JPS5852255A - Preparation of unsaturated amide - Google Patents

Preparation of unsaturated amide

Info

Publication number
JPS5852255A
JPS5852255A JP56150235A JP15023581A JPS5852255A JP S5852255 A JPS5852255 A JP S5852255A JP 56150235 A JP56150235 A JP 56150235A JP 15023581 A JP15023581 A JP 15023581A JP S5852255 A JPS5852255 A JP S5852255A
Authority
JP
Japan
Prior art keywords
copper
catalyst
water
reaction
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56150235A
Other languages
Japanese (ja)
Other versions
JPS6140220B2 (en
Inventor
Yoshiteru Miyake
三宅 義輝
Tadatsugu Yamamoto
忠嗣 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56150235A priority Critical patent/JPS5852255A/en
Publication of JPS5852255A publication Critical patent/JPS5852255A/en
Publication of JPS6140220B2 publication Critical patent/JPS6140220B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prepare the titled compound useful as a raw material of paper strength improving agent, etc., in high conversion and selectivity, by the catalytic hydration reaction of an unsaturated nitrile in the presence of a specific copper catalyst which can be prepared and handled easily and has high activity. CONSTITUTION:An unsaturatd amide is prepared by contacting an unsaturated nitrile (e.g. acrylonitrile) with water in the presence of a copper catalyst prepared by contacting a complex compound of copper derived from an amino acid (e.g. glycine, alanine, beta-alanine, etc.) and a copper salt (e.g. water-soluble copper salt such as copper sulfate, copper mitrate, etc.) with a water-soluble borohydride (e.g. borohydride of an alkali metal such as Li, Na, etc.) in an aqueous solution. The catalyst can be prepared by adding a copper salt to an aqueous solution of an amino acid, separating the complex salt by conventional recrystallization process, dispersing the complex salt in an aqueous solution, and contacting with a reducing agent. The amount of the catalyst is >=0.001pt.wt., preferably >=0.01pt.wt. per 1pt.wt. of the unsaturated nitrile.

Description

【発明の詳細な説明】 本発明は不飽和ニトリルの接触水利による不飽和ア建ド
の製造方法を開示するものである0不飽和アミドは紙力
増強剤や高分子凝集剤の合成原料郷に用いられる有用な
物質である。
DETAILED DESCRIPTION OF THE INVENTION The present invention discloses a method for producing unsaturated amide by catalytic irrigation of unsaturated nitrile. It is a useful substance used.

不飽和ニトリルの接触水利触媒として銅触媒が知られて
いる。銅触媒の5IIl製方法として、鉋酸化物、調水
酸化物、銅塩(鋼の無機酸、有機酸の塩)を水素、ホル
ムアルデヒド、ヒト〉ジン、硼水素化物、次亜リン酸塩
郷で処理する方法、イオン化傾向の大きい金純で処理す
る方法、又ギ酸銅を分解する方法、ラネー合金を展開す
る方法等多くの方法が開示されている。
Copper catalysts are known as catalytic water utilization catalysts for unsaturated nitriles. As a method for producing 5IIl of copper catalyst, oxidized oxide, hydrated oxide, and copper salt (salt of inorganic acid and organic acid of steel) are mixed with hydrogen, formaldehyde, human gin, borohydride, and hypophosphite. Many methods have been disclosed, including a method of treating the metal, a method of treating with pure gold that has a strong ionization tendency, a method of decomposing copper formate, and a method of developing a Raney alloy.

本発明者らLこれらの方法について詳細に検討したとこ
ろ、銅化合物を還元処理する事により、不飽和アミドの
合成能を有する触媒を調製し得るものの、得られた触媒
社活性の面、物性(嵩密度等)の面でも一様でなく、又
、触媒調製段階で種種の工程が必要であったりし必ずし
も満足し得るものではなかった〇 これらの事情に鑑み、本発明者らは、触媒調製法が容易
で、触媒の取扱いにおいても又、触媒の活性の面でもす
ぐれた触媒を見い出すべく鋭意検討を行ったところ、ア
ミノ酸と銅塩から得られる銅の鉛化合物を水溶液中で水
浴性硼水素化物と接触させて得られる銅触媒が不飽和ニ
トリルの接触水利反応による不飽和アミド製造にすぐれ
た活性を南することを見い出し、本発明を完成したもの
である。
The inventors investigated these methods in detail and found that although it is possible to prepare a catalyst capable of synthesizing unsaturated amides by reducing a copper compound, the activity and physical properties of the resulting catalyst ( Bulk density, etc.) is not uniform, and various steps are required in the catalyst preparation stage, which is not necessarily satisfactory. In view of these circumstances, the present inventors have developed a catalyst preparation method. We conducted extensive research to find a catalyst that is easy to process, has excellent catalyst handling, and has excellent catalyst activity. The present invention was completed based on the discovery that a copper catalyst obtained by contacting an unsaturated nitrile with a compound exhibits excellent activity for producing an unsaturated amide through a catalytic water utilization reaction of an unsaturated nitrile.

本発明に用いられる不飽和ニトリルはアクリロニトリル
、メタクリ日ニトリルである。
The unsaturated nitriles used in the present invention are acrylonitrile and methacrylonitrile.

本発明に用いるアミノ酸は分子内にアミノ基(−NHs
 )とカルボキシル基(−COOH)をそれぞれ1つ有
するモノアミノモノカルボン酸が用いられ、例えば、グ
リシ/、アラニ/、バリン、セリン、システィン、β−
アラニン等を用いる事が出来るが、入手のし易さ等から
グリシン、アラニン、β−アラニンが特に好ましい。
The amino acids used in the present invention have an amino group (-NHs) in the molecule.
) and carboxyl group (-COOH) are used, for example, glycy/, arani/, valine, serine, cysteine, β-
Although alanine and the like can be used, glycine, alanine, and β-alanine are particularly preferred because of their ease of availability.

アミノ酸と銅塩からなる錯化合物は硫酸銅、硝酸銅、塩
化銅等の水溶性銅塩および又はこれらから誘導される水
酸化銅と上述したアミノ酸とから既知の方法で合成され
る。
A complex compound consisting of an amino acid and a copper salt is synthesized by a known method from water-soluble copper salts such as copper sulfate, copper nitrate, copper chloride and/or copper hydroxide derived therefrom and the above-mentioned amino acids.

錯化合物は銅1モルに対しアミノ酸2モルから成るので
、量論比に相当する割合で混合すればよい。
Since the complex compound consists of 2 moles of amino acid per 1 mole of copper, they may be mixed in a proportion corresponding to the stoichiometric ratio.

更に詳しく述べればアミノ酸を溶解した水溶液に銅塩を
添加し通常とられる再結晶法により錯塩が得られる。
More specifically, a complex salt can be obtained by adding a copper salt to an aqueous solution in which an amino acid is dissolved and performing a commonly used recrystallization method.

こうして得られたアミノ酸の銅錯体をp過分離したのち
水浴液中に分散させ還元剤と接触させる事により銅触媒
を得る事が出来る。
A copper catalyst can be obtained by subjecting the amino acid copper complex thus obtained to p-percent separation, dispersing it in a water bath and bringing it into contact with a reducing agent.

還元剤としては、リチウム、ナトリウム、カリ、ラム、
ルビジウム等からなるアルカリ金属又は、ベリリウム、
マグネシウム、カルシウム等からなるアルカリ土類金属
の硼水素化物を水溶液の状態で使用する。
Reducing agents include lithium, sodium, potassium, rum,
Alkali metals such as rubidium or beryllium,
A borohydride of an alkaline earth metal such as magnesium or calcium is used in the form of an aqueous solution.

銅の錯体と水溶性硼水素化物との接触においては、銅の
錯体は1、任意の割合で水と混合して用い得るが、通常
izの水に対し0.01〜3モル程度の割合で用いる。
In contacting the copper complex with the water-soluble borohydride, the copper complex can be mixed with water at any ratio of 1 to 1, but it is usually used at a ratio of about 0.01 to 3 moles to iz of water. use

これに作用させる還元剤の硼水素化物は、銅塩1モルに
対し、少なくとも0.2モルは必要で5モルあれば十分
でろり O,S −Xモルが好ましく用いられる。
The reducing agent, borohydride, is required to be used in an amount of at least 0.2 mol per mol of the copper salt, and 5 mol is sufficient. O,S-X mol is preferably used.

両者を接触させるには銅の錯体を水溶液中に分散してお
きこれに還元剤を滴下する0還元剤を接触させる温度は
常温から沸点までの広い範囲で選べるが、常温で充分反
応が進むので通常20〜40℃付近で行なう事が好まし
い。
To bring the two into contact, first disperse the copper complex in an aqueous solution and drop a reducing agent into it.The temperature at which the reducing agent is brought into contact can be selected from a wide range from room temperature to the boiling point, but the reaction proceeds sufficiently at room temperature. It is usually preferable to carry out the heating at around 20 to 40°C.

また還元操作は不活性気体雰囲気中で実施するのが好ま
しいが、大気中でも行なうことが出来る。
Further, the reduction operation is preferably carried out in an inert gas atmosphere, but it can also be carried out in the air.

このようにして得られた゛沈澱物は、粒子径は大きく′
て沈降性も良く媒体との分離は容易に出来る。
The precipitate thus obtained has a large particle size.
It has good sedimentation properties and can be easily separated from the medium.

生成した沈澱物はそのまま触媒として供する事が可能で
あるが、還元剤の分解生成物等が不飽和ア(ドに混入す
ることを避けるため、水洗する事が望ましい。
Although the generated precipitate can be used as a catalyst as it is, it is preferable to wash it with water to avoid contamination of the decomposition products of the reducing agent with the unsaturated ad.

次に、本発明の水利反応について説明する。水利反応は
上□述の触媒存在下で加熱下原料の不飽和ニトリルと水
を接触させる事で行なわれる。
Next, the water utilization reaction of the present invention will be explained. The water utilization reaction is carried out by bringing the unsaturated nitrile raw material into contact with water under heating in the presence of the catalyst described above.

水利反応に使用する水の菫は特に制限は無く、不飽和ア
ミドに対し理論量以下でも行なうことが出来るが、通常
2〜lO倍過剰にして行うのがよい。
There is no particular restriction on the amount of water used in the water utilization reaction, and the reaction can be carried out in less than the stoichiometric amount relative to the unsaturated amide, but it is usually preferable to carry out the reaction in a 2 to 10 times excess.

反応温度は50〜200℃の範囲で行なうのが好ましい
。更に好ましくは70〜150℃である。それ以下の低
い温度でも不飽和アミドの生成が行なわれるが、反応速
度が遅く好ましくない。又これよ沙高い温度では反応速
度は増すが不飽和アミドへの選択率が・低下するので好
ましくない0反応に用いるべき触媒蓋は反応を連続で行
なうか1分で行なうか或いは反応形式tCよっても異な
るが、不飽和二) リルに対し、0.001倍(重量)
以上、好ましくは0.01倍以上使用する。
The reaction temperature is preferably 50 to 200°C. More preferably it is 70-150°C. Unsaturated amides can be produced at lower temperatures, but the reaction rate is unfavorable. Also, at much higher temperatures, the reaction rate increases, but the selectivity to unsaturated amides decreases, which is undesirable. is different, but 0.001 times (weight) compared to unsaturated di)
It is preferably used 0.01 times or more.

反応圧力は特に限定するものではないが反応液の蒸気圧
以上の圧力が必要であるに の触媒Fi特に液相反応に適し、懸濁床反応形式及び固
足床反応形式のいずれでも可能である。
Although the reaction pressure is not particularly limited, it is necessary to have a pressure higher than the vapor pressure of the reaction liquid.The catalyst Fi is particularly suitable for liquid phase reactions, and both suspended bed reaction type and fixed bed reaction type are possible. .

本発明におりる銅触媒は担体なしで優秀な性能を示すが
、また適当な担体と結合させることが出来る。この場合
担体としては活性炭、シリカ、アルミナ等を用いる事が
出来る。
The copper catalyst of the present invention shows excellent performance without a support, but can also be combined with a suitable support. In this case, activated carbon, silica, alumina, etc. can be used as the carrier.

次に実施例によって具体的に説明するが、本発明は以下
の実施例に限定されるものでは表い。
Next, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the following examples.

(I)触媒の調製 調製例1 硫酸銅の5水塩25 fを200 wtの水に溶かし約
10℃の温度で約10チのアンモニア水を、はじめに生
じた沈澱が再び溶けて濃青紫色になるまでよくかきませ
ながら加える。しかる−のち苛性ソーダ40wLチ水溶
液25m/を加える。得られた淡青色沈澱をv別、水洗
する。
(I) Preparation of catalyst Preparation example 1 Dissolve 25 f of copper sulfate pentahydrate in 200 wt of water and add about 10 wt of ammonia water at a temperature of about 10°C. Add while stirring well until mixed. Then, 40wL of caustic soda and 25ml of an aqueous solution are added. The obtained pale blue precipitate was separated and washed with water.

グリシン15 Fを水400−に溶かした溶液にさきに
得られた沈澱を加え約30分間60〜aot:に温め温
いうちK(p過し室温に放置すあと淡青色のビスグリシ
ナト銅の結晶19.2 Fが得られた。
The precipitate obtained earlier was added to a solution of glycine 15 F dissolved in 400 g of water, heated to 60 - aot: for about 30 minutes, filtered while still warm, and left at room temperature. After that, pale blue copper bisglycinate crystals were formed. 2F was obtained.

こうして得られた結晶2.3tをとり30コの脱気水に
溶解させる。しかるのち硼水素化ナトリウム(NaBH
4) o、4 tを含む水20−を5分間で滴下した。
2.3 tons of the crystals thus obtained were taken and dissolved in 30 tons of degassed water. Afterwards, sodium borohydride (NaBH)
4) 20 - of water containing 0.4 t was added dropwise over 5 minutes.

硼水素化ナトリウムの滴下と共に黒褐色の沈澱物が生成
した。滴下終了ixo分間ゆっくり攪拌したのち脱気水
で2回水洗し5.7dの触媒を得た。
A dark brown precipitate was formed as the sodium borohydride was added dropwise. After the dropwise addition was completed, the mixture was slowly stirred for ixo minutes and washed twice with degassed water to obtain a catalyst of 5.7d.

尚、硼水素化ナトリウムで還元操作をする際空気KWc
触する事を避けるため窒素ボックス内で操作を作った。
In addition, when performing the reduction operation with sodium borohydride, air KWc
The operation was performed inside a nitrogen box to avoid contact.

N製例意 pI!!!例1においてグリシン15 fを用いたかわ
り[d−1−アラニン18tを用いてビスアラニナート
銅の淡青色結晶18.:l Fが得られり。
N made example pI! ! ! Instead of using glycine 15f in Example 1, [d-1-alanine 18t was used to prepare pale blue crystals of copper bisalaninate 18. :l F is obtained.

尚、結晶を得る場合氷冷して再結晶させた。In addition, when obtaining crystals, they were recrystallized by cooling with ice.

こうして得られた結晶2.42をとり調製例1と同様に
して黒褐色の触媒3.7−を得た。
The thus obtained crystal 2.42 was taken and treated in the same manner as in Preparation Example 1 to obtain a blackish brown catalyst 3.7-.

調製例3 調製例2においてd−t−アラニンを用いたかわリニβ
−アラニン18 fを用いてビスβ−アラ−ナート銅の
淡青色結晶18.7 Fを得た。
Preparation Example 3 Kawarini β using d-t-alanine in Preparation Example 2
-Pale blue crystals of copper bisβ-alanate 18.7 F were obtained using 18 F of alanine.

尚、結晶を得る場合F別後結晶が出だすまで濃縮し、し
かるのち室温で放置した。
In addition, when obtaining crystals, the mixture was concentrated until crystals appeared after separation from F, and then allowed to stand at room temperature.

こうして得られた結晶2.4tをと9調製例1と同様に
して黒褐色の触媒3.9−を得た。
2.4 tons of crystals thus obtained were treated in the same manner as in Preparation Example 1 to obtain a blackish brown catalyst 3.9-.

調製例4 調製例1と同様にして錯化合物を得、得られた結晶2.
3tを用い硼水素化カリウム1.2 fを含む水20w
Itを5分間で滴下し調製例1と同様にして黒褐色の触
媒4.8−を得た。
Preparation Example 4 A complex compound was obtained in the same manner as in Preparation Example 1, and the obtained crystal 2.
20w of water containing 1.2f of potassium borohydride using 3t
It was added dropwise over 5 minutes to obtain a blackish brown catalyst 4.8- in the same manner as in Preparation Example 1.

調製比較例1 調製例1においてビスグリシナート銅z、B yのかわ
シに硫酸銅5水和物2.i fを用い同様にして硼水素
化ナトリウムで還元し黒褐色の触媒3.1−を得た。
Preparation Comparative Example 1 In Preparation Example 1, copper sulfate pentahydrate 2. i f was similarly reduced with sodium borohydride to obtain a blackish brown catalyst 3.1-.

調製比較例2 調製比較例Iにおいて硫酸銅5水和物のがわりに苛性ソ
ーダ4(Jwt’fk水溶液を加えて得られた沈澱(C
u(OH)sと思われる)ufを用い、調製例1と同様
にして硼水素化ナトリウムで還元し黒褐色の触媒3.5
dを得た。
Comparative Preparation Example 2 In Comparative Preparation Example I, the precipitate (C
U(OH)s)uf was used and reduced with sodium borohydride in the same manner as in Preparation Example 1 to give a blackish brown catalyst 3.5
I got d.

(II)ニトリルの水利 実施例1 内容積12−のマイクロリアクターを用いて反応させた
(II) Nitrile Water Utilization Example 1 A reaction was carried out using a microreactor with an internal volume of 12.

触媒は調製例で調製した触媒全量を反応に供した。(銅
錯塩ならびに銅塩の出発原料は塩モル用いておりどの調
製法でも反応液中の金輌銅としての重さは一定になる) iイクpリアクターには上述したとおシ調製し九触媒全
量と水で総容積9−になるように調合しま たのちアクリR二)リル1−を加え90″c1時間反応
を行つ良。
The entire amount of the catalyst prepared in Preparation Example was used for the reaction. (The starting raw materials for copper complex salts and copper salts are moles of salt, and the weight as gold and copper in the reaction solution is constant regardless of the preparation method.) The total amount of catalyst prepared as described above is used in the iikp reactor. and water to make a total volume of 9-, then add acrylic R2) and react for 1 hour at 90"C.

反応波反応液を分析(高速液体クロマトグラフ)し次の
結果を得た。
The reaction wave reaction solution was analyzed (high performance liquid chromatography) and the following results were obtained.

以下余白 豪触媒重量を銅金属とし0.63 Fとした副反応生成
物はエチレンシアンヒドリンがほとんどあった。その他
アクリル酸、不明物質がわずかに認められる程度であっ
た。
The following blanks indicate that the catalyst weight was copper metal and 0.63 F. Most of the side reaction products were ethylene cyanohydrin. In addition, acrylic acid and unknown substances were only slightly observed.

この結果から明らかなように、本発明による触媒はアク
リロニトリル転化率が高く且つ選択率も高い、触媒の嵩
密f[おいても比較的小さく嵩高な触媒と云える。
As is clear from these results, the catalyst according to the present invention has a high acrylonitrile conversion rate and high selectivity, and can be said to be a relatively small and bulky catalyst in terms of the catalyst bulk density f[.

実施例2 調製例1の触媒を用い実施例1の方法に準じてメタクリ
ロニトリ化の水利反応を行った。
Example 2 A methacrylonitriation water utilization reaction was carried out using the catalyst of Preparation Example 1 according to the method of Example 1.

反応の結果メタクリロニトリル転化率74チであシ副反
応生成物はほとんど検出され表かった。
As a result of the reaction, the conversion rate of methacrylonitrile was 74%, and almost no side reaction products were detected.

実施例3 調製例゛1の方法に従って金属銅換算40 fの触媒を
l#製しくこの場合硼水素化ナトリウムの添加に約1時
間を要し、添加終了後30分間攪拌を続U1反応に供し
た。
Example 3 According to the method of Preparation Example 1, 40 f of catalyst in terms of metallic copper was prepared. In this case, it took about 1 hour to add sodium borohydride, and after the addition was completed, stirring was continued for 30 minutes for the subsequent U1 reaction. did.

反応は1tガラス製オートクレブを用いた。A 1t glass autoclave was used for the reaction.

オートクレーブは水及びアクリロニトリ羨が定量ポンプ
で注入出来るよう罠なっており且つ反応液はフィルター
を通してムードル弁で抜き出す事が出来る連続懸濁槽反
応器である。
The autoclave is a continuous suspension tank reactor in which water and acrylonitrile can be injected with a metering pump, and the reaction solution can be removed through a filter with a Moodle valve.

オートクレーブに調製した触媒全量を仕込み更に水を加
えて500 mgとしたのち反応器を設定し窒素ガスで
3−14/ajG K加圧したのち水2.1睦−アクリ
ロニトリル1.8 m/Q11 (AN 33 vt−
0平均帯留時間2.1Hr)流し反応温度101℃で反
応させた。
After charging the entire amount of the prepared catalyst into an autoclave and adding water to make 500 mg, the reactor was set up and pressurized with nitrogen gas to 3-14/ajG K, followed by 2.1 μm of water and 1.8 m/Q11 of acrylonitrile ( AN 33 vt-
0 average residence time: 2.1 Hr) The reaction was carried out at a flow reaction temperature of 101°C.

反応1過時間と反応成績の関係を添付図面の画線■に示
す。
The relationship between reaction time and reaction results is shown in the drawing (■) in the attached drawing.

尚、副反応生成物はほとんど検出されなかった。Incidentally, almost no side reaction products were detected.

比較例1 比較調製例1の触媒についても実施例2とト様にして反
応に供した。
Comparative Example 1 The catalyst of Comparative Preparation Example 1 was also subjected to a reaction in the same manner as in Example 2.

結果を図面の曲線■に示す。The results are shown in curve ■ in the drawing.

尚、副反応生成物は5時間目の分析でエチレンシアンヒ
ドリンが0.1哄検出されたが以後はとんと検出されな
かった。
Incidentally, 0.1 ml of ethylene cyanohydrin was detected as a side reaction product in the 5th hour analysis, but it was not detected at all thereafter.

図面から明らかなように本発明の触媒は活性が高く且つ
長時間維持されている事が明らかである。
As is clear from the drawings, it is clear that the catalyst of the present invention has high activity and is maintained for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

図面は懸濁槽連続反応を行った時の反応成績の経時変化
を示す。■は本発明による触媒であり■は比較例触媒で
ある。 特Wト出願人 旭化成工業株式会社 代−゛理人 弁理士  星 野  透
The figure shows the change in reaction results over time when continuous reaction was carried out in a suspension tank. (2) is a catalyst according to the present invention, and (2) is a comparative example catalyst. Patent Attorney: Toru Hoshino, Patent Attorney, Asahi Kasei Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)  不飽和ニトリルと水とを接触させて、不飽和
アイドを製造する方法において、アミノ酸と銅塩かも得
られる銅の錯化合物を、水溶液中で、水浴性硼水素化物
と接触させて得られる銅触媒を用いることを特徴とする
不飽和アミドの製造方法
(1) In the method of producing an unsaturated ide by bringing an unsaturated nitrile into contact with water, a copper complex compound obtained from an amino acid and a copper salt is brought into contact with a water-bathable borohydride in an aqueous solution. A method for producing an unsaturated amide, characterized by using a copper catalyst
JP56150235A 1981-09-22 1981-09-22 Preparation of unsaturated amide Granted JPS5852255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56150235A JPS5852255A (en) 1981-09-22 1981-09-22 Preparation of unsaturated amide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56150235A JPS5852255A (en) 1981-09-22 1981-09-22 Preparation of unsaturated amide

Publications (2)

Publication Number Publication Date
JPS5852255A true JPS5852255A (en) 1983-03-28
JPS6140220B2 JPS6140220B2 (en) 1986-09-08

Family

ID=15492503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56150235A Granted JPS5852255A (en) 1981-09-22 1981-09-22 Preparation of unsaturated amide

Country Status (1)

Country Link
JP (1) JPS5852255A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030947A3 (en) * 2000-10-11 2002-07-25 Albion Int Compositions and methods of preparing amino acid chelates and complexes
US10569503B2 (en) 2015-03-31 2020-02-25 Mitsubishi Heavy Industries, Ltd. Method of manufacturing structure, and structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030947A3 (en) * 2000-10-11 2002-07-25 Albion Int Compositions and methods of preparing amino acid chelates and complexes
US10569503B2 (en) 2015-03-31 2020-02-25 Mitsubishi Heavy Industries, Ltd. Method of manufacturing structure, and structure

Also Published As

Publication number Publication date
JPS6140220B2 (en) 1986-09-08

Similar Documents

Publication Publication Date Title
CS213333B2 (en) Method of making the catalyser
US3700605A (en) Catalysts
JPS5852255A (en) Preparation of unsaturated amide
JP2577405B2 (en) Method for producing 2,4,5-triamino-6-hydroxypyrimidine
JPS62130208A (en) Production of finely divided metal powder
JPS6165840A (en) Production of diglycolic acid salt
KR0163820B1 (en) Copper catalyst for the hydration of nitrile and preparation thereof
JPH08165256A (en) Production of 1,1,1,2,3,3-hexafluoropropane
JPS58207945A (en) Hydrogenation catalyst for oxalic diester
JPS6078948A (en) Production of iminodiacetate
JPH05337371A (en) Catalyst for producing amino compound, production thereof and production of amino compound using the catalyst
JPH0734866B2 (en) Catalyst for reducing carbonyl compound, method for producing the catalyst, and method for producing alcohol using the catalyst
JP3652105B2 (en) Copper catalyst for nitrile hydration and preparation method thereof
JP3000550B1 (en) Catalyst for methanol synthesis and method for producing the same
JPS62169751A (en) Production of 2-amino-1,3-propanediol
JPH0899037A (en) Copper catalyst for hydrating nitrile and preparation of the same
JPH0459752A (en) Production of acrylamide
JP3029730B2 (en) Production method of primary nitric acid nitrile
JPS6193146A (en) Production of ethylenediaminetetraacetate
JPS5946274A (en) Preparation of 2-alkyl-4-amino-5-aminomethylpyrimidine
JPS6140219B2 (en)
JPH06228014A (en) Production of deuterated aromatic compound
JPS62265244A (en) Production of 1,4-cyclohexanedione
JPS6216441A (en) Production of 1,4-dichlorobutane
JPS59189936A (en) Preparation of hydrogenating catalyst of lower hydroxycarboxylic ester