the time of the 9 output signal (b) (
1) Display the leopard change and also make a lamp. In this film thickness monitoring section, film thickness monitoring and control are achieved in the same manner as in the conventional method.
On the other hand, the output signal from the spectral characteristic measurement amplifier 3
After being amplified by 8a, 38b and 38c, the light is processed by a multi-pen recorder or display 39 for displaying light characteristics and the aforementioned control panel 28 by nine people.

記録器または表示器39は制御操作盤28の対応部分と
共に分光特性測定部を構成し・ρ為つ各波長λ&、λb
およびλCにつbて増幅器38&、38bおよび38c
で増幅された出力信号側の時間σ)豹変化を時間軸σ)
をずらして配録または表示する。
The recorder or display 39 constitutes a spectral characteristic measuring section together with the corresponding part of the control panel 28.
and λC for amplifiers 38&, 38b and 38c
The output signal side amplified by time σ) changes on the time axis σ)
Distribute or display in a staggered manner.

分光特性測定用増幅器!181.38bおよび38eの
増幅率Mけ例えば次のように設定される・分光透過率の
測定の場合には、基体14なしの状態でのまたは基体の
1部に孔を設けてこれを光が通過するようにし九場合の
それぞれの波長λ轟、λb、λCについての増幅器38
為、38b、”38cの出力が100%になるように増
幅率Mが設定され、戒いは分光透過率が知られている基
体を使用するときに各波長についての増幅器出力水準が
基体の分光透過率に適合するように増幅率Mが設定され
る0分光反射率の測定の場合1も分光反射率が知られて
hる基体を使用するときに各波長についての増幅率出力
水準が基体の分光反射率に適合するよう罠増幅車Mが設
定され、戒いは基体に対してすべての波長につ込ての信
号が同一の出力水準例えば1001になるようにして増
S車Mが設定されこれによる測定値が換算される。さら
に基体の分光透過率または分光反射率が未知の場合にこ
れら分光特性が既知の付属基体を接続しこの付属基体に
つ込て前述したよう処して増幅率Mを設定することも可
能である― 上述のような構成によれば、基体上に形成された単層ま
た多層の薄膜につ−て求め九膜厚監視用波長および分光
特性測定用波長(これは上述した第2図の実施例では一
致しているが、後段で説明する第3図の実施例では一致
しまたは相異っている、また完全に相異っていてもよい
)の出力信号と表示に基いて蒸発源(電気加熱器)の入
力、基体の移送速度および圧力などを制御するととによ
って所望の光学的特性を有する薄膜が確実に形成できる
Amplifier for measuring spectral characteristics! 181. The amplification factor M of 38b and 38e is set, for example, as follows: - In the case of measuring spectral transmittance, the substrate 14 may be measured without the substrate 14 or by providing a hole in a part of the substrate and exposing it to light. Amplifiers 38 for each of the wavelengths λ, λb, λC
Therefore, the amplification factor M is set so that the output of 38b and 38c becomes 100%, and the precept is that when using a substrate with known spectral transmittance, the amplifier output level for each wavelength is equal to the spectral spectral value of the substrate. When measuring spectral reflectance, the amplification factor M is set to match the transmittance.1 When using a substrate with known spectral reflectance, the amplification factor output level for each wavelength is equal to that of the substrate. The trap amplifying wheel M is set to match the spectral reflectance, and the precept is to set the S amplifying wheel M so that the signal for all wavelengths to the substrate has the same output level, for example, 1001. The measured value is converted.Furthermore, if the spectral transmittance or spectral reflectance of the substrate is unknown, an attached substrate with known spectral characteristics is connected and the amplification factor M It is also possible to set the wavelength for monitoring the film thickness and the wavelength for measuring the spectral characteristics (this is In the embodiment shown in FIG. 2 described above, the output signals match, but in the embodiment shown in FIG. By controlling the input of the evaporation source (electric heater), the transfer speed of the substrate, the pressure, etc. based on the indication, a thin film having desired optical properties can be reliably formed.

第2図の実施例でF′i膜厚監視波長と分光特性測定波
長とが一致しているが、この実施例を変形してこれら両
波長が相異なるようにすることもでき部分的に一致する
ようにすることもできることは明らかである・ 第2図に示した実施例では各波長の光が連続的に受光器
にribるようになってhるが、各波長に対する光が順
次選別または走査されるようにすることもできる。その
ような実施例は第3図に示される。この第3図において
、第2図の実施例の場合と同様にして半透明鏡24を通
過した光に半透明@ 35 uおよび反射鏡35vlC
よって2つの光束UおよびvK分割される一光束uti
半透明鏡40a、JOb、40cおよび反射鏡40dに
よって4つの光束a% b−cudに分割され走査板4
1を通過したのちに通過波長がそれぞれλ暴・λb、λ
C1λd である狭帯域フィルタ36g、36b、  
36c、36dをそれぞれ通過し、反射鏡42mおよび
半透明鏡KA2b、42e、42dによって1つの光路
を通るように集束されたのちに可視光用の第1受光器2
5uにはいる。tた光束Vは半透明鏡406.40f、
JDg>jび反射@40 hKよって4つの光束e、f
、g、hK分割され走査板41を通過したのちに通過波
長がそれぞれλ。、λf、λg、λhである狭帯域フィ
ルタ56e、36f、56g、56hをそれぞれ通過し
、反射鏡42eおよび半透明鏡42f% 42g、42
hによって1つの光路を通るように集束されたのちに赤
外光用の第2受光器25vtCtlいる。
In the embodiment shown in Fig. 2, the F'i film thickness monitoring wavelength and the spectral characteristic measurement wavelength match, but this embodiment can be modified so that these two wavelengths are different, so that they partially match. It is clear that the embodiment shown in FIG. 2 allows the light of each wavelength to be successively delivered to the receiver, but the light for each wavelength is sequentially sorted or It can also be scanned. Such an embodiment is shown in FIG. In this FIG. 3, in the same manner as in the embodiment shown in FIG.
Therefore, one luminous flux uti divided into two luminous fluxes U and vK
The semi-transparent mirrors 40a, JOb, 40c and the reflecting mirror 40d divide the luminous flux into four beams a% b-cud, and the scanning plate 4
After passing through 1, the passing wavelengths are λb, λb, and λ, respectively.
C1λd narrowband filters 36g, 36b,
36c and 36d, respectively, and is focused to pass through one optical path by a reflecting mirror 42m and semitransparent mirrors KA2b, 42e, and 42d, and then the first visible light receiver 2
I'm in 5u. The luminous flux V t is a semi-transparent mirror 406.40f,
JDg>j and reflection @40 hK Therefore, four luminous fluxes e, f
, g, and hK, and after passing through the scanning plate 41, the passing wavelengths are λ. , λf, λg, λh, respectively.
After the light is focused to pass through one optical path by h, there is a second light receiver 25vtCtl for infrared light.

走査板41ij第4図および第5図に示されるように軸
43を中心として回転できる円板であつL900の円弧
に沿って延長する81!の溝孔44龜、44b、44c
、44d%44m、441.44gおよび44h1に有
し、これら溝孔は軸43の軸線から光束1、b 、(!
 s d s ・、f、gおよびhまでの距離に等しb
半径を有する。これら溝孔Fi走査板41が第4図の矢
印で系されるよう九回転するときに[1の1/4回転、
第2の1/4回転、第3の1/4回転および第4の1/
4回転で光束aと旬、bと1% Cとgおよびdとhだ
けがそれぞれ走査板41を通過するように配置される。
As shown in FIGS. 4 and 5, the scanning plate 41ij is a disc that can rotate around the axis 43 and extends along the arc of L900! Slot holes 44, 44b, 44c
, 44d%44m, 441.44g and 44h1, and these slots emit light beams 1,b, (!) from the axis of the shaft 43.
s d s ・, b equal to the distance to f, g and h
has a radius. When these slotted Fi scanning plates 41 rotate nine times as indicated by the arrows in FIG.
2nd 1/4 turn, 3rd 1/4 turn and 4th 1/4 turn
The scanning plate 41 is arranged so that only the light beams a and 1%, b and 1% C and g, and d and h pass through the scanning plate 41 in four rotations.

第5図の矢印はその走査方向を示す・従って走査板41
を回転させれば受光器25uKij波長λa、λb、λ
C2λd の光束a、b、c%dがこの順に繰返し到着
し、これと同期して受光器25マには波長λe。
The arrow in FIG. 5 indicates the scanning direction. Therefore, the scanning plate 41
By rotating the receiver 25uKij wavelengths λa, λb, λ
Luminous fluxes a, b, c%d of C2λd repeatedly arrive in this order, and in synchronization with this, the wavelength λe arrives at the light receiver 25.

λf、λg、λh の光束・、1% g、hがこの順に
繰返し到着する。
Luminous fluxes λf, λg, and λh arrive repeatedly in this order.

受光器25uからの出力信号は光源制御回路を含む増幅
器A5uで増幅され喪のちに、1方では膜厚監視用増幅
器37m、37bt−経て膜厚監食出力表示用多ペン記
録器または表示4529と自動制御回路を必要に応じ付
属する制御操作盤2Bとに入力でき、また他方では分光
特性測定用増幅器38畠、38b、38e、38dl−
経て分光特性表示用多(ン記録器または表示器39と制
御操作@28とに入力でき、さらに受光器25マからの
出力信号は光源制御回路を含む増@543マで増幅され
たのちに1方でij膜厚監視用増幅器37eシよび37
ft−経て膜厚監視出力表示用多イン記録器またFi表
示器29と制御操作盤28とにλカでき、また他方では
分光特性測定用増幅器58・、38f%38g、38h
を経て分光特性表示用多ペン記録atたは表示器39と
制御操作盤28とに入力できる。しがしながらかかる回
路部分には必lIK応じて走査板41の回転と同期して
動作する同期回路が含まれていて例えば光束aおよび・
に基づく増幅器25uおよび25マからの出力信号が送
られて来る時点では増幅器37&および58m並びに増
幅器38e1通った信号だけが表示また灯記帰されまた
制御対象となるような選択すなわち走査が行なわれる・
その他の光束に関しても同様である。増幅器38 m、
 38 b、  58 c、38d、38・、38f、
38g、38hの増幅率Mの設定方法は第2図の場合と
同様である。また第2図の実施例九ついて述べたと同様
の各糧の変型が容易Ki!l成できる。
The output signal from the photoreceiver 25u is amplified by an amplifier A5u including a light source control circuit, and then is sent to a multi-pen recorder or display 4529 for film thickness monitoring output via film thickness monitoring amplifiers 37m and 37bt. The automatic control circuit can be input to the attached control panel 2B as necessary, and on the other hand, the spectral characteristic measurement amplifiers 38, 38b, 38e, 38dl-
After that, the output signal from the optical receiver 25 can be inputted to the spectral characteristic display multi-recorder or display 39 and the control operation @28, and the output signal from the photoreceiver 25 is amplified by the amplifier @543 including the light source control circuit. On the other hand, the film thickness monitoring amplifiers 37e and 37
ft-, a multi-input recorder for film thickness monitoring output display, an Fi display 29 and a control operation panel 28, and an amplifier 58, 38f%, 38g, 38h for measuring spectral characteristics.
The data can be input to the multi-pen recorder for displaying spectral characteristics or to the display 39 and the control panel 28 via the . However, such a circuit part necessarily includes a synchronous circuit that operates in synchronization with the rotation of the scanning plate 41 according to IK, for example, the light flux a and...
At the time when the output signals from amplifiers 25u and 25ma are sent, selection or scanning is performed so that only the signals that have passed through amplifiers 37& and 58m and amplifier 38e1 are displayed or written back and become the control targets.
The same applies to other luminous fluxes. amplifier 38 m,
38 b, 58 c, 38d, 38・, 38f,
The method of setting the amplification factor M for 38g and 38h is the same as in the case of FIG. In addition, each food can be easily modified in the same way as described for Example 9 in FIG. I can make it.

この発明の方法および装置で採用できゐ膜厚監視用波長
の例シよび分光特性測定用波長の例について示せば表(
IIの通シである・ この発明は上述のように構成されているから。
Examples of wavelengths for film thickness monitoring and wavelengths for measuring spectral characteristics that can be employed in the method and apparatus of the present invention are shown in Table (
This is the general rule of II. This invention is configured as described above.

特定線長の光の反射幕(透過膜)が膜厚に対して判然と
した極値を示さないよう慶金属gt九は徴収膜などにつ
いて一膜厚の制御が達成でき・膜厚以外の要因によって
光学的特性が変化するような一般の反射防止膜、選択1
1J[11,選択透過膜、不均質膜なども所望の光学的
特性を有するように形成でき、さらに長尺の光学的薄膜
の光学的特性の試験が非破壊的にかつ連続的に薄膜の形
成と同時に達成できる。&どの多くの利点を有する・
Kei Kinzoku GT9 is able to achieve control of one film thickness for the collection film so that the reflective screen (transmission film) for light of a specific line length does not show a clear extreme value with respect to film thickness. General anti-reflection coating whose optical properties change depending on the situation, selection 1
1J [11, selectively permeable films, inhomogeneous films, etc. can be formed to have desired optical properties, and the optical properties of long optical thin films can be tested non-destructively and continuously. can be achieved at the same time. & which has many advantages

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜形成装置の1例を示す線図、第2図
はこの発明の装置の第1実施例で第1図のものと異って
bる点だけを示すIIE、第311F!この発明の装置
の第2実施例についての第2Illと同様fkE、第4
図は第SWJの装置に使用される走査板の正面図、第5
図は第4図の走査板の側面図である− 図面において、10け真空槽、12m、12bは蒸発源
、14は基体、16から21および22′は基体を移送
させる機構、23は投光器%25a125 b、250
% 25 uおよび25vij受光器、29は膜厚監視
部、39は分光特性測定部を示す・苓5図
FIG. 1 is a diagram showing one example of a conventional thin film forming apparatus, and FIG. 2 is a first embodiment of the apparatus of the present invention, showing only points IIE and 311F that are different from those in FIG. 1. ! 2nd Ill as well as fkE for the second embodiment of the device of the invention, 4th
The figure is a front view of the scanning plate used in the device of SWJ No. 5.
The figure is a side view of the scanning plate shown in FIG. 4. In the drawing, 10 vacuum chambers, 12 m and 12 b are evaporation sources, 14 is a substrate, 16 to 21 and 22' are mechanisms for transferring the substrate, and 23 is a projector. 25a125b, 250
% 25u and 25vij receivers, 29 is the film thickness monitoring section, and 39 is the spectral characteristic measurement section.

Claims (1)

【特許請求の範囲】 1、基体を蒸発源に対して移送させて黒体表面上に真空
蒸着によって薄膜を形成する際に特定波長の光について
の薄膜の反射率または透過率の変化に基すて薄膜の膜厚
を監視する方法において、前記特定波長を含むまたは含
まない多くの波長について薄膜の分光特性を同時に@定
してこれによって薄膜の光学的特性を制御できるようK
したことを特徴とする薄膜形成装置における薄膜監視測
定方法。 2、蒸発源およびこれに対して基体を移送させる機構を
真空槽の中に配置して移送中の基体表面上に真空蒸着に
よって薄膜を形成できるようにした薄膜形成装置K、投
光器から光を薄膜に投射しこれを透過したまたはこれで
反対された光から膜厚監視用の特定波長の光を抜き出し
て1つtたは多くの受光器にいれるようにし九光学監視
器を付施したものにおいて、前記の1つま次は多くの受
光器からの出力信号を膜厚監視部および分光特性測定部
の双方に入力できるようつしたことを特徴とする薄膜形
成装置における薄膜監視測定装置・8、蒸発源およびこ
れに対して基体を移送させる機構を真空槽の中に配置し
て移送中の基体表面上に真空蒸着によって薄膜を形成で
きるようにした薄膜形成装置に、投光器から光を薄膜に
投射しこれを透過したまた灯これで反射された光から膜
厚監視用の特定波長の光を抜き出して1つまたは多くの
受光器にいれるようにした光学監視器を付属したものに
おいて、前記の透過したまたは反射された光から前記特
定波長以外の波長の光を抜き出して前記の1つまたは多
くの受光器以外の別の1つまたは多くの受光器にいれる
ことができるよう九光学監視器を構成配置し、特定波長
の光の受光器からの出力信号および別の受光器からの出
力信号を膜厚監視部および分光特性測定部またにそのい
ずれかに入力できるようにしたことtl−特徴とする薄
膜形成装置における薄膜監視測定装置。
[Claims] 1. Based on changes in the reflectance or transmittance of the thin film for light of a specific wavelength when the substrate is transferred to an evaporation source and a thin film is formed by vacuum deposition on the surface of a black body. In the method of monitoring the film thickness of a thin film using
A method for monitoring and measuring thin films in a thin film forming apparatus, characterized in that: 2. A thin film forming apparatus K in which an evaporation source and a mechanism for transferring the substrate to the evaporation source are arranged in a vacuum chamber so that a thin film can be formed by vacuum deposition on the surface of the substrate being transferred; Light of a specific wavelength for film thickness monitoring is extracted from the light that is projected onto the screen and transmitted through or is rejected by the light, and the light of a specific wavelength is sent to one or many receivers, and is equipped with nine optical monitors. 8. Evaporation thin film monitoring and measuring device in a thin film forming apparatus, characterized in that one or more of the above is capable of inputting output signals from many light receivers to both a film thickness monitoring section and a spectral characteristic measuring section. A light source and a mechanism for transferring the substrate to the thin film forming apparatus are arranged in a vacuum chamber so that a thin film can be formed by vacuum deposition on the surface of the substrate being transferred, and light is projected onto the thin film from a projector. In a device that is attached with an optical monitoring device that extracts light of a specific wavelength for film thickness monitoring from the light transmitted through the lamp and reflected by the lamp and enters it into one or many light receivers, the above-mentioned Or, nine optical monitors are configured and arranged so that light having a wavelength other than the specific wavelength can be extracted from the reflected light and input into one or more receivers other than the one or more receivers. The thin film is characterized in that an output signal from a light receiver of a specific wavelength and an output signal from another light receiver can be input to a film thickness monitoring section and/or a spectral characteristic measuring section. Thin film monitoring and measuring device in forming equipment.
JP14945481A 1981-09-24 1981-09-24 Method and device for monitoring and measuring thin film in thin film former Pending JPS5852475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14945481A JPS5852475A (en) 1981-09-24 1981-09-24 Method and device for monitoring and measuring thin film in thin film former

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14945481A JPS5852475A (en) 1981-09-24 1981-09-24 Method and device for monitoring and measuring thin film in thin film former

Publications (1)

Publication Number Publication Date
JPS5852475A true JPS5852475A (en) 1983-03-28

Family

ID=15475470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14945481A Pending JPS5852475A (en) 1981-09-24 1981-09-24 Method and device for monitoring and measuring thin film in thin film former

Country Status (1)

Country Link
JP (1) JPS5852475A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128178A (en) * 1986-11-17 1988-05-31 Matsushita Electric Ind Co Ltd Method and device for detecting light
JPS63270466A (en) * 1987-04-24 1988-11-08 Matsushita Electric Ind Co Ltd Formation of thin film
JPH01249693A (en) * 1988-03-30 1989-10-04 Rohm Co Ltd Molecular beam epitaxy device
GB2379735A (en) * 2001-09-14 2003-03-19 Qinetiq Ltd Method and apparatus for controlling the growth of thin film during deposition process by measuring the rate of change of optical thickness of the thin-film
KR20150033171A (en) * 2013-09-23 2015-04-01 엘지디스플레이 주식회사 Observation Apparatus Of Evaporation And Driving Method Using The Same
JP2020180323A (en) * 2019-04-24 2020-11-05 株式会社アルバック Film deposition apparatus and film deposition method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925951A (en) * 1972-06-29 1974-03-07
JPS5145683A (en) * 1974-08-14 1976-04-19 Leybold Heraeus Verwaltung Kogakusayono hakumakusono keiseijino seigyohohoto sochi
JPS54136540A (en) * 1978-04-17 1979-10-23 Citizen Watch Co Ltd Ion plating apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925951A (en) * 1972-06-29 1974-03-07
JPS5145683A (en) * 1974-08-14 1976-04-19 Leybold Heraeus Verwaltung Kogakusayono hakumakusono keiseijino seigyohohoto sochi
JPS54136540A (en) * 1978-04-17 1979-10-23 Citizen Watch Co Ltd Ion plating apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128178A (en) * 1986-11-17 1988-05-31 Matsushita Electric Ind Co Ltd Method and device for detecting light
JPH076063B2 (en) * 1986-11-17 1995-01-25 松下電器産業株式会社 Light detection method and device
JPS63270466A (en) * 1987-04-24 1988-11-08 Matsushita Electric Ind Co Ltd Formation of thin film
JPH01249693A (en) * 1988-03-30 1989-10-04 Rohm Co Ltd Molecular beam epitaxy device
GB2379735A (en) * 2001-09-14 2003-03-19 Qinetiq Ltd Method and apparatus for controlling the growth of thin film during deposition process by measuring the rate of change of optical thickness of the thin-film
KR20150033171A (en) * 2013-09-23 2015-04-01 엘지디스플레이 주식회사 Observation Apparatus Of Evaporation And Driving Method Using The Same
JP2020180323A (en) * 2019-04-24 2020-11-05 株式会社アルバック Film deposition apparatus and film deposition method

Similar Documents

Publication Publication Date Title
US5764352A (en) Process and apparatus for spectral reflectance and transmission measurements
US4243882A (en) Infrared multilayer film thickness measuring method and apparatus
US4540281A (en) Double-beam spectrophotometer
Commandré et al. Measurements of absorption losses in TiO 2 films by a collinear photothermal deflection technique
US3435209A (en) Two wavelength infrared analyzer having a pair of variable interference filters for determining the respective wavelengths
GB2155173A (en) Spectrophotometer apparatus
JPS5987307A (en) Measuring device of thickness of surface film
JPS5852475A (en) Method and device for monitoring and measuring thin film in thin film former
US2973686A (en) Apparatus for spectrophotometric monitoring of thin film coatings
US7671989B2 (en) Information maintenance during intensity attenuation in focused beams
EP0176826A2 (en) Method and apparatus for dual-beam spectral transmission measurements
JPH0694605A (en) Spectral photographing device using pulse electromagnetic wave source and interferometer
US7489400B1 (en) System and method of applying xenon arc-lamps to provide 193 nm wavelengths
JPH0580981B2 (en)
Egan et al. Integrating Spheres for Measurements Between 0.185 μm and 12 μm
JPS5876741A (en) Optical apparatus
IE53138B1 (en) Optical beam splitter
US2913584A (en) Microspectrographic system
US20090051915A1 (en) Arrangement for Monitoring Thermal Spray Processes
US3502890A (en) Rotating sphere radiometer
Uhov et al. Method of the coating thickness and transmittance control during the film deposition process
US4985858A (en) Method and apparatus for temperature determination
JP2968460B2 (en) X-ray analysis method
Herfindal et al. Calibration improvements expand filterscope diagnostic use
US20070019204A1 (en) Spectrometer based multiband optical monitoring of thin films