JPS5852469A - Exhaust valve for diesel engine - Google Patents

Exhaust valve for diesel engine

Info

Publication number
JPS5852469A
JPS5852469A JP14962081A JP14962081A JPS5852469A JP S5852469 A JPS5852469 A JP S5852469A JP 14962081 A JP14962081 A JP 14962081A JP 14962081 A JP14962081 A JP 14962081A JP S5852469 A JPS5852469 A JP S5852469A
Authority
JP
Japan
Prior art keywords
layer
ceramics
metal
ceramic
exhaust valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14962081A
Other languages
Japanese (ja)
Inventor
Takemi Yamada
山田 武海
Hiroki Okamoto
寛己 岡本
Tamataro Sato
佐藤 玉太郎
Masaaki Mizushina
水品 正昭
Koji Toyoda
豊田 貢司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14962081A priority Critical patent/JPS5852469A/en
Priority to US06/315,666 priority patent/US4530322A/en
Priority to EP81109361A priority patent/EP0051300B1/en
Priority to DE8181109361T priority patent/DE3175312D1/en
Publication of JPS5852469A publication Critical patent/JPS5852469A/en
Priority to US06/705,323 priority patent/US4554898A/en
Priority to US06/705,324 priority patent/US4556022A/en
Priority to US06/705,216 priority patent/US4554897A/en
Priority to US06/839,088 priority patent/US4661371A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0403Refractory metals, e.g. V, W
    • F05C2201/0415Zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0865Oxide ceramics
    • F05C2203/0895Zirconium oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To ensure corrosion and impact resistances for a sheet surface and to enhance the adhesive strength to the base metal by spraying ceramics and metal on a part for forming the sheet surface to form the sheet surface so that the ceramics concn. is increased upward. CONSTITUTION:Ceramics 3 and metal 4 are sprayed on the surface of a base metal B to form a sprayed layer A consisting of a plurality of layers A1-A5 having different ceramics concns. The uppermost layer A5 is largely made of only the ceramics 3, the undermost layer A1 is largely made of only the metal 4, and the intermediate layers A2-A4 are formed so that the ceramics concn. is increased upward. Al2O3, TiO2, ZrO2 or the like is used as the ceramics 3, and an Ni-Cr-Al alloy for spraying with superior corrosion resistance, an Ni-Cr-Mo alloy with superior strengh and an Ni-Cr-Co alloy with superior corrosion resistance and strength are used as the metal 4 at the surface side, the under layer side and the intermediate layers, respectively.

Description

【発明の詳細な説明】[Detailed description of the invention]

る排気弁に関し、特に耐食性と靭性に優れたシート面を
有する排気弁t−提案せんとするものである。 ディーゼルエンジンに用いられる排気弁は排気によって
焼損を起こし易く%特に排気温度が比較的高い中高速デ
ィーゼル機関でしかも粗悪油を使用した場合にその度合
いが顕著となる。とのような焼損の問題は主に弁体及び
弁座のシート面の吹抜は焼損に代置されるものであり、
この九め従来では、第1図及び第2図に示す・ようにク
ロム系耐熱鋼やN1基超耐熱合金を弁体(1)、弁座(
2)の母材とし、そのシート面(ム) (2a)にCo
基又はN1基の高硬度( 、S O O〜700Hv)
の耐食性合金を溶接肉感又は溶射内盛することによりシ
ート面(lm)(2a)の高温硬度性を高め、耐高温加
速酸化性を向上させて吹抜は焼損を防止するようKして
いる□しかしながら、近年の燃料の粗悪化にともない、
上記のような耐食性合金を肉盛し穴だけのシート面で杜
、極めて早期に吹抜は焼損を生じてしまうという問題が
生起している。この九め、前記し7hCo基又はN1基
合金中にセラミックスを分散させたものを母材に溶封し
てシート面を構成するという試みもなされているが、通
常の均一分散させたコーティング層では繰返し衝撃に対
する耐久性に乏しく、加えてこのような七27ツクスを
分散させたコーティング層線その密度が低く、このなめ
高温加速酸化を促進させる低融点化合物が肉感層さらに
は母材中まで浸透し、却って吹抜は焼損を促進させると
いう結果を招いてしまう。 このような問題を解決するため、本発F!41等社先に
4Ijm昭55−11s2264号として、シート面を
セラミックス濃度が表層側程高く且つ加圧加熱処理がな
された溶射層で構成するととKよって、優れ良耐食性と
強靭性
In particular, we would like to propose an exhaust valve having a seat surface with excellent corrosion resistance and toughness. Exhaust valves used in diesel engines are prone to burnout due to exhaust gas, and the degree of burnout is particularly noticeable in mid-high speed diesel engines where the exhaust temperature is relatively high and when poor quality oil is used. The problem of burnout is mainly caused by the blowout of the valve body and seat surface of the valve seat.
Conventionally, as shown in Figures 1 and 2, chromium-based heat-resistant steel or N1-based super heat-resistant alloy is used for the valve body (1) and the valve seat (
2) as the base material, and the sheet surface (mu) (2a) is coated with Co
High hardness of group or N1 group ( , S O O ~ 700Hv)
The high temperature hardness of the sheet surface (lm) (2a) is increased by welding or thermal spraying a corrosion-resistant alloy, which improves the high temperature accelerated oxidation resistance and prevents burnout in the atrium. , due to the deterioration of fuel quality in recent years,
If the above-mentioned corrosion-resistant alloy is used only on the sheet surface of the overlay holes, there is a problem that the blowout will burn out at an extremely early stage. Ninth, attempts have been made to construct the sheet surface by melt-sealing ceramics dispersed in the 7hCo-based or N1-based alloy into the base material, but the conventional uniformly dispersed coating layer does not work. It has poor durability against repeated impacts, and in addition, the density of the coating layer in which such 727x is dispersed is low, and the low melting point compound that promotes high-temperature accelerated oxidation penetrates into the sensuous layer and even into the base material. On the contrary, having an atrium leads to accelerated burnout. In order to solve such problems, the original F! 4Ijm No. 11 Sho 55-11S 2264, published by the 41st company, the sheet surface is composed of a thermally sprayed layer in which the ceramic concentration is higher on the surface side and is subjected to pressure and heat treatment. Therefore, it has excellent corrosion resistance and toughness.

【得たディーゼルエンジン用排気弁を提案した。 しかしながら、本発明者等のその後の研究によれに、溶
射層への上記加圧加熱処理は溶射層組織と緻密にするこ
とによってその耐食性と強靭性t−増強しさらに溶射〜
と母材との密着性を改善するという大きな利点を有する
ものではあるが、上記の如く加圧加熱処理した溶射層で
なくても、つまシ溶射ままの溶射層によってシート面を
構成せしめても、ディーゼルエンジンの実用的見地から
いって十分な耐久性が得られ、またそのほうが製造も簡
単でコスト的にもはるかく有利であることを見い出し良
。 本発明はこのようなことから新たに提案されたもので、
その基本的特徴はシート1Iffを構成すべき部分にセ
ラミックス濃度が表層側程高くなるようセラミックスと
金属とを溶射し、こO溶射まto溶射層によシシート面
管形成せしめた点にある。 以下本発明の実施例を図面に基づいて説明するO 纂3図(&)及び(b)はそれぞれ本発明の排気弁シー
ト面の断W1を示すものであシ、いずれも、弁体及び弁
座の母材(B) K形成されるシート間をセラミックス
濃度が表層儒程高い溶射層(A)により構成せしめ良も
のであシ、これらの溶射層(A)はいずれも溶射11の
ものである。溶射層(A)はセラミックス(3)及び金
属(主として合金、以下同様)(4)で構成され%聚層
儒程セラミックス濃度が高く、1にた深層側程セラミッ
クス#I度が低く、従って金属の濃度が高くなっている
。 このうち第3図(&)K示すもの社、溶射層(A) t
−セラミックス濃度が層深さ方向で連続的に変化し九単
層構造のものとして構成せしめたものであ夛、最表層部
がほとんどセラミックス(3)のみで、t+母材(B)
K近い最深要部がほとんど金属(4)のみで構成され、
中間層部が表層部aSセラミックス濃度が高く表るよう
セラミックス(3)と金属(4)が複合し、たもので構
成されている。 また、第3図(b)に示すものは、溶射層(ム)をセラ
ミックス濃度がRN的に変化する多層構造のものとして
構成せしめたものであC。 即ち、セラミックス濃度が異なる(Aθ〜(ムS)の複
数層によル溶耐層(ム)1形成せしめ良ものである。こ
れによれに、最表層たるAs Ml fd、f’tトン
トセラミックス(3)のみで構成され、ts層たるA1
層はほとんど金属(4)のみで構成され、中間層たるA
1〜人4層は表層側の層程セラミックス濃度が高いセラ
ミックス(3)と金属(4)との複合層となっている。 このようKして構成される溶射層(A) K用いられる
セラミックス(3)としては、酸化物系、炭化物系、或
いは窒化物系等のものが用いられ、具体的にはkL20
H%Tl0t、ZrOx等適宜なものを採用する仁とが
できる。また、金属(4)としては、耐食性或いは強度
等の異なる特性を有する数種類の溶射用合金(例えば、
N1CrAt*Ni CrCo + NI CrMo等
)を採用し得るものでアル。 この場合例えば、溶射層(A)の表層側には耐食性に優
れたもの(例えばN1CrAt) Yr%また深層側に
は強度的に@れたもの(例えばNiC1Mo)を、そし
て中間層は耐食性1強度性ともに適度に備え良もの(例
えばN1CrCo) Yrそれぞれ使用することが好ま
しい。 第3図(a) (b)に示す溶射層では、いずれも中間
層部が金属とセラミックスとが複合したものとなってい
るが、これKa次のような意義がある。犀ち、シート面
の耐噛込み性を考縛すると表層のセラミックス層のよう
な硬い層をなるべく厚く付けておくことが望ましいが、
反面耐衝撃性(靭性)、耐剥離性を考慮すると、表層の
セラミックスの厚みはで龜゛るだけ小さくしたほうが望
ましいものであル、このようなことから、前記中間層部
管財噛込み性と耐衝撃性を適度に兼ね備えたセラミック
ス−金属複合層とし、上記2つの要請を同時に満足させ
た4のである。 tた以上の実施例において、最表層S#i耐食性の関係
でセラずツクス単層とすることが好ましいとと祉言うま
でもない。しかしながら、セラミックス、殊に酸化物系
セラミックス(例えばZr01)や窒化物系セラミック
ス(BN、81N)の中には金属と複合化しなければ十
分な靭性を期待できない場合があ〉%この場合には最表
層部をセラミックスと金属とO複合層によって構成せし
めることが好ましい。 [凱セラミックスと金属との複合層を構成せしめる場合
、金属で被覆され九セラミックス粉末を用いることがで
き、このような金属被覆セラずツクスと非被覆セラミッ
クス及び金属を使い分け1つの溶射層を形成せしめるこ
とができる。 なお、以上のようKして構成される溶射層の′層厚につ
いて述べると、例えば、−耐層の最表層をセラミックス
単層で形成せしめる場合の該セラミックス単層の厚さは
、耐食性及び耐熱衝撃性の双方を満すべく30〜SOO
声の範囲で選定されるのが望ましい。但し、溶融酸化物
の母材側への浸透tはは適正に阻止するためには、実際
上最低でも70声の厚さが必要であると考えられる。ま
た、上限の500声は800℃に加熱保持後水冷しても
シート面に割れが生じない値(但し、下層の金属層の厚
さが100声の場合)であるが、実際には100μを限
度とし次はうが好ましいO 1九下層の金属層の厚さは下地【母材】粗さKも依存す
るが、熱衝撃や弁開閉時の衝撃を吸収するためZoo声
は必要であると考えられ、また経済的見地から1000
声以下が適当である。 また溶射層全体の厚さにりいて社、130〜6000μ
程度の範囲が考えられるが、実用的見地からすると35
0〜2000μが適当であシ、また上層がセラミックス
単層、下層が金属単層の場合、実際上250〜400声
@lKが最適な厚さであると考えられる。 以上のように、本発明は弁体及び弁座の各シート面を表
層側根セラミックス濃度が高くなるようその濃度を連続
的又は段階的に変化づせて溶射せしめた溶射層(A)と
して構成せしめたものであシ、この結果、溶射層(ム)
の表層部を主にセラミックスで構成せしめることで高温
硬度性及び耐食性に優れ九ものとし、従来の通常の排気
弁に較べ高温腐食量を172〜1/1 G程度にするこ
とが可能となる◎ま九中間層部も金属中にセラミックス
を分散せしめるととKより強靭性に優れたものとし、さ
らに深層部を主に金属で構成せしめることで母材との密
着性に優れたものとしたものであゐ。 これを換言すれば、表層部を主として形成し且つ中間層
にも分散して含まれるセラミックスによシVz OS−
a Na1804等の低融点酸化物の浸透を防止して−
これらによる母材及び溶射金属層の高温加速酸化の発生
を有効に抑止し、もってこれによる吹抜は焼損を防止す
ることができる。即ち、上記セラミックスfl VmO
i eNas80a勢の溶融酸化物との反応温度が90
0℃と高く、このため、排気弁シート面におけるよりな
f50G〜700℃の作動温度状態では、上記溶融酸化
物による高温腐食反応はほとんど、生じない。ま九シー
ト面表間がセラミックスによシ形成されるので燃焼残渣
等の有害物質のシート面表面への付着を防止することが
でき、さらに表層のセラミックス層の断熱効果により、
水冷等と組み合わせることでシート面近傍の温度を著し
く低下させることができ、これによっても吹抜は焼損を
抑止せしめることができる。また前記セラミックス層に
よシ−ト面近傍の高い硬J[を得ることができ。 このため硬性物質の噛み込みによるシート面の吹抜けを
防止することができる。さらに、本発明9溶射層(A)
はセラミックスと金属との配合比を連続的又は段階酷に
変化させることKよシ、溶射層(A)の深場方向の強度
を連続的に変化させ、これKよって溶射層全体を強靭性
に優れたものとし、シート面の耐久性を確保している。 このような本発明の具体的実施例を示せば以下の通pで
ある。 実施例 1゜ 中 セラミックス−Aj40s (6016)+Ti0
2(ao*)十ZrO鵞(10%) ・金 属−NiCrAt合金(C61monoy 6)
・母材・・・Nimonic合金 このような材質のものを利用し、第3図葎)に示すよう
にセラミックス濃度を連続的に変化せしめるようにして
母材に溶射せしめた−のである。 第4図は、本実施例のセラミックスと金属との分布状態
を示し、溶射層(A)のうち葎)はセラミックス、<b
)は金属の重量比をそれぞれ示す。溶射層(A)はその
層厚が3000μに形成され、そのうち表層側からθ〜
30声の部分はセラミックス100”%の層部、200
0〜3000μは金属100%の層部として構成され、
30〜2000μの範囲では表層1llll!セラミッ
クス濃度が高いセラミックス−金属複合層部として構成
されている。 実施例 λ ・セラミックス、金属 ・母材・・・Nlmonlc合金 本実施例では以上のような材質を利用し、第3図(b)
で示すように、溶射層(A)をセラミックス濃度が異な
ゐ複数層から構成せしめるととによシセラミックス濃度
を段階的に変化せしめたものである。本実施例において
は1層厚3000声の溶射層(A)は計5層から構成さ
れ1表層側からO〜30声の層がセラミックス1ooS
、2000〜3000μの層が金属100g6として構
成され、中間の3層はそれぞれ表層側のもの程セラ建ツ
クス濃度が高いセラミックス−金属複合層として構成さ
れている。 実施例 3゜ 下表に示すようないくつかの態様の本発明排気弁と単な
るセラミックス溶射層しか持危ない比較例の排気弁の特
性を調べた。下表に示されるもののうち、(1)〜(3
)は本発明の排気弁、(4)は比較例を示す。本発明の
うち、排気弁(1)は表層側がセラミックス単層。 深層側が金属単層で構成され、排気弁(2)は表層側が
セラミックスと金属との複合層、深層側が金属層で構成
され、さらに、排気弁(3)は表層側が重量比でθ〜7
5慢範囲に金属被覆された被覆セ乏ミックス層、深層側
が金属層で構成されている。tた比較例の排気弁(4)
は下“地処理の上にセラミックス単層管溶射しただけの
ものである。 上記表のうち溶射層がセラ建ツクス単層構造の排気弁(
4)は奥様試験において、1sOHrで表層剥離が生じ
% 14001(rでセラミックス層全体が剥離した。 これに対し本発明の排気弁では排気弁(1)が2500
〜3NO・OHr&排気弁(2)が3800〜5000
Hr%排気弁(3)が5000〜7000Hrでそれぞ
れセラミックス剥離が生じ次。1&耐噛込性について、
ビッカース硬度計を用い、シート面に割れが生ず1加重
値を測定し次。この結果、排気弁(4)が300〜50
0v以上の圧痕で割れが発生したのに対し、本発明の排
気弁では、排気弁(1)が300〜50(1以上の圧痕
で割れが発生したものの、排気弁(2)がlKF以上、
排気弁(3)が1〜5Kf以上の圧痕で割れが発生する
という良結果が得られた。篤3図はこれら各排気弁と通
常の排気弁(溶接肉盛弁)の耐熱衝撃性(割れ、剥離が
生ずる焼入温度)を示したものであるみこの図からも明
らかなように、排気弁(4)は通常の排気弁よシは曳好
な耐熱衝撃性を示してはいるが、セラミックス層と母材
との熱膨張差による熱衝撃を十分吸収し切れず、300
℃の焼入温度で割れ剥離を生じている。これに対し本発
明の排気弁(1)〜(3)はこの排気弁(4)ヲ大きく
上回る耐熱衝撃性を示している。 このようなシート面の形成工程の一例を簡単Kl!明す
ると、排気弁本体のシート面を構成すべき部分tアンダ
ーカットし、この部分tホワイトアルミナによ)プラス
トし、さらにドライエアーによるプラスト粉の除去管行
う。 次いでこの部分の脱脂を行い、しかる後溶射を行うもの
である。この溶射拡プラズi法或いはサーモスプレー法
等適宜な方法が採られ、セラ建ツクス金属(合金)の各
粉末を連続的。 段階的に使い分けるととKよシ前記した如き溶射層(A
) ’i影形成しめる。 またかかる溶射において、特性(耐食性、強度等)の異
なる数種類の金属(合金)を連続的又は段階的K(l!
h分けるととによ)、前記した如く、例えば衣層1II
VC耐食性に優れた金属を、また中層部以下に強度的に
優れ良金属を配することができる。 以上述べ九本発明によれば、シート面を構成する溶射層
の層高方向のセラミックス濃度を変化させることによっ
て、シート面表面の耐食性、耐衝撃性を確保するととも
に1シ一ト面全体の靭性、高密度性及び母材との密着性
を確保し、これによって低融点酸化物の浸入による吹抜
は焼損や衝11による剥離等を有効に防止することがで
き、その寿命を従来のものに比して大きく向上せしめる
ことができるものであn、t+、その製造もシート面管
構成すべき部分への溶射だけで済むことから極めて簡単
で、且つ低コストで済み、このようなことから、工業的
価値が高い発明であるということができる。
[We proposed an exhaust valve for diesel engines. However, according to subsequent research by the present inventors, the above-mentioned pressure and heat treatment on the sprayed layer strengthens its corrosion resistance and toughness by making the sprayed layer structure denser and further improves its corrosion resistance and toughness.
Although it has the great advantage of improving the adhesion between the material and the base material, the sheet surface does not need to be a thermally sprayed layer that has been subjected to pressure and heat treatment as described above, and even if the sheet surface is made of a thermally sprayed layer that is as-sprayed. From the practical standpoint of a diesel engine, it was found that sufficient durability can be obtained, and that it is also easier to manufacture and much more cost-effective. The present invention was newly proposed in view of the above,
Its basic feature is that ceramics and metal are thermally sprayed onto the portion of the sheet 1Iff so that the concentration of ceramics increases toward the surface, and a tube is formed on the surface of the sheet by the O-sprayed layer to the thermally sprayed layer. Embodiments of the present invention will be described below based on the drawings. The base material of the seat (B) K is a good material, consisting of a thermally sprayed layer (A) in which the ceramic concentration is higher than that of the surface layer between the sheets to be formed, and both of these thermally sprayed layers (A) are of thermal spraying 11. be. The sprayed layer (A) is composed of ceramics (3) and metals (mainly alloys, the same shall apply hereinafter) (4). The concentration of is increasing. Of these, Figure 3 (&)K shows the thermal sprayed layer (A) t
- The ceramic concentration changes continuously in the layer depth direction, and it is constructed as a single-layer structure.The outermost layer is almost only ceramic (3), and T
The deepest important part near K is almost composed only of metal (4),
The intermediate layer is composed of a composite of ceramic (3) and metal (4) so that the surface layer aS has a high ceramic concentration. Further, in the case shown in FIG. 3(b), the sprayed layer (mu) is constructed as a multilayer structure in which the ceramic concentration changes in a RN manner. In other words, it is possible to form a melt-resistant layer (M) 1 by a plurality of layers having different ceramic concentrations (Aθ~(MUS)). (3) and is the ts layer A1
The layer consists almost only of metal (4), and the middle layer A
Layers 1 to 4 are composite layers of ceramic (3) and metal (4), with the ceramic concentration increasing toward the surface layer. The ceramics (3) used in the sprayed layer (A) K are oxide-based, carbide-based, or nitride-based, and specifically, kL20
It is possible to use appropriate materials such as H%T10t, ZrOx, etc. In addition, as the metal (4), there are several types of thermal spray alloys (for example,
N1CrAt*Ni CrCo + NI CrMo, etc.) can be adopted. In this case, for example, the surface layer of the sprayed layer (A) should be made of a material with excellent corrosion resistance (for example, N1CrAt), and the deep layer should be made of a material with high strength (for example, NiC1Mo), and the middle layer should be made of a material with a high corrosion resistance of 1 strength. It is preferable to use materials having suitable properties in both properties (for example, N1CrCo) and Yr. In the sprayed layers shown in FIGS. 3(a) and 3(b), the intermediate layer portion is a composite of metal and ceramics, which has the following significance. Considering the chewing resistance of the sheet surface, it is desirable to have a hard layer such as a ceramic layer on the surface layer as thick as possible.
On the other hand, in consideration of impact resistance (toughness) and peeling resistance, it is desirable to reduce the thickness of the ceramic surface layer by a large amount. It is a ceramic-metal composite layer with appropriate impact resistance, and satisfies the above two requirements at the same time. In the above embodiments, it goes without saying that it is preferable that the outermost layer S#i be a single layer of ceramics in terms of corrosion resistance. However, some ceramics, especially oxide ceramics (e.g. Zr01) and nitride ceramics (BN, 81N), cannot be expected to have sufficient toughness unless they are composited with metal. Preferably, the surface layer portion is composed of a ceramic, metal, and O composite layer. [When constructing a composite layer of Kai ceramics and metal, a metal-coated ceramic powder can be used, and such metal-coated ceramics and uncoated ceramics and metal can be used to form one sprayed layer.] be able to. Regarding the layer thickness of the thermal sprayed layer constructed as described above, for example, when the outermost layer of the -resistant layer is formed of a ceramic single layer, the thickness of the ceramic single layer depends on corrosion resistance and heat resistance. 30~SOO to satisfy both impact resistance
It is preferable to select based on the voice range. However, in order to properly prevent penetration of the molten oxide into the base material, it is considered that a thickness of at least 70 mm is actually required. In addition, the upper limit of 500 degrees is a value that will not cause cracks on the sheet surface even if it is heated and held at 800℃ and then cooled with water (provided that the thickness of the underlying metal layer is 100 degrees), but in reality, the thickness of 100 μ The thickness of the lower metal layer depends on the roughness K of the base [base material], but zoology is necessary to absorb thermal shock and shock when opening and closing the valve. 1000 from an economic point of view
A voice below is appropriate. In addition, the thickness of the entire sprayed layer is 130 to 6000 μm.
A range of degrees is possible, but from a practical point of view, 35
A thickness of 0 to 2000μ is appropriate, and in the case where the upper layer is a ceramic single layer and the lower layer is a metal single layer, the optimum thickness is actually considered to be 250 to 400 μm @lK. As described above, the present invention configures each seat surface of the valve body and valve seat as a thermal sprayed layer (A) in which the concentration of surface layer lateral root ceramics is varied continuously or stepwise to increase the concentration. As a result, the sprayed layer (mu)
By making the surface layer mainly composed of ceramics, it has excellent high-temperature hardness and corrosion resistance, and it is possible to reduce the amount of high-temperature corrosion to about 172 to 1/1 G compared to conventional ordinary exhaust valves. The middle layer also has ceramics dispersed in the metal, making it stronger than Tok, and the deep layer is mainly made of metal, which gives it excellent adhesion to the base material. Deaaa. In other words, the ceramics that mainly form the surface layer and are also dispersed in the intermediate layer provide
a Preventing penetration of low melting point oxides such as Na1804 -
The occurrence of high-temperature accelerated oxidation of the base material and the sprayed metal layer due to these can be effectively suppressed, thereby preventing the blowout from burning out. That is, the above ceramic fl VmO
i Reaction temperature with eNas80a molten oxide is 90
Therefore, under the operating temperature condition of f50G to 700°C on the exhaust valve seat surface, the high-temperature corrosion reaction due to the above-mentioned molten oxide hardly occurs. Since the space between the sheet surfaces is made of ceramic, it is possible to prevent harmful substances such as combustion residue from adhering to the sheet surface, and furthermore, due to the heat insulating effect of the ceramic layer on the surface,
In combination with water cooling, etc., the temperature near the sheet surface can be significantly lowered, and this also makes it possible to prevent burnout in the atrium. Furthermore, a high hardness J near the sheet surface can be obtained from the ceramic layer. Therefore, it is possible to prevent blow-through of the sheet surface due to hard material being caught. Furthermore, the present invention 9 thermal sprayed layer (A)
In addition to continuously or stepwise changing the blending ratio of ceramics and metal, the strength of the thermally sprayed layer (A) in the deep direction is continuously changed, thereby making the entire thermally sprayed layer tough. It is of excellent quality and ensures the durability of the seat surface. Specific examples of the present invention are as follows. Example 1° Medium Ceramics-Aj40s (6016)+Ti0
2 (ao*) 10 ZrO (10%) ・Metal - NiCrAt alloy (C61 monoy 6)
・Base material: Nimonic alloy Using such a material, we sprayed the ceramic onto the base material while continuously changing the ceramic concentration as shown in Figure 3. FIG. 4 shows the distribution state of ceramics and metals in this example, where the sprayed layer (A) is made of ceramics, <b
) indicate the weight ratio of metals. The sprayed layer (A) is formed to have a layer thickness of 3000μ, of which θ~
The 30-voice part is made of 100% ceramic layer, 200%
0 to 3000μ is configured as a 100% metal layer,
In the range of 30 to 2000μ, the surface layer is 1llll! It is constructed as a ceramic-metal composite layer portion with a high ceramic concentration. Example λ Ceramics, metals, base material...Nlmonlc alloy In this example, the above materials were used, as shown in Figure 3(b).
As shown in the figure, when the sprayed layer (A) is composed of a plurality of layers having different ceramic concentrations, the ceramic concentration can be changed in a stepwise manner. In this example, the sprayed layer (A) with a thickness of 3000 layers is composed of a total of 5 layers, and the layers 0 to 30 layers from the surface side are made of ceramic 1ooS.
, 2,000 to 3,000 .mu.m thick, each layer is composed of 100 g of metal, and each of the three middle layers is constructed as a ceramic-metal composite layer in which the closer to the surface layer, the higher the ceramic concentration. Example 3 The characteristics of several embodiments of the exhaust valve of the present invention as shown in the table below and of a comparative example of an exhaust valve having only a simple ceramic sprayed layer were investigated. Among those shown in the table below, (1) to (3)
) shows the exhaust valve of the present invention, and (4) shows a comparative example. In the present invention, the exhaust valve (1) has a single ceramic layer on the surface side. The deep side is composed of a single metal layer, the exhaust valve (2) is composed of a composite layer of ceramics and metal on the surface side, and the deep side is composed of a metal layer, and the exhaust valve (3) has a weight ratio of θ to 7 on the surface side.
The layer is made up of a semi-depleted mixed layer coated with metal in the five-layered region, and a metal layer on the deeper side. Comparative example exhaust valve (4)
The above table shows exhaust valves with a ceramic single-layer structure in which the sprayed layer is a single-layer ceramic pipe.
4), in the wife's test, the surface layer peeled off at 1sOHr and the entire ceramic layer peeled off at 14001% (r).On the other hand, in the exhaust valve of the present invention, the exhaust valve (1)
~3NO/OHr & exhaust valve (2) 3800~5000
Ceramic peeling occurred in the exhaust valve (3) between 5000 and 7000 hours. 1. Regarding bite resistance,
Using a Vickers hardness tester, measure the weight value of 1 without cracking the sheet surface. As a result, the exhaust valve (4) is 300 to 50
In the exhaust valve of the present invention, cracking occurred at an indentation of 0V or more, whereas in the exhaust valve of the present invention, cracking occurred at an indentation of 300 to 50V (1KF or more, but the exhaust valve (2)
A good result was obtained in that the exhaust valve (3) cracked at an indentation of 1 to 5 Kf or more. Figure 3 shows the thermal shock resistance (quenching temperature at which cracking and peeling occur) of each of these exhaust valves and a normal exhaust valve (welded overlay valve).As is clear from this figure, the exhaust Although valve (4) has better thermal shock resistance than a normal exhaust valve, it cannot sufficiently absorb thermal shock due to the difference in thermal expansion between the ceramic layer and the base material, and the
Cracking and peeling occurred at the quenching temperature of ℃. In contrast, the exhaust valves (1) to (3) of the present invention exhibit thermal shock resistance that greatly exceeds this exhaust valve (4). A simple example of the process of forming such a sheet surface is shown below! Specifically, the seat surface of the exhaust valve body is undercut at a portion to be formed, this portion is plastered with white alumina, and the blast powder is removed using dry air. This area is then degreased and then thermal sprayed. An appropriate method such as the thermal spray expansion plasma method or thermospray method is used to continuously spray each powder of the ceramic metal (alloy). If used in stages, the thermal sprayed layer (A) as described above is used.
) 'I close the shadow formation. In addition, in such thermal spraying, several types of metals (alloys) with different properties (corrosion resistance, strength, etc.) are applied continuously or in stages.
As mentioned above, for example, the coating layer 1II
A metal with excellent VC corrosion resistance can be provided, and a metal with excellent strength can be provided below the middle layer. As described above, according to the present invention, by changing the ceramic concentration in the layer height direction of the thermal sprayed layer constituting the sheet surface, corrosion resistance and impact resistance of the sheet surface can be ensured, and the toughness of the entire sheet surface can be improved. , high density and adhesion to the base material are ensured, and as a result, blowholes due to the infiltration of low-melting point oxides can effectively prevent burnout and peeling due to impact 11, and their service life can be extended compared to conventional ones. It is extremely easy to manufacture and requires only thermal spraying on the part that constitutes the sheet surface tube, and is therefore low cost. It can be said that this invention is of high value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図線従来の排気弁機構を示す説明図、第2図は第1
図中(イ)部分の拡大図である。 第3図(a)及び(b)は本発F!AKよる排気弁シー
ト面の断面を示す説明図である。第4図は実施例1にお
けるセラミックスと合金との溶射層・層方向での重量比
分布を示すものである。第5図は実施例3Ks?ける排
気弁の耐熱衝撃性を通常の排気弁と比較して示すもので
ある。 図において、(3)はセラミックス、(4)は金属、(
A) (AI) (A2) (Ax) (An) (A
s)は溶射層を各示す。 l#Wlfa!願人 日本鋼管株式会社発 明  者 
  山   1)  武   海開         
岡   本   寛   部同         佐 
  藤   玉 太 部門         水   
晶   正   昭・、第 1 目 第4図 窪 立 (7/) 第3図 (0 第5図
Figure 1 is an explanatory diagram showing a conventional exhaust valve mechanism; Figure 2 is an explanatory diagram showing a conventional exhaust valve mechanism;
It is an enlarged view of part (a) in the figure. Figures 3 (a) and (b) show the original F! It is an explanatory view showing a cross section of an exhaust valve seat surface by AK. FIG. 4 shows the weight ratio distribution of ceramic and alloy in Example 1 in the direction of the sprayed layer. Figure 5 shows Example 3Ks? This figure shows the thermal shock resistance of the exhaust valve used in this test compared to that of a normal exhaust valve. In the figure, (3) is ceramics, (4) is metal, (
A) (AI) (A2) (Ax) (An) (A
s) indicates a sprayed layer. l#Wlfa! Applicant Nippon Kokan Co., Ltd. Inventor
Mountain 1) Kaikai Takeshi
Hiroshi Okamoto
Fuji Tamata Department Water
Akira Masaaki・, 1st item, 4th figure, Kubo Tate (7/) 3rd figure (0 5th figure)

Claims (3)

【特許請求の範囲】[Claims] (1)  シート面を構成すべき部分にセラミックス濃
度が表層II@高くなるようセラミックスと金属とを溶
射してシート面を形成せしめてなるディーゼルエンジン
用・排気弁。
(1) An exhaust valve for a diesel engine in which a sheet surface is formed by thermally spraying ceramics and metal so that the ceramic concentration is high in the surface layer II@ where the sheet surface is to be formed.
(2)溶射層がセラミックス濃ff17fi表層am高
い単一層からなる咎許請求の範囲(1)記載のディーゼ
ルエンジン用排気弁。
(2) The exhaust valve for a diesel engine according to claim (1), wherein the sprayed layer is a single layer of ceramic with a high surface layer.
(3)  溶射層がセラばツクス濃度が異なる複数の溶
射層からなる今許請求の範囲(1)記載のディーゼルエ
ンジン用排気弁。
(3) The exhaust valve for a diesel engine according to claim (1), wherein the sprayed layer comprises a plurality of sprayed layers having different concentrations of cerabax.
JP14962081A 1980-10-31 1981-09-24 Exhaust valve for diesel engine Pending JPS5852469A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP14962081A JPS5852469A (en) 1981-09-24 1981-09-24 Exhaust valve for diesel engine
US06/315,666 US4530322A (en) 1980-10-31 1981-10-28 Exhaust valve for diesel engine and production thereof
EP81109361A EP0051300B1 (en) 1980-10-31 1981-10-30 Method for making an exhaust valve for a diesel engine
DE8181109361T DE3175312D1 (en) 1980-10-31 1981-10-30 Method for making an exhaust valve for a diesel engine
US06/705,323 US4554898A (en) 1980-10-31 1985-02-25 Exhaust valve for diesel engine and production thereof
US06/705,324 US4556022A (en) 1980-10-31 1985-02-25 Exhaust valve for diesel engine and production thereof
US06/705,216 US4554897A (en) 1980-10-31 1985-02-25 Exhaust valve for Diesel engine and production thereof
US06/839,088 US4661371A (en) 1980-10-31 1986-03-13 Method of producing an exhaust valve for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14962081A JPS5852469A (en) 1981-09-24 1981-09-24 Exhaust valve for diesel engine

Publications (1)

Publication Number Publication Date
JPS5852469A true JPS5852469A (en) 1983-03-28

Family

ID=15479191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14962081A Pending JPS5852469A (en) 1980-10-31 1981-09-24 Exhaust valve for diesel engine

Country Status (1)

Country Link
JP (1) JPS5852469A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123952A2 (en) * 1983-04-29 1984-11-07 Goetze Ag Wear-resistant coating
JPS613875A (en) * 1984-06-08 1986-01-09 ユナイテツド・テクノロジーズ・コーポレイシヨン Coated product and coating method
JPS6241908A (en) * 1985-08-19 1987-02-23 Yamaha Motor Co Ltd Exhaust valve of engine
EP0217991A1 (en) * 1985-10-04 1987-04-15 Repco Limited Ceramic material coatings
JPS62197611A (en) * 1986-02-26 1987-09-01 Honda Motor Co Ltd Titanium exhaust valve
JPS6349500U (en) * 1986-09-19 1988-04-04
WO1999051790A1 (en) * 1998-04-08 1999-10-14 Caterpillar Inc. A process for applying a functional gradient material coating to a component for improved performance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354214A (en) * 1976-10-27 1978-05-17 Mitsubishi Heavy Ind Ltd Ceramics coating method
JPS5445637A (en) * 1977-07-05 1979-04-11 Union Carbide Corp Method of forming hard wearrresistant coating and coating product using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354214A (en) * 1976-10-27 1978-05-17 Mitsubishi Heavy Ind Ltd Ceramics coating method
JPS5445637A (en) * 1977-07-05 1979-04-11 Union Carbide Corp Method of forming hard wearrresistant coating and coating product using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123952A2 (en) * 1983-04-29 1984-11-07 Goetze Ag Wear-resistant coating
US4612256A (en) * 1983-04-29 1986-09-16 Goetze Ag Wear-resistant coating
JPS613875A (en) * 1984-06-08 1986-01-09 ユナイテツド・テクノロジーズ・コーポレイシヨン Coated product and coating method
JPS6241908A (en) * 1985-08-19 1987-02-23 Yamaha Motor Co Ltd Exhaust valve of engine
EP0217991A1 (en) * 1985-10-04 1987-04-15 Repco Limited Ceramic material coatings
JPS62197611A (en) * 1986-02-26 1987-09-01 Honda Motor Co Ltd Titanium exhaust valve
JPS6349500U (en) * 1986-09-19 1988-04-04
WO1999051790A1 (en) * 1998-04-08 1999-10-14 Caterpillar Inc. A process for applying a functional gradient material coating to a component for improved performance

Similar Documents

Publication Publication Date Title
JPH0250173B2 (en)
DE60118356T2 (en) MULTI-LAYER BARRIER ON THE COURSE
US5499905A (en) Metallic component of a gas turbine installation having protective coatings
RU2616195C1 (en) Enamel powder, metal structural member with partly enamelled surface and method for producing thereof
JPH0131030B2 (en)
JPS60226464A (en) Joint structure of ceramic and metal
US4648308A (en) Internal combustion engine piston and a method of producing the same
JPH0715141B2 (en) Heat resistant parts
JPS58215291A (en) Aluminum base material with cured padding layer
EP0691417B1 (en) Method of spraying material, method of manufacturing sliding member having sliding surface which comprises sprayed layer; piston and method of manufacturing the same
JPS5852469A (en) Exhaust valve for diesel engine
US2757901A (en) Composite turbine disc
JPH0527706B2 (en)
US4529169A (en) Hardfaced valves and method of making same
US1869077A (en) Internal combustion engine
US7135238B2 (en) Elevated temperature oxidation protection coatings for titanium alloys and methods of preparing the same
JPH03503184A (en) Metal objects, especially gas turbine blades with protective coatings
CN216381536U (en) Valve for internal combustion engine
JP3160405B2 (en) Roll for transporting high-temperature steel
JP4554762B2 (en) Radiant tube excellent in high-temperature oxidation resistance and manufacturing method
JP4267459B2 (en) Piston ring spraying
US2952904A (en) Applying protective metal coatings on molybdenum
JPH06221105A (en) Steam valve
JPS5964153A (en) Construction of cooling type slide valve plate for controlling flow rate of molten steel
JPS59150657A (en) Vessel for molten metal