JPS5852457B2 - Continuous casting method for steel slabs - Google Patents

Continuous casting method for steel slabs

Info

Publication number
JPS5852457B2
JPS5852457B2 JP6576779A JP6576779A JPS5852457B2 JP S5852457 B2 JPS5852457 B2 JP S5852457B2 JP 6576779 A JP6576779 A JP 6576779A JP 6576779 A JP6576779 A JP 6576779A JP S5852457 B2 JPS5852457 B2 JP S5852457B2
Authority
JP
Japan
Prior art keywords
mold
flow
steel
electromagnetic flow
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6576779A
Other languages
Japanese (ja)
Other versions
JPS55158859A (en
Inventor
徹郎 大橋
仁 丹野
栄一 竹内
博務 藤井
一茂 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6576779A priority Critical patent/JPS5852457B2/en
Publication of JPS55158859A publication Critical patent/JPS55158859A/en
Publication of JPS5852457B2 publication Critical patent/JPS5852457B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は鋼スラブの連続鋳造方法に関し、特に鋳型内の
凝固界面)こ連続した電磁流動を効果的1ζ形威して連
続鋳造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuous casting of steel slabs, and more particularly to a method for continuous casting by effectively applying continuous electromagnetic flow (solidification interface in a mold).

リムド鋼、セミキルド鋼相当の鋼を連続鋳造で製造する
試みは古くから行なわれて0)るが、操業性並びに品質
、特に鋳片表面に発生する気泡欠陥の問題から未だ実用
化に至っていない。
Attempts have been made to produce steel equivalent to rimmed steel or semi-killed steel by continuous casting for a long time, but it has not yet been put to practical use due to problems with operability and quality, especially bubble defects that occur on the surface of the slab.

溶鋼中に発生するガス気泡を除去する方法(こついては
、例えば電磁攪拌力を利田するものが検討されている。
Methods for removing gas bubbles generated in molten steel (for example, methods using electromagnetic stirring force are being considered).

この電磁攪拌力を利用して溶鋼中のガス気泡を除去する
方法については多数の報告があるが、これら公知の方法
は何れもすでに生じてしまったガス気泡を除去する方法
に関するものであり、強烈な力を要する。
There are many reports on methods for removing gas bubbles in molten steel using this electromagnetic stirring force, but all of these known methods are related to methods for removing gas bubbles that have already formed, and are It requires a lot of force.

これは、発生してしまった後のガス気泡を物理的に除去
するからであり、このようにガス気泡を物理的に除去す
る場合には鋳型内湯面を大きく乱してしまい、パウダー
キャスティングのメリットを消失させてしまう結果とな
っている。
This is because gas bubbles are physically removed after they have been generated.If gas bubbles are physically removed in this way, the mold surface will be greatly disturbed, which is an advantage of powder casting. This results in the disappearance of the .

そこで本出願人は先にガス気泡に成長する前のガス気泡
の核の段階で流動を与える、すなわちガス気泡となって
しまった段階よりも、それrζ成長する前の核の段階の
方がはるかに小さい力で除去できること並びにこのガス
気泡の核は鋳型内湯面からすでに発生することに看目し
、この湯面自身に溶鋼流動を与えれば湯面を大きく乱す
ことのない極めてゆるやかな流速でもって鋳片表面での
ガス気泡の発生が抑止できることを提案した(%願昭5
3−99972号)。
Therefore, the present applicant first provides a flow at the stage of the nucleus of the gas bubble before it grows into a gas bubble. In other words, the stage of the nucleus before it grows is far greater than the stage at which it has become a gas bubble. Considering that the gas bubbles can be removed with a small force and that the core of these gas bubbles is already generated from the molten metal surface in the mold, if the molten steel flow is applied to the molten metal surface itself, it can be removed at an extremely gentle flow rate without significantly disturbing the molten metal surface. It was proposed that the generation of gas bubbles on the surface of the slab could be suppressed (% Gansho 5
No. 3-99972).

しかしながら、この方法では、湯面への流動の与え方と
して湯面に対して垂直の回転流を採用した場合に、流速
が湯面を乱さないようなゆるやかなものであることから
、鋳型の両短辺側湯面部において溶鋼流動のないよどみ
部の生じるのは避けられず、酸素含有量によっては鋳片
表面にガス気泡が露呈する欠点があった。
However, in this method, when a rotating flow perpendicular to the molten metal surface is adopted as a method of imparting flow to the molten metal surface, the flow velocity is slow enough not to disturb the molten metal surface, so both molds It is unavoidable that a stagnation area where the molten steel does not flow occurs in the hot water surface area on the short side, and depending on the oxygen content, gas bubbles may be exposed on the surface of the slab.

しかして、上記欠点を解消すべく種々検討したところ、
鋳型内の凝固界面に連続した電磁流動を与えるようにす
れば上記欠点の解消できることが判明した。
However, after conducting various studies to resolve the above drawbacks, we found that
It has been found that the above drawbacks can be overcome by applying continuous electromagnetic flow to the solidification interface within the mold.

すなわち、このような電磁流動であると上記のような溶
鋼流動のよどみ部の発生は無くなり鋳片表面でのガス気
泡の発生は確実に抑止できるものである。
That is, with such electromagnetic flow, the above-mentioned stagnant portions of the molten steel flow will not occur, and the generation of gas bubbles on the surface of the slab can be reliably suppressed.

本発明でいう電磁流動とは以下のものを指す。The electromagnetic flow referred to in the present invention refers to the following.

前述の先願と同様 1)気泡の核発生はその成長に比べておこりにくく所定
以上の元素濃度を必要とする、 2)気泡の核は凝固開始点すなわち湯面部位の凝固界面
からすでに発生する、 3)元素濃度は凝固界面において蓄しく濃化する、事実
に着目し、鋳型内溶鋼湯面部位凝固界面における元素濃
度を気泡の核の発生限界以下とし、しかもその際に湯面
上パウダーを乱さない程度の流速の電磁流動を指す。
Similar to the previous application mentioned above, 1) Bubbles nucleation is difficult to occur compared to bubble growth and requires a certain element concentration or higher, 2) Bubbles nucleation is already generated from the solidification interface at the point where solidification starts, that is, at the surface of the hot water. , 3) Focusing on the fact that the element concentration accumulates at the solidification interface, we set the element concentration at the solidification interface at the surface of the molten steel in the mold to be below the limit for the generation of bubble nuclei, and at the same time, we Refers to electromagnetic flow at a flow velocity that does not cause disturbance.

すなわち、鋳型内湯面部位の凝固界面全周囲に与えられ
る気泡の核の生成の抑制に有効な膜状の溶鋼流動をいい
、後(こ詳述する如く特に鋳型に設置したりニヤモータ
ーにて与える電磁流動をいう。
In other words, it refers to a film-like flow of molten steel that is effective in suppressing the generation of bubble nuclei that is applied around the solidification interface at the surface of the mold. Refers to electromagnetic flow.

このように鋳造過程において湯面部位の凝固界面周壁に
溶鋼の電磁流動を与えることにより凝固界面での成分元
素の濃化が抑制されて得られる鋳片の表層部全周に健全
な凝固層が形成されしかもこの流動は後述の如くゆるや
かで、かつ凝固壁に近い部分に与えるものであることか
ら湯面(パウダー)を何ら乱すことがないものである。
In this way, by applying electromagnetic flow of molten steel to the surrounding wall of the solidification interface at the surface area during the casting process, the concentration of component elements at the solidification interface is suppressed, and a healthy solidified layer is formed around the entire surface layer of the resulting slab. As will be described later, this flow is gentle and does not disturb the surface of the powder (powder) in any way since it is applied to a portion close to the coagulation wall.

上記電磁流動は、後述の如く気泡様の生成抑制に必要で
かつ湯面上パウダーを乱さないO1l〜1.0m/se
cの流速である。
The above-mentioned electromagnetic flow is necessary for suppressing the generation of bubbles as described below, and does not disturb the powder on the hot water surface.
The flow rate is c.

而して、この電磁流動の及ぶ範囲が広い場合には、溶鋼
注入用浸漬ノズルに影響を受けて湯面パウダーに乱れが
生じ、パウダー巻き込み等により正常なパウダーキャス
ティングが実施できなくなるので、電磁流動はできる限
り凝固壁に近い部分で生じさせるのが良い。
If the area covered by this electromagnetic flow is wide, the molten metal surface powder will be disturbed due to the influence of the immersion nozzle for pouring molten steel, and normal powder casting will not be possible due to powder entrainment. should be generated as close to the solidified wall as possible.

このためには、電磁流動を与えるリニヤモーターの周波
数を例えば5〜20Hzのうちでも高い側に設定し、得
られる流速勾配を太きくシ、凝固壁側で高く、離れる(
鋳型中央へ行く)に従って急速に低くなるようにする必
要がある。
To this end, the frequency of the linear motor that provides electromagnetic flow is set to the higher side of, for example, 5 to 20 Hz, and the resulting flow velocity gradient is made thicker, higher on the solidification wall side, and farther away (
(toward the center of the mold).

ところが周波数を高く設定すると推力が小さくなってリ
ニヤモーターの影響範囲がせまくなり、鋳型高さ方向で
の設置個数を増加する必要が生じたり、あるいは流速の
絶対値そのものも低下するので、電流値を向上させるこ
とによりこれらを解消する。
However, if the frequency is set high, the thrust force will be small and the range of influence of the linear motor will be narrowed, making it necessary to increase the number of molds installed in the height direction of the mold, or the absolute value of the flow velocity itself will decrease. These can be resolved by improving the performance.

なお鋳型中央にまで浴am、動を与える公知例のものは
、本発明でいう電磁流動とは逆に流速勾配を成るべく小
さくするため周波数を成るべく低く設定しているわけで
あるが、これであるといくら速度勾配が小さいといって
も壁面側の流速は早くなり、結果としてパウダーを乱す
ような流速となってしまう。
In addition, in the known examples that apply bath motion to the center of the mold, the frequency is set as low as possible in order to minimize the flow velocity gradient, contrary to the electromagnetic flow referred to in the present invention. In this case, no matter how small the velocity gradient is, the flow velocity on the wall side becomes high, resulting in a flow velocity that disturbs the powder.

以上のように リムド、セミキルド鋼等のいわゆる未脱
酸鋼の連鋳化に際しては、鋳型内凝固界面における連続
した膜状の電磁流動が有効であるが、一方、キルド鋼に
おいてもこのような電磁流動が有効である。
As mentioned above, when continuously casting so-called undeoxidized steels such as rimmed and semi-killed steels, continuous film-like electromagnetic flow at the solidification interface in the mold is effective, but on the other hand, such electromagnetic flow is also effective for killed steels. Flow is effective.

すなわち、キルド鋼を連続鋳造により製造する場合、ア
ルミの割れ感受性により表面疵が発生し易く、このため
鋳型内パウダーを低粘性のものにして、パウダーの不均
一流入を防止したり、スラグ化率を改善して対処してい
るが、これらによっても抜本的に鋳片表面欠陥の発生は
防止されていない。
In other words, when killed steel is manufactured by continuous casting, surface flaws are likely to occur due to the sensitivity of aluminum to cracking. Therefore, the powder in the mold should be made with a low viscosity material to prevent uneven inflow of powder and to reduce the slagging rate. However, these efforts have not fundamentally prevented the occurrence of surface defects on slabs.

このようなキルド鋼の連続鋳造に尚って、上記のような
電磁流動を与えると、凝固界面に与えられる溶鋼流動]
こてここに元素濃度の低くなった擬似リム層が極めてゆ
るやかな流速でもって形成され、これによって鋳片表面
のアルミの割れ感受性が低くなり、表面欠陥の発生が抑
制できるものである。
When such electromagnetic flow is applied during continuous casting of killed steel, the molten steel flow applied to the solidification interface]
A pseudo rim layer with a low element concentration is formed on the trowel at an extremely slow flow rate, thereby reducing the cracking susceptibility of the aluminum on the slab surface and suppressing the occurrence of surface defects.

このように、脱酸鋼、未脱酸鋼にかかわらず、鋼の連鋳
にとっては鋳型内凝固界面における連続した電磁流動が
極みて有効である。
Thus, continuous electromagnetic flow at the solidification interface in the mold is extremely effective for continuous casting of steel, regardless of whether it is deoxidized steel or non-deoxidized steel.

ところが、上記の電磁流動を得ようとするには可成りの
困難が伴なう。
However, trying to obtain the above-mentioned electromagnetic flow is accompanied by considerable difficulties.

すなわち、一応理論的には上記の鋳型内凝固界面におい
て連続した膜状の電磁流動を与えることはできるが、実
際問題として、その対象が特に断面形状矩形のスラブで
ある場合には、鋳型長辺と短片との長さに相当な違いが
あるため、鋳型長辺で得られた溶鋼流動を短辺にスムー
スに伝えることができない。
In other words, in theory it is possible to provide a continuous film-like electromagnetic flow at the solidification interface in the mold, but in practice, when the object is a slab with a rectangular cross-section, the long side of the mold Since there is a considerable difference in length between the mold and the short piece, the flow of molten steel obtained on the long side of the mold cannot be smoothly transmitted to the short side of the mold.

与える流速が遅い場合にはそれがよどみとなって表われ
逆に早い場合には湯面の乱れとなって表われる。
If the flow rate is slow, it will appear as stagnation, and if it is fast, it will appear as turbulence on the hot water surface.

前者の場合には所期の目的は達せられず、後者の場合に
はパウダーキャスティングによるメリットを消失させ、
最悪の場合はブレークアウトをおこす。
In the former case, the intended purpose cannot be achieved, and in the latter case, the benefits of powder casting are lost,
In the worst case, a breakout will occur.

本発明は上記の欠点を解消するもので、鋳型内において
スムースな膜状の電磁流動が得られるようにした連続鋳
造方法である。
The present invention solves the above-mentioned drawbacks and is a continuous casting method that allows smooth film-like electromagnetic flow to be obtained within the mold.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明の一例装置を示す。FIG. 1 shows an example device of the present invention.

第1図に示すように本発明においては、スラブ鋳型1の
両長辺2,2′に沿ってそれぞれリニヤモーター3,3
′を設置する。
As shown in FIG. 1, in the present invention, linear motors 3 and 3 are provided along both long sides 2 and 2' of the slab mold 1, respectively.
′ is installed.

そしてこの推力を互0)1こ異なる方向4,4′に与え
るようにして凝固界面に連続した膜状の電磁流動5を与
える。
Then, by applying this thrust in directions 4 and 4' that are different from each other by 0)1, a continuous film-like electromagnetic flow 5 is applied to the solidification interface.

この際本発明では鋳型1の短片形状として例えば外方凸
の弧状の短片6゜6′を用いて鋳型のすみ取りを行なう
At this time, in the present invention, as the short piece shape of the mold 1, for example, an outwardly convex arc-shaped short piece 6.degree. 6' is used to take out the corner of the mold.

このような短片6,6′を用いると長辺2,2′から短
片6,6′へ向う凝固界面溶鋼流をスムースに案内する
ので、流速が遅くてもよどみは生ぜずまた早くても湯面
に乱れは生ぜず、安定的に、連続したスムースな流れを
鋳型内凝固界面において付与できるものである。
When such short pieces 6, 6' are used, the flow of molten steel at the solidification interface from the long sides 2, 2' to the short pieces 6, 6' is smoothly guided, so even if the flow velocity is slow, stagnation will not occur, and even if the flow rate is fast, the molten steel will not stagnate. No disturbance occurs on the surface, and a stable, continuous and smooth flow can be provided at the solidification interface in the mold.

上記の短片6,6′の弧状としては、鋳片厚みの1/2
〜2倍の曲率のものが好ましい。
The arc shape of the short pieces 6, 6' is 1/2 of the slab thickness.
Preferably, the curvature is twice as large.

曲率が2倍以上になると、長辺から短辺への流れのスム
ースさを損なう。
If the curvature is doubled or more, the smooth flow from the long side to the short side will be impaired.

なお、以上の例では外方凸の弧状を示したが弧状以外の
すみ取りであってもよい。
In addition, although the outwardly convex arc shape was shown in the above example, it may be rounded other than an arc shape.

上記の連続した電磁流動を与える位置(高さ方向)とし
ては、湯面を確実)コ含むなら鋳型内金てでもよいが、
経済性、設備面を考慮して戒るべく上方が好ましく、前
述の気泡のない層あるいは擬似リム層が適当量形成され
るように湯面を含み、そこから上記の適当凝固厚が形成
されるまでの間その部位における凝固界面に上記連続し
た電磁流車種を付与せしめるものである。
The position (in the height direction) that provides the continuous electromagnetic flow mentioned above may be the inner mold if it includes the surface of the molten metal, but
The upper part is preferable in consideration of economy and equipment, and includes the molten metal surface so that an appropriate amount of the bubble-free layer or pseudo rim layer described above is formed, and from there the above-mentioned appropriate solidification thickness is formed. Until then, the continuous electromagnetic flow type described above is applied to the solidification interface at that location.

その一例を第2図に示す。An example is shown in FIG.

第2図は第1図のA−A’断面図である。第2図に示す
ように湯面7〜湯面下LO〜20CrrLの範囲内1ζ
リニヤモーター3を設置すれば、上記事項を満足する。
FIG. 2 is a sectional view taken along the line AA' in FIG. As shown in Fig. 2, 1ζ is within the range of hot water level 7 to below the hot water level LO to 20 CrrL.
If the linear motor 3 is installed, the above matters will be satisfied.

更に上記連続した電磁流動の流速については0、1〜1
.0 mlsec特に0.4〜1.0 mlsecが好
ましい。
Furthermore, the flow velocity of the continuous electromagnetic flow is 0, 1 to 1.
.. 0 mlsec, particularly 0.4 to 1.0 mlsec is preferable.

すなわち、O,l−0,4mlsec以上の流速であれ
ば、気泡核の生成の抑制並びに擬似リム層の形成に有効
であり、一方1.0m/sec以上では効果が頭打ちと
なるばかりか、いくら上述の本発明に基づいてスムース
な水平回転流が得られるようにしても長辺からの流れの
短片への衝突エネルギーが大きくなり発生上昇流が強く
なりすぎて湯面を乱してしまうからである。
In other words, a flow rate of O,l-0,4 mlsec or more is effective in suppressing the generation of bubble nuclei and forming a pseudo rim layer, while at a flow rate of 1.0 m/sec or more, the effect not only reaches a plateau, but also Even if a smooth horizontal rotating flow is obtained based on the above-mentioned invention, the energy of collision of the flow from the long side with the short piece becomes large, and the generated upward flow becomes too strong, disturbing the hot water level. be.

以上のように本発明においては、スラブ鋳型の短片形状
として外方凸の弧状のものを採用して鋳型のすみ取りを
行ない鋳型内凝固界面にスムースな連続した膜状電磁流
動を与えるようにしたものである。
As described above, in the present invention, an outward convex arc shape is adopted as the short piece shape of the slab mold, and the corners of the mold are taken out to provide a smooth continuous film-like electromagnetic flow to the solidification interface in the mold. It is something.

次に本発明の実施例を比較例と共に説明する。Next, examples of the present invention will be described together with comparative examples.

下記表に示す未脱酸鋼(A61.2)脱酸鋼(/i6゜
3.4)を対象に本発明を実施した。
The present invention was carried out using non-deoxidized steel (A61.2) and deoxidized steel (/i6°3.4) shown in the table below.

鋳造条件は以下の通りである。The casting conditions are as follows.

処理量は何れも100Tonである。The throughput is 100 tons in both cases.

鋳型寸法・・・・・・250%(厚)X2100%(巾
・最大) 鋳型短辺形状・・・・・・125%Rの曲率のものを使
用(第1図) 鋳造速度・・−・−0,7m / mi nリニヤモー
ター設置位置並びに推力方向、設置位置の鋳片凝固厚・
・・・・・鋳型内湯面下LOOiiで各長辺tこ1ケ、
それぞれ の推力方向が反対となる よう設置、凝固厚5駕 リニヤモーターの出力・・・・・・鋳型内湯面での水平
注入ノズル・・・・・・外径110%のものを鋳型中央
で使用 以上の実施例1〜4何れの場合も鋳型内湯面上パウダー
の乱れは一切なく、実施例1.2においては鋳片表面に
ガス気泡の無い層が周囲全体に約5%形成され、その内
部にガス気泡が位置していた。
Mold dimensions: 250% (thickness) x 2100% (width, maximum) Mold short side shape: Use one with a curvature of 125% R (Fig. 1) Casting speed: -0.7m/min Linear motor installation position and thrust direction, slab solidification thickness at installation position,
・・・・・・LOOii below the surface of the mold in the mold, 1 piece on each long side,
Installed so that each thrust direction is opposite, solidification thickness 5 cm Linear motor output...Horizontal injection nozzle at the surface of the mold inside the mold...110% outer diameter is used in the center of the mold In any of the above Examples 1 to 4, there was no disturbance of the powder on the surface of the mold, and in Example 1.2, a layer with no gas bubbles was formed on the surface of the slab by about 5% around the entire periphery, and the inside Gas bubbles were located in.

そして実施例3,4においては鋳片表面に擬似リム層が
周囲全体に均一に5%形形成れていた。
In Examples 3 and 4, the pseudo rim layer was uniformly formed on the surface of the slab by 5% over the entire circumference.

そして以上の如くして得た鋳片を以後常法に従い最終成
品としたが、実施例1.2においてはガス気泡に基づく
表面欠陥は全く見られなかったし、3,4においては表
面手入れ率は通常のものに比べ50fo減少した。
The slabs obtained as described above were then made into final products according to a conventional method. In Example 1.2, no surface defects due to gas bubbles were observed, and in Examples 3 and 4, the surface care rate was was reduced by 50fo compared to the normal one.

このように実施例では鋳型向凝固界面にスムースな連続
水平回転流が得られたものである。
As described above, in the example, a smooth continuous horizontal rotation flow was obtained at the pro-solidification interface of the mold.

比較例 実施例1〜4と同−組成の溶鋼を、短辺形状が平坦な通
常鋳型を採用し、/i61及び3の溶鋼については、こ
の条件以外は本発明実施例と同−条件で鋳造し、/16
.2及び4についてはこれ以外に、電磁流動の@鋼流速
を0.2 m/secとしたものと、1、1 m/s
e cとしたものについてそれぞれ鋳造した。
Comparative Example Molten steel with the same composition as Examples 1 to 4 was cast using a normal mold with a flat short side shape, and the molten steel of /i61 and 3 was cast under the same conditions as the present invention example except for these conditions. /16
.. Regarding 2 and 4, in addition to this, the electromagnetic flow @ steel flow velocity is 0.2 m/sec, and 1, 1 m/s
Each of the following materials was cast.

しかし、7g61.3及び2,4のうち鋳造速度を1、
t m/secとしたもの1こついては湯面の乱れが
激しく、パウダーが鋳型中央に寄り集まってしまいブレ
ークアウトのけ念があったので、途中でリニヤモーター
の推力を与えるのを止めて鋳造した。
However, among 7g61.3 and 2,4, the casting speed is 1,
t m/sec 1 The problem was that the molten metal surface was violently turbulent, and the powder gathered in the center of the mold, and there was a fear of a breakout, so I stopped applying thrust from the linear motor midway through casting. .

この結果、Al11及び2の鋳片はピンホールが多発し
、著しい歩留低下をきたし、/I63,4の鋳片は表面
手入れ率は通常レベルに戻ってしまった。
As a result, the slabs of Al11 and Al2 had many pinholes, resulting in a significant decrease in yield, and the slab of /I63,4 returned to the normal level of surface care.

そして、A、2.4で、鋳造速度を0.2 m/sec
としたもののうち/162については両短辺の対角部位
にピンホールが多発した。
Then, at A, 2.4, the casting speed is 0.2 m/sec.
Of those, for /162, there were many pinholes on the diagonal portions of both short sides.

/16.4についても対角部位での手入れ率が上昇し、
本発明実施例fコ比べ歩留は5〜lO%低下した。
For /16.4, the maintenance rate at the diagonal area also increased,
The yield was lowered by 5 to 10% compared to Example F of the present invention.

これは短辺形状が平坦でしかも流速が低いことからよど
みが生じ連続した電磁流動が凝固界面に得られなかった
ためと認められる。
This is believed to be because the short sides were flat and the flow velocity was low, which caused stagnation and made it impossible to obtain continuous electromagnetic flow at the solidification interface.

なお、上記実施例並びに比較例で用いたパウダーは例れ
も以下のものを使用した。
The following powders were used in the above examples and comparative examples.

CaO/S i 02 = 1.0 A1203−1O(伸 Na+−3,5 に+=2.5 F−=4 C= 4.5 粘性 at 1500°G、2 ・3Poise融点
11508C 更に本発明の実施に際し、第3図に示したものを使用す
ると一層好ましい。
CaO/S i 02 = 1.0 A1203-1O (stretched Na+-3,5+=2.5 F-=4 C=4.5 Viscosity at 1500°G, 2 3 Poise Melting point 11508C Further implementation of the present invention In this case, it is more preferable to use the one shown in FIG.

すなわち、ノズル9に仕切板10を取り付けて、両長辺
で生ぜしめた反対方向の電磁流動が互いに干渉し合わな
いようにし、その上に、ノズル噴出口11の噴出方向が
電磁流動方向とそうようにしてノズル噴出流が電磁流動
に影響を与えないようにしたものである。
That is, a partition plate 10 is attached to the nozzle 9 to prevent the electromagnetic flows in opposite directions generated on both long sides from interfering with each other, and in addition, the ejection direction of the nozzle outlet 11 is set so that the direction of the electromagnetic flow is the same as that of the electromagnetic flow. In this way, the nozzle jet stream does not affect the electromagnetic flow.

以上実施例並びに比較例から明らかなように、本発明は
、鋳型向凝固界面に電磁流動を与えて連続鋳造するに当
り、短片形状として外方凸の弧状といったすみ取りとし
たものを用いるもので、よどみや、湯面の乱れを生じさ
せることなくスムースな連続した水平回転流を凝固界面
に与えて連続鋳造できる。
As is clear from the above Examples and Comparative Examples, the present invention uses an outwardly convex arc shape with a corner cut as the short piece shape in continuous casting by applying electromagnetic flow to the pro-solidification interface of the mold. , continuous casting can be performed by applying a smooth continuous horizontal rotating flow to the solidification interface without causing stagnation or disturbance of the molten metal surface.

従って未脱酸鋼の連鋳化が安定して可能となると共に、
脱酸鋼の連鋳に当っては、表面キズの発生化減が可能と
なる。
Therefore, continuous casting of non-deoxidized steel becomes possible in a stable manner, and
When continuously casting deoxidized steel, it is possible to reduce the occurrence of surface scratches.

このように本発明は未脱酸鋼並びに脱酸鋼の連鋳化に寄
与すること犬である。
In this way, the present invention contributes to the continuous casting of unoxidized steel and deoxidized steel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一例を示す上面模式図、第2図は第
1図のA−A断面を示す模型図、第3図は本発明の他の
例を示す部分断面図である。 1・・・・・・スラブ鋳型、2,2′・・・・・・長辺
、3 、3’・・・・・リニヤモーター、4,4’・・
・・・・推力方向、5・・・・・・電磁流動、6,6′
・・・・・・短辺、7・・・・・・湯面、8・・・・・
・パウダー、9・・・・・・注入ノズル、10・・・・
・・仕切り板、11・・・・・・噴出口。
FIG. 1 is a schematic top view showing an example of the present invention, FIG. 2 is a model view taken along the line AA in FIG. 1, and FIG. 3 is a partial sectional view showing another example of the present invention. 1... Slab mold, 2, 2'... Long side, 3, 3'... Linear motor, 4, 4'...
...Thrust direction, 5... Electromagnetic flow, 6,6'
...Short side, 7...Hot water surface, 8...
・Powder, 9...Injection nozzle, 10...
・・Partition plate, 11・・・・Spout outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 内周を角取りした鋳型の両長辺Qコ沿って配置した
りニヤモーターにて両長辺と接する鋳型的溶鋼に長辺長
さ方向で互いに異なる方向に推力を与えて鋳型向凝固界
面1ζ連続した電磁流動を形成しつつ鋳造することを特
徴とする鋼スラブの連続鋳造方法。
1 Place along both long sides Q of a mold with a chamfered inner periphery, or use a near motor to apply thrust in different directions along the length of the long sides to the mold-like molten steel in contact with both long sides to create a mold pro-solidification interface. 1. A continuous casting method for steel slabs, characterized by casting while forming continuous electromagnetic flow.
JP6576779A 1979-05-28 1979-05-28 Continuous casting method for steel slabs Expired JPS5852457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6576779A JPS5852457B2 (en) 1979-05-28 1979-05-28 Continuous casting method for steel slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6576779A JPS5852457B2 (en) 1979-05-28 1979-05-28 Continuous casting method for steel slabs

Publications (2)

Publication Number Publication Date
JPS55158859A JPS55158859A (en) 1980-12-10
JPS5852457B2 true JPS5852457B2 (en) 1983-11-22

Family

ID=13296494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6576779A Expired JPS5852457B2 (en) 1979-05-28 1979-05-28 Continuous casting method for steel slabs

Country Status (1)

Country Link
JP (1) JPS5852457B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106862508B (en) * 2017-02-14 2019-05-31 钢铁研究总院 A kind of arc-shaped narrow copper plate crystallizer

Also Published As

Publication number Publication date
JPS55158859A (en) 1980-12-10

Similar Documents

Publication Publication Date Title
JPH11291026A (en) Immersion nozzle for introducing molten steel into mold
JPS5852457B2 (en) Continuous casting method for steel slabs
JPS564351A (en) Tundish for continuous casting
US4202397A (en) Method of continuously casting molten metal
JP3096879B2 (en) Continuous casting method for slabs with excellent surface and internal quality
JPS597536B2 (en) Continuous steel casting method
JPS595057B2 (en) Continuous steel casting method
JPS597537B2 (en) Continuous casting method for steel slabs
JPS5835784B2 (en) Continuous casting method for steel slabs
JPS6123559A (en) Oscillating method of mold for continuous casting of steel
JPH0238058B2 (en)
JPH0243574B2 (en)
JPS5924903B2 (en) Continuous casting method for weakly deoxidized steel slabs
JP3088927B2 (en) Beam blank casting mold
JPS5775255A (en) Continuous horizontal casting method for steel
JPS6264461A (en) Device for accelerating flotation of inclusion in molten steel
US3727668A (en) Method and apparatus for pouring liquid metal into a continuous-casting mold
JPS6123555A (en) Bottom pouring ingot making method
JPS6153144B2 (en)
JPH0243575B2 (en)
JPS6343752A (en) Molten metal vessel providing weir
JPS5852458B2 (en) Continuous steel casting method
JP3139927B2 (en) Continuous casting of thin slabs
JPH07112252A (en) Method for stirring molten steel in mold
JPS6289557A (en) Continuous casting method