JPS5852294B2 - High-density solid material ion generator - Google Patents

High-density solid material ion generator

Info

Publication number
JPS5852294B2
JPS5852294B2 JP2412976A JP2412976A JPS5852294B2 JP S5852294 B2 JPS5852294 B2 JP S5852294B2 JP 2412976 A JP2412976 A JP 2412976A JP 2412976 A JP2412976 A JP 2412976A JP S5852294 B2 JPS5852294 B2 JP S5852294B2
Authority
JP
Japan
Prior art keywords
solid material
laser beam
density
beam source
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2412976A
Other languages
Japanese (ja)
Other versions
JPS52107887A (en
Inventor
主税 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2412976A priority Critical patent/JPS5852294B2/en
Publication of JPS52107887A publication Critical patent/JPS52107887A/en
Publication of JPS5852294B2 publication Critical patent/JPS5852294B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 本発明は高密度固体物質イオン生成装置に関する。[Detailed description of the invention] The present invention relates to a high density solid material ion generating device.

従来から知られている固体蒸気をイオン化する方式とし
てはクヌーセン・セル(KmdsenCell)を用い
て発生した固体蒸気をイオン化する方式またはスパッタ
リングにより発生させた原子をイオン化する方式等が代
表的なものである。
Conventionally known methods of ionizing solid vapor include a method of ionizing solid vapor generated using a Knudsen cell or a method of ionizing atoms generated by sputtering. .

しかし乍ら、例えば高融点活性金属であるモリブデン等
について1.充分な強度のビーム状イオン束を発生させ
ることについて成功していない現状である。
However, for example, regarding molybdenum, which is an active metal with a high melting point, 1. At present, no success has been achieved in generating a beam-like ion flux of sufficient intensity.

本発明は、連続的なフ2ツシュ蒸発法と高効率放電例え
ばペイヤード・アルパー) (B ayard −Al
pert )電離真空計型またはペニング放電型の高効
率放電方式とを組合せて、高強度即ち高エネルギーを有
し高イオン密度のイオン流を得る、前記特許請求の範囲
各項に記載の高密度固体物質イオン生成装置を提供する
ものである。
The present invention utilizes a continuous fuel evaporation method and a high efficiency discharge such as Payard-Alper.
pert) A high-density solid according to each of the above claims, which is combined with an ionization vacuum gauge type or Penning discharge type high-efficiency discharge system to obtain an ion flow with high intensity, that is, high energy, and high ion density. A substance ion generation device is provided.

本発明装置の実施態様の数例を示す添附図面べ基づいて
更に詳述する。
The apparatus of the present invention will be described in further detail with reference to the accompanying drawings showing several embodiments of the apparatus of the present invention.

第1図は本発明装置の各部材の配置関係を示す略図であ
って、1はレーザ光束源または高密度電子ビーム源、1
′はレーザ用気密窓、2は蒸発原子供給用固体物質、3
はレーザ光束又は電子ビーム、4は格子状又は網状の電
子加速電極(グリッド)、5は蒸発原子イオン化装置で
そのライラメントから出た熱電子を引きよせビームの通
過する空間へ導入する作用をする。
FIG. 1 is a schematic diagram showing the arrangement relationship of each member of the apparatus of the present invention, in which 1 is a laser beam source or high-density electron beam source;
' is a gas-tight window for the laser, 2 is a solid material for supplying vaporized atoms, and 3 is a gas-tight window for the laser.
is a laser beam or an electron beam, 4 is a lattice-like or net-like electron accelerating electrode (grid), and 5 is an evaporative atom ionization device that functions to pull the thermoelectrons emitted from the lilament and introduce them into the space through which the beam passes. .

6はシールド電極、7はイオン引出電極、8はイオンビ
ーム束を示す。
6 is a shield electrode, 7 is an ion extraction electrode, and 8 is an ion beam flux.

上記装置によるイオンビーム束生成方法を説明する。A method of generating an ion beam bundle using the above device will be explained.

レーザ光束源または高密度電子ビーム源1よりレーザ光
束又は電子ビーム3を蒸発原子供給用固体物質2に向け
て照射する。
A laser beam or electron beam 3 is irradiated from a laser beam source or a high-density electron beam source 1 toward a solid material 2 for supplying evaporated atoms.

この場合レーザ光束を用いる場合はレーザ用気密窓1′
を用いる。
In this case, if a laser beam is used, the laser airtight window 1'
Use.

蒸発原子供給用物質例へばモリブデン棒(4mzφ×6
mvt長さ)2へのレーザ光束又は電子ビームの照射に
より、該モリブデン棒に管状の通路が形成され、モリブ
デン原子が蒸発される。
An example of a material for supplying vaporized atoms is a molybdenum rod (4 mzφ x 6
By irradiating the molybdenum rod with a laser beam or an electron beam, the molybdenum atoms are evaporated.

この蒸発M。原子はレーザ光束又は電子ビームの照射を
続行することによシ、レーザ光束又は電子ビームの照射
方向の空間にクヌーセンの余弦の法則によって拡散され
ることなく高密度で前進しかつ押出作用をうけながら、
電子加速電極4内を通過時に蒸発原子イオン化装置、例
えば熱電子発生フィラメント(タングステン製)5から
の電子の作用によりイオン化テれ、シールド電極6.イ
オン引出電極7によって高密度の固体イオンビーム束8
が得られる。
This evaporation M. By continuing to irradiate the laser beam or electron beam, atoms advance in the space in the direction of the laser beam or electron beam at high density without being diffused according to Knudsen's law of cosines, and while being subjected to extrusion action. ,
When passing through the electron accelerating electrode 4, ionization warping occurs due to the action of electrons from an evaporative atom ionization device, for example, a thermionic filament (made of tungsten) 5, and a shield electrode 6. A high-density solid-state ion beam flux 8 is produced by the ion extraction electrode 7.
is obtained.

なお、固体物質2は一体のものでなく更に融点の高い管
状物質の内壁全面に蒸発原子供給用固体物質を内装して
もよい。
Note that the solid material 2 is not integral, and a solid material for supplying evaporated atoms may be provided on the entire inner wall of a tubular material having a high melting point.

第2図に示す具体例は前記例の蒸発原子イオン化装置と
して、ペニング放電計型の電極構造を用いた場合を示し
、軸方向磁場を形成するために永久磁石(または電磁コ
イル)9を用いた生成装置を示す。
The specific example shown in FIG. 2 shows a case where a Penning discharge meter type electrode structure is used as the evaporative atom ionization device of the above example, and a permanent magnet (or electromagnetic coil) 9 is used to form an axial magnetic field. Shows the generator.

第3図は、蒸発原子供給用固体物質を連続的に供給し得
る機構を備えた本発明装置の一例を示す。
FIG. 3 shows an example of an apparatus of the present invention equipped with a mechanism capable of continuously supplying a solid substance for supplying evaporated atoms.

図面において2′は前記固体物質の薄い円板であり軸1
0を中心として回転しかつ軸10と共に上下動する。
In the drawing, 2' is a thin disk of said solid material, with axis 1
It rotates around 0 and moves up and down together with the shaft 10.

この場合、2は前記薄い円板1と同一材料の中空体であ
り、その中空部をレーザ光束源又は電子ビーム3が通過
し、従って前記薄い円板2はレーザ・ビーム3をその外
周よシ順次中心に向って、即ち渦巻状に横切りながら回
転し、固体物質はレーザビーム3により順次蒸発される
In this case, 2 is a hollow body made of the same material as the thin disk 1, through which the laser beam source or the electron beam 3 passes, and therefore the thin disk 2 directs the laser beam 3 from its outer circumference. The solid material is sequentially evaporated by the laser beam 3 as it rotates sequentially toward the center, that is, in a spiral manner.

中空体2はその長手方向において2分してあり、前記円
板2′がその間で回転する。
The hollow body 2 is divided into two parts in its longitudinal direction, and the disk 2' rotates between them.

該中空体2の中空部はレーザ・ビームの通路を形成し、
この中空部内壁に付着した蒸着物は連続して照射堺れる
レーザビームによって再び蒸発される。
The hollow part of the hollow body 2 forms a path for the laser beam,
The deposits adhering to the inner wall of the hollow portion are evaporated again by the continuously irradiated laser beam.

上記の各具体的装置の場合における主たる実施条件はほ
ぼ次の通りである: 真空度 :<2X10 )−ル ミ子加速電極に印加する電圧:150〜250V蒸発原
子イオン化装置の熱電:0.1−1−1O子流 磁束密度 :200〜30000e シールド電極に印加する電圧:の〜−50Vイオン引出
電極に印加する電圧二 〇V 本発明の方法で生成される高密度かつ高エネルギー固体
イオンを従来法(クヌーセン法)に比較すれば次のよう
に説明することができる。
The main operating conditions for each of the above-mentioned specific devices are approximately as follows: Degree of vacuum: <2X10) - Voltage applied to the lumiton accelerating electrode: 150-250V Thermoelectricity of the evaporative atom ionization device: 0.1-1 -1O subcurrent magnetic flux density: 200-30000e Voltage applied to shield electrode: ~-50V Voltage applied to ion extraction electrode 20V High-density and high-energy solid ions produced by the method of the present invention are Knudsen's method) can be explained as follows.

金属蒸発原子の温度は、その金属の融点に近い(実験に
よれば融点より200℃程度高い)ものであるから、蒸
気圧従って蒸気密度は金属蒸気の発生源で測定してP(
Tm+200)以下である(但しTmUその金属の融点
である)。
Since the temperature of metal vaporized atoms is close to the melting point of the metal (according to experiments, it is about 200°C higher than the melting point), the vapor pressure and therefore the vapor density can be measured at the source of the metal vapor and calculated as P(
Tm+200) or less (where TmU is the melting point of the metal).

例えば蒸発源がモリブデンであると、その蒸気圧は最大
lトールである。
For example, if the evaporation source is molybdenum, its vapor pressure is at most 1 Torr.

これらの蒸発金属原子はクヌーセンの余弦の法則に従っ
て放射されるので、イオン化領域では最大10−2 ト
ール程度である。
These evaporated metal atoms are emitted according to Knudsen's law of cosines, so the maximum energy in the ionization region is about 10-2 Torr.

本発明方法の場合、蒸気発生源の蒸気温度は計算上では
容易に20000°Kを超えるが、重要なことは蒸気の
角度分布がCo5nθ(=(Cosθ)〕(n>4)で
あることで、このために蒸気はイオン化領域でも細いビ
ーム状となり、動圧であられして1ト一ル以上のビーム
内蒸気密度が得られる。
In the case of the method of the present invention, the steam temperature of the steam generation source easily exceeds 20,000°K based on calculations, but the important thing is that the angular distribution of the steam is Co5nθ (= (Cosθ)] (n > 4). For this reason, the vapor forms a narrow beam even in the ionization region, and is agitated by the dynamic pressure, resulting in an in-beam vapor density of 1 torr or more.

更に本発明の方法は、得られるイオンビーム従って原子
ビームの密度が犬である。
Furthermore, the method of the invention has a high density of the resulting ion beam and therefore the atomic beam.

この理由は前記具体例で示したように中央の管状通路(
事実上の蒸発原子供給源)の管壁温度を該通路を構成す
る金属の融点近くまで上昇させることによって達成され
る。
The reason for this is that the central tubular passage (
This is accomplished by raising the temperature of the tube wall of the evaporated atom source (in effect, the source of vaporized atoms) to near the melting point of the metal that makes up the passage.

更にレーザ・ビーム又は電子ビームの照射(進行)方向
への押出作用によってあたかもジェット気流における動
圧と静圧の関係の如く、進行方向について特に密度が高
めら゛れる効果がある。
Furthermore, the pushing action of the laser beam or electron beam in the irradiation (travel) direction has the effect of increasing the density particularly in the traveling direction, just like the relationship between dynamic pressure and static pressure in a jet stream.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一例を示す分解斜視図、第2図は
本発明装置の他の一例を示す分解斜視図、第3図は本発
明装置の別の一例を示す分解斜視図であり、図中1はレ
ーザ光束源または高密度電子ビーム源、1′はレーザ用
気密窓、2は蒸発原子供給用固体物質、2′は薄板状の
蒸発原子供給用固体物質、3はレーザ光束又は電子ビー
ム、4は格子状又は網状電子加速電極、5は蒸発原子イ
オン化装置、6はシールド電極、7はイオン引出電極、
8はイオンビーム束、9は永久磁石又は電磁コイル、1
0は薄板状固体物質1の回転軸を夫々示す。
FIG. 1 is an exploded perspective view showing one example of the device of the present invention, FIG. 2 is an exploded perspective view showing another example of the device of the present invention, and FIG. 3 is an exploded perspective view showing another example of the device of the present invention. In the figure, 1 is a laser beam source or a high-density electron beam source, 1' is an airtight window for laser, 2 is a solid material for supplying evaporated atoms, 2' is a thin plate-shaped solid material for supplying evaporation atoms, and 3 is a laser beam source or a high-density electron beam source. An electron beam, 4 a grid or mesh electron accelerating electrode, 5 an evaporative atom ionization device, 6 a shield electrode, 7 an ion extraction electrode,
8 is an ion beam flux, 9 is a permanent magnet or electromagnetic coil, 1
0 indicates the rotation axis of the thin plate-like solid material 1, respectively.

Claims (1)

【特許請求の範囲】 1 蒸発原子供給用固体物質に対し一側にレーザ光束源
または高密度電子ビーム源を配設し、他側に電子加速電
極、シールド電極およびイオン引出電極を順次配置し、
前記電子加速電極には蒸発原子イオン化装置を附設して
なる高密度固体物質イオン生成装置。 2 レーザ光束源を用いる場合、該光束源と蒸発原子供
給用固体物質との間に、レーザ用気密窓を設ける特許請
求の範囲第1項記載の装置。 3 蒸発原子用固体物質よシ融点の高い管状物質の内壁
全面に、蒸発原子供給用固体物質を内装することからな
る特許請求の範囲第1項記載の装置。 4 レーザ光束または高密度電子ビームの軸線上を、渦
巻状に横切シかつ回転する板状蒸発原子供給用固体物質
を用いる特許請求の範囲第1項記載の装置。
[Claims] 1. A laser beam source or a high-density electron beam source is arranged on one side of a solid material for supplying evaporated atoms, and an electron accelerating electrode, a shield electrode, and an ion extraction electrode are arranged in sequence on the other side,
A high-density solid material ion generation device comprising an evaporative atom ionization device attached to the electron accelerating electrode. 2. The apparatus according to claim 1, wherein when a laser beam source is used, a laser hermetic window is provided between the laser beam source and the solid material for supplying evaporated atoms. 3. The device according to claim 1, wherein the solid material for supplying evaporated atoms is housed on the entire inner wall of a tubular material whose melting point is higher than that of the solid material for evaporated atoms. 4. The device according to claim 1, which uses a plate-shaped solid material for supplying evaporated atoms that spirally traverses and rotates on the axis of a laser beam or a high-density electron beam.
JP2412976A 1976-03-08 1976-03-08 High-density solid material ion generator Expired JPS5852294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2412976A JPS5852294B2 (en) 1976-03-08 1976-03-08 High-density solid material ion generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2412976A JPS5852294B2 (en) 1976-03-08 1976-03-08 High-density solid material ion generator

Publications (2)

Publication Number Publication Date
JPS52107887A JPS52107887A (en) 1977-09-09
JPS5852294B2 true JPS5852294B2 (en) 1983-11-21

Family

ID=12129687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2412976A Expired JPS5852294B2 (en) 1976-03-08 1976-03-08 High-density solid material ion generator

Country Status (1)

Country Link
JP (1) JPS5852294B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159564U (en) * 1985-03-25 1986-10-03
JPS6314618U (en) * 1986-06-25 1988-01-30
JPH021433Y2 (en) * 1983-11-30 1990-01-12
JPH0214625Y2 (en) * 1983-08-30 1990-04-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946748A (en) * 1982-09-10 1984-03-16 Nippon Telegr & Teleph Corp <Ntt> Ion shower unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214625Y2 (en) * 1983-08-30 1990-04-20
JPH021433Y2 (en) * 1983-11-30 1990-01-12
JPS61159564U (en) * 1985-03-25 1986-10-03
JPS6314618U (en) * 1986-06-25 1988-01-30

Also Published As

Publication number Publication date
JPS52107887A (en) 1977-09-09

Similar Documents

Publication Publication Date Title
RU2526847C2 (en) X-ray tube with passive ion-collecting electrode
US7388944B2 (en) Device for generation of x-ray radiation with a cold electron source
JP6415388B2 (en) Plasma generator
US20030002627A1 (en) Cold emitter x-ray tube incorporating a nanostructured carbon film electron emitter
US20080267354A1 (en) High-Dose X-Ray Tube
JP2013051165A (en) Transmission x-ray generator
JP2005062176A (en) Ionization vacuum gauge
EP0560742A1 (en) Plasma generator and associated ionization method
JPS5852294B2 (en) High-density solid material ion generator
DE69913985D1 (en) X-RAY TUBE WITH VARIABLE PICTURE SIZE
US3517240A (en) Method and apparatus for forming a focused monoenergetic ion beam
US3339106A (en) Ionization vacuum pump of the orbitron type having a porous annular grid electrode
US3118077A (en) Ionic vacuum pumps
JP2003068244A (en) Extraction electrode block for ion implantation system, and the ion implantation system
JPH10302688A (en) X-ray generating device
JP3186777B2 (en) Plasma source
WO2017046886A1 (en) Vacuum device
JP2637948B2 (en) Beam plasma type ion gun
US2204999A (en) Electric discharge device
US3338506A (en) Vacuum pump apparatus
Gaines et al. An improved annular-shaped electron gun for an X-ray generator
JP2666143B2 (en) Ion neutralizer
JPH0665200B2 (en) High-speed atomic beam source device
JP2637947B2 (en) Beam plasma type ion gun
JP2000285838A (en) Gas ionizing device