JPS5851240A - Air-fuel ratio control method for internal-combustion engine - Google Patents

Air-fuel ratio control method for internal-combustion engine

Info

Publication number
JPS5851240A
JPS5851240A JP14775381A JP14775381A JPS5851240A JP S5851240 A JPS5851240 A JP S5851240A JP 14775381 A JP14775381 A JP 14775381A JP 14775381 A JP14775381 A JP 14775381A JP S5851240 A JPS5851240 A JP S5851240A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
loop control
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14775381A
Other languages
Japanese (ja)
Inventor
Yasuo Yamada
山田 泰男
Akio Kobayashi
昭雄 小林
Takao Niwa
丹羽 孝夫
Takeshi Gono
郷野 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP14775381A priority Critical patent/JPS5851240A/en
Publication of JPS5851240A publication Critical patent/JPS5851240A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/263Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the program execution being modifiable by physical parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To save fuel consumption without deteriorating exhaust gas by a method wherein a closed loop control is effected in accordance with specified constitutents of the exhaust gas when the load of an engine is high while an open loop control shifting the air-fuel ratio to a lean side is effected when the load of the engine is low. CONSTITUTION:A control circuit 20 for fuel injection valves 5... calculates a standard fuel injection amount or a standard injection time width Tp from the revolving number N of an engine and a suction air volume Q based on each outputs of a revolution sensor 10 and a suction air volume sensor 8 at first upon operation. Subsequently, the value of Tp is compared with a decided value Tp , and if Tp>=Tp , it is decided that the engine is in the high load, and the closed loop control is effected. On the other hand, if Tp<Tp , it is decided that the engine is in the low load and the open loop control for the air-fuel ratio of the lean side is effected. An air-fuel ratio correcting amount in said respective control system is read out by a ROM 107. In this case, a coefficient of excess air lambda is controlled so as to be about one (1) upon the closed loop control while the same is controlled so as to be about 1.2 upon the open loop control.

Description

【発明の詳細な説明】 本発明は内燃機関の空燃比制御方法に関する。[Detailed description of the invention] The present invention relates to an air-fuel ratio control method for an internal combustion engine.

一般に、空燃比を一定にするために、燃料噴射弁の開弁
時間すなわち基本燃料噴射時間Tl は、運転状態パラ
メータたとえば吸気量Qおよび機関回転速度Nの関数と
して、 ただし、K:定数 Tv:無効噴射時間 で与えられる。さらに、内燃機関の排気ガス中の特定成
分、だとえは酸素成分の濃度を検出する濃度センサ(以
下、02 センサとする)の検出信号にもとづいて算出
した空燃比補正量に応じて基本燃料噴射時間を補正して
空燃比が理論空燃比に近づくように閉ループ制御すなわ
ちフィードバック制御を行う。このような空燃比制御方
法によれば、空燃比が理論空燃比に非常に近い範囲内に
あるので、排気系に設けられた三元触媒装置、すなわち
排気ガス中に含まれるCO,HC、NOxという3つの
有害成分を同時に浄化する触媒装置の浄化能力を高い値
に保持できる。
Generally, in order to keep the air-fuel ratio constant, the opening time of the fuel injection valve, that is, the basic fuel injection time Tl, is set as a function of operating state parameters such as the intake air amount Q and the engine speed N, where K: constant Tv: invalid It is given in injection time. Furthermore, the basic fuel is adjusted according to the air-fuel ratio correction amount calculated based on the detection signal of a concentration sensor (hereinafter referred to as 02 sensor) that detects the concentration of a specific component, ie oxygen component, in the exhaust gas of the internal combustion engine. Closed-loop control, that is, feedback control, is performed to correct the injection time so that the air-fuel ratio approaches the stoichiometric air-fuel ratio. According to such an air-fuel ratio control method, since the air-fuel ratio is within a range very close to the stoichiometric air-fuel ratio, the three-way catalyst device installed in the exhaust system, that is, the CO, HC, and NOx contained in the exhaust gas, The purifying ability of the catalyst device, which purifies three harmful components at the same time, can be maintained at a high value.

最近、排気ガスの低減はもとより、ユーザからは燃費向
上に対する要求が高まっている。空燃比の点から燃費向
上を狙った場合、空燃比を理論空燃比より若干リーン側
にした方がよいことは周知である。しかしながら、排気
上からは、リーン側の空燃比を用いると、NOxの排出
が多くなり、従って、機関の使用域すべてにおいて空燃
比をリーン側にすると、排出ガス規制を満足できなくな
るという問題点がある。
Recently, there has been an increasing demand from users for not only reducing exhaust gas but also improving fuel efficiency. It is well known that when aiming to improve fuel efficiency in terms of air-fuel ratio, it is better to set the air-fuel ratio to be slightly leaner than the stoichiometric air-fuel ratio. However, from an exhaust perspective, if a lean air-fuel ratio is used, NOx emissions will increase. Therefore, if the air-fuel ratio is set to a lean side in all areas of use of the engine, there is a problem that exhaust gas regulations cannot be met. be.

本発明の目的は、上述の従来方法における問題点に鑑み
、一般的に、He、CO,NOx等の有害な排気ガスの
排出度は機関の負荷が高いほど、すなわち高速走行時あ
るいは加速時はど大きく、他方、機関の負荷が低いほど
、すなわち低速走行時はど小さいことに着目し、高負荷
域では閉ループ制御を行って空燃比を理論空燃比に近づ
け、他方、低負荷域では開ループ制御を行って空燃比を
リーン側にずらし、これにより、排気ガスの大幅な悪化
を招くことなくしかも燃費も向上させることにある。
The purpose of the present invention is to solve the above-mentioned problems in the conventional method, and generally, the higher the engine load, the higher the engine load, the lower the level of harmful exhaust gas emissions such as He, CO, and NOx. On the other hand, we focused on the fact that the lower the engine load, that is, when driving at low speeds, the smaller the air-fuel ratio.In the high load range, closed-loop control is performed to bring the air-fuel ratio closer to the stoichiometric air-fuel ratio, while in the low-load range, the air-fuel ratio is closed-loop control. The purpose is to shift the air-fuel ratio to the lean side through control, thereby improving fuel efficiency without causing a significant deterioration of exhaust gas.

本発明によれば、たとえば、基本燃料噴射時間が機関の
負荷を示す吸気管圧力にほぼ比例することを利用してい
る。つまり、基本燃料噴射時間の大きさに応じて閉ルー
プ制御(フィードバック制御)および開ループ制御(リ
ーンな空燃比制御)を切替えている。
According to the present invention, for example, the fact that the basic fuel injection time is approximately proportional to the intake pipe pressure indicating the engine load is utilized. That is, closed loop control (feedback control) and open loop control (lean air-fuel ratio control) are switched depending on the size of the basic fuel injection time.

以下、図面により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明に係る内燃機関の空燃比制御方法を実行
するための内燃機関の全体構成図である。
FIG. 1 is an overall configuration diagram of an internal combustion engine for carrying out an air-fuel ratio control method for an internal combustion engine according to the present invention.

第1図において、1は自動車に搭載される公知の4サイ
クル火花点火式内燃機関であって、燃焼用空気がエアク
リーナ2、吸気管3、スロットルバルブ4等を経て吸入
される。20は電磁式燃料噴射弁5を開弁作動させて燃
料を各気筒に供給制御する制御回路である。燃焼後の排
気ガスは排気マニホールド6、排気管7等を経て大気中
に放出される。吸気管3には、機関1に吸入される吸気
量を検出してこの吸気量に応じた大きさのアナログ電圧
を発生するボテンシ冒メータ式吸気量七ンサ8、および
このセンサ8の近傍の吸気の温度を検出して吸気温に応
じて抵抗1直が変化するサーミスタ式吸気温センサ9が
設けられている。また、機関1には、冷却水温を検出し
て冷却水温に応じて抵抗値が変化するサーミスタ式水温
センサ10、および機関1のクランク軸の回転速度を検
出して回転速度に応じた周波数のパルス信号を発生する
回転速度(数)センサ11が設けられている。この回転
速度センサ11としては、だとえは点火コイルを用いて
点火コイルの一次側端子からの点火パルス(i号を回転
速度浦号とすればよい。また、排気系には排気ガス中の
02成分濃度に応じて検出信号を出力する公知の02 
センサ12、および空燃比が理論空燃比時にCO、HC
、NOxの3成分を同時に高い浄化率で浄化する三元触
媒装置13が設けられている。制御回路20は各センサ
8、・・・・、12の検出信号にもとづいて燃料噴射量
を演算して電磁式燃料噴射弁5の開弁時間を制御するも
のであり、これにより、燃料噴射量が調整される。
In FIG. 1, reference numeral 1 denotes a known four-stroke spark ignition internal combustion engine mounted on an automobile, in which combustion air is taken in through an air cleaner 2, an intake pipe 3, a throttle valve 4, and the like. A control circuit 20 opens the electromagnetic fuel injection valve 5 to control supply of fuel to each cylinder. The exhaust gas after combustion is released into the atmosphere through the exhaust manifold 6, exhaust pipe 7, etc. In the intake pipe 3, there is a potentiometer-type intake air amount sensor 8 that detects the amount of intake air taken into the engine 1 and generates an analog voltage corresponding to the amount of intake air, and an intake air sensor 8 near the sensor 8. A thermistor-type intake air temperature sensor 9 is provided, which detects the temperature of the engine and changes its resistance in accordance with the intake air temperature. In addition, the engine 1 includes a thermistor-type water temperature sensor 10 that detects the cooling water temperature and whose resistance value changes according to the cooling water temperature, and a thermistor-type water temperature sensor 10 that detects the rotational speed of the crankshaft of the engine 1 and pulses at a frequency corresponding to the rotational speed. A rotation speed (number) sensor 11 is provided which generates a signal. As this rotational speed sensor 11, an ignition coil is used, and the ignition pulse from the primary terminal of the ignition coil (i is the rotational speed ura). A known 02 that outputs a detection signal according to the concentration of the 02 component.
CO, HC when the sensor 12 and the air-fuel ratio are the stoichiometric air-fuel ratio.
A three-way catalyst device 13 is provided that simultaneously purifies the three components of NOx and NOx at a high purification rate. The control circuit 20 calculates the fuel injection amount based on the detection signals of the sensors 8, . . . , 12 and controls the opening time of the electromagnetic fuel injection valve 5. is adjusted.

第2図は第1図の制御回路20の詳細なブロック回路図
である。第2図において、100は燃料噴射−:を演算
するマイクロプロセッサ(以下、CPUとする)、10
1は回転速度センサ11からの検出信号より機関回転速
度をカウントする回転速度(数)カウンタである。回転
速度カウンタ101は回転速度センサ11の出力によシ
機関1回転毎機関回転速度を測定し、その測定終了時に
割込み指令信号を割込み制御部102に送出する。
FIG. 2 is a detailed block circuit diagram of the control circuit 20 of FIG. 1. In FIG. 2, 100 is a microprocessor (hereinafter referred to as CPU) that calculates fuel injection;
Reference numeral 1 denotes a rotation speed (number) counter that counts the engine rotation speed based on a detection signal from the rotation speed sensor 11. The rotational speed counter 101 measures the engine rotational speed for each rotation of the engine based on the output of the rotational speed sensor 11, and sends an interrupt command signal to the interrupt control section 102 when the measurement is completed.

この結果、割込み制御部102は前述の割込み指令信号
に応答して割込み信号をコモンバス150を介して発生
してCPU100に燃料噴射量の演算を行う割込み処理
ルーチンを実行させる。103はスタータ(図示せず)
の作動をオン、オフするスタータスイッチ14からのス
タータ信号等のディジタル信号をCPU100に転送す
るディジタル入力ボート、104はアナログマルチプレ
クサおよびA−D変換器からなるアナログ入力ボートで
あって、吸気量センサ8、吸気温センサ9、冷却水温セ
ンサ10および02 センサ12からの各検出信号をA
−D変換して順次、CPU1ooに読込ませる機能を有
する。なお、これら各ユニット101,102,103
,104の出力情報はコモンバス150を介してCPU
100に転送される。105はキースイッチ15を介し
てバッテリ16に接続された電源回路、106は読椴り
および曹込み可能なランダムアクセスメモリ(以下、R
AMとする)、107はプログラムあるいは各種の定数
等を予め記憶しておくだめの読出し専用メモリ(以下、
ROMとする)、108はレジスタおよびダウンカウン
タよりなる燃料噴射時間制御用カウンタである。このカ
ウンタ108はCPU100で演算された電磁式燃料噴
射弁5の開弁時間すなわち燃料噴射量を表わすディジタ
ル18号を実際の電磁式燃料噴射弁5の開弁時間を与え
るパルス時間幅のパルス信号に変換する。109は゛″
M磁式燃料噴射弁5を駆動する電力増幅部、110は経
過時間を測定してCPU1ooに転送するタイマである
As a result, the interrupt control unit 102 generates an interrupt signal via the common bus 150 in response to the above-mentioned interrupt command signal, and causes the CPU 100 to execute an interrupt processing routine for calculating the fuel injection amount. 103 is a starter (not shown)
104 is an analog input port consisting of an analog multiplexer and an A-D converter; , intake temperature sensor 9, cooling water temperature sensors 10 and 02, each detection signal from sensor 12 is A.
-D conversion and sequential reading into the CPU 1oo. In addition, each of these units 101, 102, 103
, 104 is sent to the CPU via the common bus 150.
Transferred to 100. 105 is a power supply circuit connected to the battery 16 via the key switch 15; 106 is a random access memory that can be read and programmed (hereinafter referred to as R
107 is a read-only memory (hereinafter referred to as AM) in which programs or various constants, etc. are stored in advance.
108 is a fuel injection time control counter consisting of a register and a down counter. This counter 108 converts the digital number 18 representing the opening time of the electromagnetic fuel injection valve 5 calculated by the CPU 100, that is, the fuel injection amount, into a pulse signal with a pulse time width giving the actual opening time of the electromagnetic fuel injection valve 5. Convert. 109 is ``''
The power amplification unit 110 that drives the M magnetic fuel injection valve 5 is a timer that measures the elapsed time and transfers it to the CPU 1oo.

第6図は第2図のCPU100の動作を説明するだめの
流れ図である。第5図を、参照してCP[Jlooの動
作を説明すると共に第1図の構成全体の作動をも説明す
る。
FIG. 6 is a flowchart illustrating the operation of the CPU 100 in FIG. 2. The operation of CP[Jloo will be explained with reference to FIG. 5, and the operation of the entire configuration shown in FIG. 1 will also be explained.

ステップ1000において、キースイッチ15およびス
タータスイッチ14がオンとなって機関1が始動すると
ステップ1000にてメインルーチンの演算処理が開始
され、ステップ1001において、初期化の処理が実行
され、ステップ1002において、アナログ入力ボート
104からの冷却水温に応じたディジタル値が読込まれ
る。
In step 1000, when the key switch 15 and starter switch 14 are turned on and the engine 1 is started, the main routine arithmetic processing is started in step 1000, initialization processing is executed in step 1001, and in step 1002, A digital value corresponding to the cooling water temperature is read from the analog input boat 104.

この結果、ステップ1003において、燃料補正量が演
算され、その演算結果はRAM10Aに格納される。ス
テップ1003が終了す乙と再びステップ1002に戻
る。すなわち、通常、CPU100はステップ1002
および1003のメインルーチンの処理を制御プログラ
ムに従って繰返し実行する。他方、割込み制御部102
からの割込み信号がCPU1ooへ入力されると、CP
U100はステップ1002.100’3に示されるメ
インルーチンの処理中であっても直ちにその処理を中断
してステラ17′1010の割込み処理ルーチンに移る
As a result, in step 1003, the fuel correction amount is calculated, and the calculation result is stored in the RAM 10A. When step 1003 ends, the process returns to step 1002 again. That is, normally the CPU 100 performs step 1002.
The main routine processing at 1003 is repeatedly executed according to the control program. On the other hand, the interrupt control unit 102
When an interrupt signal from CPU1oo is input to CPU1oo, CPU
Even if U100 is processing the main routine shown in steps 1002 and 100'3, it immediately interrupts the processing and moves to the interrupt processing routine of Stella 17'1010.

以下、割込み処理ルーチンについて説明する。The interrupt processing routine will be explained below.

ステップ1011において、回転速度カウンタ101か
らの機関回転速度Nを表わす信号を取込ミ、次ニ、ステ
ップ1012において、アナログ入力ボート104から
吸気fQを表わす信号を収込む。次に、ステップ101
3において、・機関回転速度Nと吸気IQとから決定さ
れる基本的な燃料噴射量つまり基本噴射時間幅Tpを計
算する。
In step 1011, a signal representing the engine rotational speed N from the rotational speed counter 101 is received.Next, in step 1012, a signal representing the intake air fQ is received from the analog input board 104. Next, step 101
3, calculate the basic fuel injection amount, that is, the basic injection time width Tp determined from the engine rotational speed N and the intake IQ.

計算式は、 Tp=F’X−+ ただしF:定数、である。The calculation formula is Tp=F'X-+ However, F: constant.

次に、ステップ1014において、基本噴射時間Tpの
直を判定値Tpα と比較する。すなわち、Tp≧Tp
αであれば、高貢荷と判断して、ステップ1015に移
って閉ループ制御(フィードバック制御)を行い、他方
、’rp<’rpαであれば、低負荷と判断して、ステ
ップ1016に移って開ループMIJ御すなわちリーン
な空燃比制御を行う。谷ステップ1015.1016に
おけるフィードバック空燃比補正量もしくはリーンであ
る空燃比補正道は、ステップ1017において、ROM
107より読出される。この割込みルーチンは各噴射サ
イクル毎に行われる。
Next, in step 1014, the basic injection time Tp is compared with the determination value Tpα. That is, Tp≧Tp
If α, it is determined that the load is high, and the process moves to step 1015, where closed-loop control (feedback control) is performed. On the other hand, if 'rp<'rpα, it is determined that the load is low, and the process moves to step 1016. Performs open-loop MIJ control, that is, lean air-fuel ratio control. The feedback air-fuel ratio correction amount or lean air-fuel ratio correction path at valley steps 1015 and 1016 is determined by the ROM in step 1017.
107. This interrupt routine is performed for each injection cycle.

第4図は一般的な仝燃比特注を示す図であって、横軸は
機関回転速度N1縦軸は吸気管内圧力pを示す。本発明
においては、マスフロ一方式の電子制御噴射制御袋1置
に訃いては、基本噴射時間Tpが吸気管内圧力pにほぼ
比例することを利用[2ている。従って、第4図に訃け
る吸気管内圧力pは基本噴射時間Tpと考えてよい(i
It位は異なる)。
FIG. 4 is a diagram showing a general custom-made fuel-fuel ratio, in which the horizontal axis shows the engine rotational speed N and the vertical axis shows the intake pipe pressure p. The present invention utilizes the fact that the basic injection time Tp is approximately proportional to the intake pipe internal pressure p when using a mass flow one-type electronically controlled injection control bag. Therefore, the intake pipe internal pressure p shown in FIG. 4 can be considered as the basic injection time Tp (i
It position is different).

−1股的には、機関回転速度Nにより体積効率が変化す
るために負荷特性は線形にならないが、負荷に対する噴
射時fij’lTpはほぼ比例している。すなわち、吸
気管内圧力pという値は機関の負荷を表わしているパラ
メータと考えてよい。従って、第4図に示すように、第
3図のステップ1014における高負荷、低負荷の判定
値Tpαは機関回転速度Nに対してほぼ一定に設定され
る。なお、第4図において、■は閉ループ制御領域、■
は開ル−プrijlJ御領域を示す。
-Firstly, the load characteristic is not linear because the volumetric efficiency changes depending on the engine rotational speed N, but the injection time fij'lTp is almost proportional to the load. That is, the value of the intake pipe internal pressure p can be considered as a parameter representing the engine load. Therefore, as shown in FIG. 4, the high load/low load determination value Tpα in step 1014 of FIG. 3 is set to be substantially constant with respect to the engine rotational speed N. In Fig. 4, ■ is the closed loop control region, and ■ is the closed loop control region.
indicates an open loop control area.

第5図は本発明に係る制御空燃比特性図である。FIG. 5 is a control air-fuel ratio characteristic diagram according to the present invention.

すなわち、基本噴射時間Tpが判定値Tpα以上である
場合には、制御される空気過剰率λは開ループ制御(フ
ィードバック制御)(/(よしほぼ1.!:なり、他方
、基本噴射時間Tp が判定値Tpα未満の場合には、
制御空気過剰率λは開ループ制御されてリーン1)11
1 、たとえばλ: 1.2 、になろことを示してい
る。
That is, when the basic injection time Tp is greater than or equal to the judgment value Tpα, the controlled excess air ratio λ becomes open-loop control (feedback control) (/(ok, almost 1.!); on the other hand, when the basic injection time Tp If it is less than the judgment value Tpα,
The controlled excess air ratio λ is controlled in an open loop to make it lean 1) 11
1, for example, λ: 1.2.

なお、上述の実施例においては、機関の負荷検出に基本
噴射時間す7′i:わちパルス幅Tpを用いたが、気化
器あるいはju子mす御1賢射を問わず、吸気。
In the above embodiment, the basic injection time (i.e., the pulse width Tp) was used to detect the engine load, but the intake air can be used regardless of whether the carburetor or the fuel injection is being performed.

管圧力センサを吸気マニホールドに設け、その圧力セン
′リーの出力によって閉ループもしくは開ループflf
U #と行っても同様の効果がル」待できる。また、他
の燃料噴射方法でも、圧力センサを有していれば、その
出力を利用でとる。
A pipe pressure sensor is installed in the intake manifold, and depending on the output of the pressure sensor, it can be closed loop or open loop flf.
You can get the same effect by pressing U#. Also, in other fuel injection methods, if a pressure sensor is provided, its output can be used.

以上説明したように+′発明、によれば、負荷の高低に
L−6じて閉ループ制御、j開ループ制御を行っている
ので、排気ガスの大幅な悪化を招くことなく、燃・r&
を向上できる。
As explained above, according to the +' invention, closed-loop control and open-loop control are performed for L-6 and J, depending on the load level, so the fuel, r&
can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る内燃機関の空燃比制御方法を実行
するだめの内燃機関の全体構成図、第2図は第1図の制
御回路2Dの詳細なブロック回路図、第3図は第2図の
CPU 1o oの動作を説明するだめの流れ図、第4
図は一般的な空燃比特性を示す図、第5図は本発明に係
る制御空燃比特性図である。 1:内燃、機関 2:エアクリーナ 3:吸気管 4:スロットルバルブ 5:燃料噴射弁 6:排気マニホールド 7:排気管 8:吸気温センサ 9:吸気温センサ 10:水温センサ 11:回転速度センサ 12 : 02センサ 13:3元触媒装置 20:制御回路 100:マイクロプロセッサ(CPU)。 特許用1顆人 日本電装株式会社 トヨタ自動車工業株式会社 特許出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理士 山 口 昭 之 竿1 面 栴3型
FIG. 1 is an overall configuration diagram of an internal combustion engine for carrying out the air-fuel ratio control method for an internal combustion engine according to the present invention, FIG. 2 is a detailed block circuit diagram of the control circuit 2D shown in FIG. 1, and FIG. A flowchart explaining the operation of CPU 1o o in Figure 2, No. 4
The figure shows a general air-fuel ratio characteristic, and FIG. 5 is a control air-fuel ratio characteristic diagram according to the present invention. 1: Internal combustion, engine 2: Air cleaner 3: Intake pipe 4: Throttle valve 5: Fuel injection valve 6: Exhaust manifold 7: Exhaust pipe 8: Intake temperature sensor 9: Intake temperature sensor 10: Water temperature sensor 11: Rotational speed sensor 12: 02 sensor 13: three-way catalyst device 20: control circuit 100: microprocessor (CPU). Patent Application 1 Nippon Denso Co., Ltd. Toyota Motor Corporation Patent Agent Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Akira Yamaguchi Rod 1 Mensa Type 3

Claims (1)

【特許請求の範囲】 1、機関の排気ガス中の特定成分濃度を検出し、該検出
された特定成分濃度に応じて空燃比を補正して該空燃比
が理論空燃比になるように閉ループ制御を行う内燃機関
の空燃比制御方法において、前記機関の負荷が高いとき
には前記閉ループ制御を行い、前記機関の負荷が低いと
きには前記空燃比をリーン側にずらす開ループ制御を行
うことを特徴とする内燃機関の空燃比制御方法。 入 前記機関の負荷の高低の判別を、運転状態パラメー
タにより演算される基本燃料噴射時間と所定の判定値と
の比較によって行う特許請求の範囲第1項に記載の空燃
比制御方法。
[Claims] 1. Closed-loop control that detects the concentration of a specific component in engine exhaust gas and corrects the air-fuel ratio according to the detected concentration of the specific component so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. In the air-fuel ratio control method for an internal combustion engine, the closed-loop control is performed when the engine load is high, and the open-loop control is performed to shift the air-fuel ratio toward a lean side when the engine load is low. Engine air-fuel ratio control method. 2. The air-fuel ratio control method according to claim 1, wherein the determination of whether the load on the engine is high or low is performed by comparing a basic fuel injection time calculated based on operating state parameters with a predetermined determination value.
JP14775381A 1981-09-21 1981-09-21 Air-fuel ratio control method for internal-combustion engine Pending JPS5851240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14775381A JPS5851240A (en) 1981-09-21 1981-09-21 Air-fuel ratio control method for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14775381A JPS5851240A (en) 1981-09-21 1981-09-21 Air-fuel ratio control method for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5851240A true JPS5851240A (en) 1983-03-25

Family

ID=15437366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14775381A Pending JPS5851240A (en) 1981-09-21 1981-09-21 Air-fuel ratio control method for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5851240A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184787A (en) * 1987-01-28 1988-07-30 株式会社リコー Character pattern generator
US5239965A (en) * 1991-05-30 1993-08-31 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine
KR100435637B1 (en) * 1997-12-16 2004-09-04 현대자동차주식회사 Air fuel ratio control method in vehicle mounted with lean burn engine to promote stable maintenance of working of engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184787A (en) * 1987-01-28 1988-07-30 株式会社リコー Character pattern generator
US5239965A (en) * 1991-05-30 1993-08-31 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine
KR100435637B1 (en) * 1997-12-16 2004-09-04 현대자동차주식회사 Air fuel ratio control method in vehicle mounted with lean burn engine to promote stable maintenance of working of engine

Similar Documents

Publication Publication Date Title
US4434768A (en) Air-fuel ratio control for internal combustion engine
JPS638296B2 (en)
US5664544A (en) Apparatus and method for control of an internal combustion engine
JP3445500B2 (en) Idle rotation learning control device for electronically controlled throttle internal combustion engine
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JPS6357852A (en) Control device for internal combustion engine
JPS5851240A (en) Air-fuel ratio control method for internal-combustion engine
JP2531155B2 (en) Air-fuel ratio control device for internal combustion engine
JPH09310635A (en) Air-fuel ratio control device of internal combustion engine
JPS6354888B2 (en)
JPS6213754A (en) Idle rotational speed control device in internal-combustion engine
JP2515300B2 (en) Ignition timing control device for internal combustion engine
JPS58198752A (en) Controller for air-fuel ratio of internal combustion engine
JPH0419377B2 (en)
JP4529306B2 (en) Engine actual torque calculation device
JP2519817Y2 (en) Engine protector
JPS629741B2 (en)
JPH10122057A (en) Egr controller for engine
JPH041180B2 (en)
JPS5841231A (en) Method of electronic controlling for fuel injection
JPS614842A (en) Fuel supply feedback control under cooling of internal-combustion engine
JPS5996452A (en) Partial lean control method for air-fuel ratio of internal-combustion engine
JPS61101639A (en) Air-fuel ratio controlling method for internal combustion engine
JPS639656A (en) Fuel injection timing controller for internal combustion engine
JPS5848746A (en) Apparatus for controlling air-fuel ratio of internal-combustion engine