JPS5850789A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS5850789A
JPS5850789A JP14794981A JP14794981A JPS5850789A JP S5850789 A JPS5850789 A JP S5850789A JP 14794981 A JP14794981 A JP 14794981A JP 14794981 A JP14794981 A JP 14794981A JP S5850789 A JPS5850789 A JP S5850789A
Authority
JP
Japan
Prior art keywords
layer
gaas
semiconductor laser
mask
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14794981A
Other languages
Japanese (ja)
Inventor
Masasue Okajima
岡島 正季
Naoto Mogi
茂木 直人
Haruki Kurihara
栗原 春樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP14794981A priority Critical patent/JPS5850789A/en
Publication of JPS5850789A publication Critical patent/JPS5850789A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable to form a current stricture structure of high effect and improve the yield of buried semiconductor laser, by combining easy and high reproducibility processes without necessitating mask-alignment operations. CONSTITUTION:The mesa uppermost part 5 is constituted of a GaAs layer for ohmic electrode formation, and the buried layer 6 is constituted of an AlxGa1-xAs layer, e.g. Al0.35Ga0.65As layer. An appropriate seelective crystal growing mask (SiO2, Si3N4, etc.) is previously provided on the GaAs layer 5 for ohmic electrode formation, and, after forming a mesa including an active region by an etching, the secondary crystal growth to grow the buried layer is performed, and thereafter the selective crystal growing mask is removed. By utilizing the difference of etching speeds for anode oxide films 9a, 9b of GaAs and AlGaAs, only the anode oxide film 9a on the GaAs layer 5 can be selectively removed even without using the mask for selective etching. For the etchant, what can etch the anode oxide film 9a of GaAs, e.g. HCl, H2SO4, NaOH can be used.

Description

【発明の詳細な説明】 本発明は、半導体レーザの電流狭窄構造及びその製造方
法、特に埋め込み゛構造半導体レーザの電流狭窄構造及
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current confinement structure for a semiconductor laser and a method for manufacturing the same, and more particularly to a current confinement structure for a buried structure semiconductor laser and a method for manufacturing the same.

半導体レーザにおいて、活性領域にいかに効率良く電流
を注入できるかは、半導体レーずの発振しきい値電流を
小さくする上で重要な要素である。
In a semiconductor laser, how efficiently current can be injected into the active region is an important factor in reducing the oscillation threshold current of the semiconductor laser.

第1図に埋め込み構造半導体レーザの一例を示す。FIG. 1 shows an example of a buried structure semiconductor laser.

活性領域を含むメサ部分への電流狭窄は、このレーザは
n型GaAs基板1にn型”mal Ga041 As
クラッドJ−2、活性領域となるI) ffi GaA
s層3、pmAらas Ga、@、 Asクラッド層4
、オーミック電極形成用p型GaA8Ha 5を順次積
層してメサ状にし、そのメサ部分にAl0JI aaO
JI As埋め込み層6を設けその埋め込み層6上に絶
縁膜7を設け、前記基板1及びオーミック電極形成用p
!!!! GaAs層5に夫々電極8を設けたものであ
る。p側表面上に形成された絶縁膜7によって行なわれ
る。このような構造は、pHl1表面上に、Siへ9M
重01 等の絶縁膜7を一様に形成した後、フォトリゾ
グラフィー技術−こよって、メサ上部の絶′縁膜のみを
選択的に除去し、電流を流すための「窓」を開けるとと
kよって作製される。この電流狭窄方法は、従来量も広
く用いられてきた方法の一つであるが、絶縁膜7の窓を
メサ上に正確に配置するためのマスク合わせ操作を必要
とするため、素子の製造工程が複雑になるという欠点を
有していた。さらに、基本横モードで発振するための活
性領域30幅は、通常2〜371m以下となるため、上
述のマスク合わせ操作は容易ではない。また、絶縁膜7
の窓の幅はマスク合わせのための「合わせしろ」を含む
ため活性領域の幅の2倍程度とする必要があり、このた
め、第1図の矢印で示さ、、れる様に、メサの両側を通
って流れる無効電流の存在が避けられないという欠点も
あった。
The current confinement to the mesa part including the active region is caused by this laser having an n-type "mal Ga041As" on an n-type GaAs substrate 1.
Cladding J-2, active region I) ffi GaA
S layer 3, pmA et al as Ga, @, As cladding layer 4
, p-type GaA8Ha 5 for forming ohmic electrodes are sequentially stacked to form a mesa, and Al0JI aaO is deposited on the mesa portion.
A JI As buried layer 6 is provided, an insulating film 7 is provided on the buried layer 6, and the substrate 1 and a p
! ! ! ! An electrode 8 is provided on each GaAs layer 5. This is done by an insulating film 7 formed on the p-side surface. Such a structure is formed on the pHl1 surface by 9M to Si.
After uniformly forming the insulating film 7 such as 01, only the insulating film on the upper part of the mesa is selectively removed using photolithography to open a "window" for current to flow. It is produced by k. This current confinement method is one of the methods that has been widely used in the past, but because it requires a mask alignment operation to accurately arrange the window of the insulating film 7 on the mesa, it is difficult to process the device manufacturing process. It has the disadvantage that it is complicated. Furthermore, since the width of the active region 30 for oscillation in the fundamental transverse mode is usually 2 to 371 m or less, the above-mentioned mask alignment operation is not easy. In addition, the insulating film 7
The width of the window needs to be approximately twice the width of the active region because it includes the "alignment margin" for mask alignment. Another disadvantage was that the presence of reactive currents flowing through them was unavoidable.

一方、マスク合わせが不要な方法ζこ、埋め込み層6を
高抵抗化する方法、あるいは第2図に示す様に、埋め込
み層中に逆バイアスされたpfi接合13を設ける方法
があるが、前者においては実用上十分に高抵抗な(10
″−10’Ω備以上)層の結晶成長が現状では容易でな
いこと、後者においてはメサ側面での埋め込み層中のP
n接合13の位置−こ    ゛よって、第2図の矢印
で示されるもれ電流の量が変化するばかりでなく、結晶
成長においてその位置の制御がきわめて困難であるとい
う問題点をそれぞれ有していた。
On the other hand, there is a method that does not require mask alignment, a method of increasing the resistance of the buried layer 6, or a method of providing a reverse biased PFI junction 13 in the buried layer as shown in FIG. has a sufficiently high resistance for practical use (10
At present, it is not easy to grow crystals in the layer (more than -10'Ω), and in the latter case, P in the buried layer on the mesa side
The position of the n-junction 13 not only changes the amount of leakage current shown by the arrow in Figure 2, but also has the problem that it is extremely difficult to control its position during crystal growth. Ta.

このように、従来の電流狭窄方法には、工程の複雑さ、
工程の再現性の悪さという問題点がありこのことは素子
の歩留りを向上させる上できわめて不利であった。
As described above, conventional current confinement methods have problems such as process complexity,
There was a problem of poor process reproducibility, which was extremely disadvantageous in improving the yield of devices.

本発明の目的は、マスク合わせ工程が不要で、かつ容易
で再現性の高い工程によって実現の可能な電流狭窄構造
及びその製造方法を提供することにある。以下本発明を
異体例によって説明する。
An object of the present invention is to provide a current confinement structure that does not require a mask alignment process and can be realized by an easy and highly reproducible process, and a method for manufacturing the same. The present invention will be explained below using variant examples.

第3図は本発明による埋め込み構造半導体レーザの製造
方法の一例を示したものである。第3図3に示した様に
メサ最上部5はオーミック電極形成用GaAs層、埋め
込み層6はAlx Gap−、As層例えばAl6)g
 Ga(財)、 As層より成っている。オーミック電
極形成用GaAs層5上にあらかじめ適当な選択結晶成
長マスク(Sing 、 841N4等)を設けてあき
、エツチングによって活性領域を含むメサを形成した後
、埋め込み層成長のための2次結晶成長を行ない、その
後で選択結晶成長マスクを除去する工程は、通常の埋め
込み構造半導体レーザの製造方法と共通である。第3図
1の状態、すなわち、表面にオーミック電極形成用Ga
A@層5及びAjGaAs埋め込み層6が露出した状態
で、全面を陽極酸化すると、GaAs層5上にはGaA
s0陽極酸化膜9aがAjx Ga1−xAsAs上に
は、AJx Ga1−HAsの陽極酸化膜9bが形成さ
れる(第3図b)。次に、適当なエツチング液を用いて
、電極形成用GaAs層5上の陽極酸化膜9麿のみを選
択除去する(第3図C)。
FIG. 3 shows an example of a method for manufacturing a buried structure semiconductor laser according to the present invention. 3 As shown in FIG. 3, the mesa top 5 is a GaAs layer for forming an ohmic electrode, and the buried layer 6 is an Alx Gap-, As layer (for example, Al6)g.
It consists of Ga (goods) and As layers. A suitable selective crystal growth mask (Sing, 841N4, etc.) is prepared in advance on the GaAs layer 5 for forming the ohmic electrode, and after forming a mesa including the active region by etching, secondary crystal growth for buried layer growth is performed. The steps of performing this and then removing the selective crystal growth mask are common to the manufacturing method of a normal buried structure semiconductor laser. 3. In the state shown in FIG. 1, that is, Ga for forming an ohmic electrode on the surface.
When the entire surface is anodized with the A@ layer 5 and the AjGaAs buried layer 6 exposed, GaAs is formed on the GaAs layer 5.
On the s0 anodic oxide film 9a of Ajx Ga1-xAsAs, an anodic oxide film 9b of AJx Ga1-HAs is formed (FIG. 3b). Next, using an appropriate etching solution, only the 9 edges of the anodic oxide film on the electrode-forming GaAs layer 5 are selectively removed (FIG. 3C).

GaAsとAjGaAsの陽極酸化膜9m、9bのエツ
チング速度の違いを利用することlこよって、選択エツ
チングのためのマスクを用いなくても、GaAs層5上
の陽極酸化膜9aのみを選択的に取り除くことが可能で
ある。エツチング液としては、GaAsの陽極酸化膜9
aをエツチングできるもの、たとえば、Hol、 Hl
 804 、 NaOH等を使用することができる。
By utilizing the difference in etching speed between the anodic oxide films 9m and 9b of GaAs and AjGaAs, only the anodic oxide film 9a on the GaAs layer 5 can be selectively removed without using a mask for selective etching. Is possible. As an etching solution, an anodic oxide film 9 of GaAs is used.
Things that can be etched with a, such as Hol, Hl
804, NaOH, etc. can be used.

埋め込み層のAI 濃度Xが0.35である場合、Ga
AsとAjx Gap−xAsの陽極酸化膜を完全に取
り除(のに要する時間の比は、たとえば10倍希釈のH
Oj溶液を用いた場合、1:5であり、実用上十分番ζ
大きな選択比が得られる。第3図dはこのようにして得
られた半導体レーザである。
When the AI concentration X of the buried layer is 0.35, Ga
The ratio of the time required to completely remove the anodic oxide film of As and Ajx Gap-x As is, for example, 10 times diluted with H
When Oj solution is used, the ratio is 1:5, which is practically tenth
A large selectivity ratio can be obtained. FIG. 3d shows the semiconductor laser thus obtained.

このように、マスク合わせ操作を必要とせずに電流狭窄
絶縁膜を容易に形成できることが、本発明の大きな特徴
である。陽極酸化工程及びそれに引き続くエツチング工
程は共にそれ自体きわめて単純かつ容易な工程であるた
め、本発明の製造方法の歩留りは高い。Iた本発明の方
法では絶縁属の形成において、いわば自動的なマスク合
わせが行なわれるため、絶縁膜9bはメサ上部に接して
形成される。したがって、第1図の方式に見られたよう
なマスクの合わせしるによるすき間を通ってメサ近傍を
流れる無効電流が全く無いということも、本発明の大き
な利点である。このようζこして形成された陽極酸化絶
縁膜による電流狭窄効果はきわめて良好であり、埋め込
み層として特に高抵抗化していないアンドープのAg1
)41 oa611 As(g〜0.5Ω−程度)を用
いた場合でも、約300μmの共振器長に対して15m
Al1度の低しきい値電流が再現性良く得られる。
Thus, a major feature of the present invention is that the current confinement insulating film can be easily formed without requiring a mask alignment operation. Since both the anodic oxidation step and the subsequent etching step are themselves extremely simple and easy steps, the manufacturing method of the present invention has a high yield. In addition, in the method of the present invention, automatic mask alignment is performed in the formation of the insulating layer, so that the insulating film 9b is formed in contact with the upper part of the mesa. Therefore, another great advantage of the present invention is that there is no reactive current flowing in the vicinity of the mesa through the gap caused by mask alignment, as seen in the method of FIG. The current confinement effect of the anodized insulating film formed in this way is extremely good, and the undoped Ag1 without particularly high resistance is used as a buried layer.
)41 Even when using oa611As (about g ~ 0.5 Ω), it is 15 m for a resonator length of about 300 μm.
A low threshold current of 1 degree Al can be obtained with good reproducibility.

以上の様に、本発明によれば、マスク合わせ操作を必要
とすることな(、容易かつ再現性の高い工程の組み合わ
せによって、効果の高い電流狭窄構造を形成することが
可能であり、埋め込み構造半導体レーザの歩留り向上の
有力な手段となるものである。
As described above, according to the present invention, it is possible to form a highly effective current confinement structure by a combination of easy and highly reproducible processes without requiring a mask alignment operation ( This is an effective means of improving the yield of semiconductor lasers.

なお、本発明は埋め込み構造半導体レーザのみでなく、
活性領域上部に電極用GaAs層を有し、それ以外の部
分ではAA’x Ga、−xAsが露出している様な構
造の半導体レーザにも広く適用可能であることは言うま
でもない。
Note that the present invention applies not only to buried structure semiconductor lasers but also to
Needless to say, the present invention is widely applicable to semiconductor lasers having a structure in which a GaAs layer for electrodes is provided above the active region, and AA'x Ga and -xAs are exposed in other parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の電流狭窄構造を有する埋め込
み構造半導体レーザの構成図、第3図(a)〜(d)は
本発明−実施例の埋め込み構造半導体レーザの製造方法
を示す工程図である。 1 ・−・n−GaAs基板e  2 ・・・n −A
&、@ oa(161Asクラッド層3・・・P−Ga
Aa活性層、4・・・P櫃4工G−61んクラッド層5
・・・P−GaAaオーミック電極層6・・・緘HGa
ジ、 As埋め込み層。 7・・・絶 縁 膜、 8・・・電極金属9&・・Ga
Asの陽極酸化膜。 91> −・A/GaAs (D 陽極dR化II!1
1 ” ’ 、P−A164@ Ga IIJ I A
s埋め込み層12 ・・・n −AICkHGa 64
@ As埋め込み層13・・・電流狭窄Pn接合〇 代理人 弁理士 則 近 憲 佑 ほか1名第  1 
 図 □3 第  2 図 第3図
1 and 2 are block diagrams of a conventional buried structure semiconductor laser having a current confinement structure, and FIGS. 3(a) to 3(d) are steps showing a method for manufacturing a buried structure semiconductor laser according to an embodiment of the present invention. It is a diagram. 1...n-GaAs substrate e 2...n -A
&, @ oa (161As cladding layer 3...P-Ga
Aa active layer, 4...P box 4G-61n cladding layer 5
... P-GaAa ohmic electrode layer 6 ... HGa
Di, As buried layer. 7... Insulating film, 8... Electrode metal 9 &... Ga
As anodic oxide film. 91> −・A/GaAs (D Anode dR conversion II!1
1 ” ', P-A164@Ga IIJ IA
s buried layer 12...n -AICkHGa 64
@As buried layer 13...Current confinement Pn junction〇Representative Patent attorney Kensuke Chika and 1 other person 1st
Figure □3 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)  活性領域上部に、オーミック電極形成用Ga
As層を有し、かつその他の部分ではAjx Ga、−
xAs層が表面に露出した構造を有し、該)Jx Ga
1− xM層表面上に陽極酸化膜を形成することによっ
て該活性領域への電流狭窄を行なうことを特徴とする半
導体レーザ装置。
(1) Ga for ohmic electrode formation on the top of the active region
It has an As layer, and the other parts have Ajx Ga, -
It has a structure in which the xAs layer is exposed on the surface, and the ) Jx Ga
A semiconductor laser device characterized in that current confinement to the active region is achieved by forming an anodic oxide film on the surface of the 1-xM layer.
(2)活性領域上部にGaAs層を有し1埋め込み層が
AJX Gat−XAl1層である埋め込み構造半導体
レーザ装置において、該IJx Gap−xAsAs層
表面上階ζ陽極酸化膜成することによって、該活性領域
への電流狭窄を行なうことを特徴とする半導体レーザ装
置。
(2) In a buried structure semiconductor laser device in which a GaAs layer is provided above the active region and one buried layer is an AJX Gat-XAl layer, the active region is A semiconductor laser device characterized by confining current to a region.
(3)  活性領域上部に、オーミック電極形成用Ga
As層を有し、かつその他の部分ではAJx Ga□−
xAs層が表面に露出した構造を有する半導体レーザ装
置を製造するに際し、該表面を一様に陽極酸化した後、
オーミック電極用GJIAI上の陽極酸化膜を選択的に
除去することによって、該活性領域への電流狭窄構造を
形成することを特徴とする半導体レーザ装置の製造方法
(3) Ga for ohmic electrode formation on the top of the active region
It has an As layer, and the other parts are AJx Ga□-
When manufacturing a semiconductor laser device having a structure in which the xAs layer is exposed on the surface, after uniformly anodizing the surface,
A method for manufacturing a semiconductor laser device, comprising selectively removing an anodic oxide film on a GJIAI for an ohmic electrode to form a current confinement structure in the active region.
JP14794981A 1981-09-21 1981-09-21 Semiconductor laser device and manufacture thereof Pending JPS5850789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14794981A JPS5850789A (en) 1981-09-21 1981-09-21 Semiconductor laser device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14794981A JPS5850789A (en) 1981-09-21 1981-09-21 Semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5850789A true JPS5850789A (en) 1983-03-25

Family

ID=15441708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14794981A Pending JPS5850789A (en) 1981-09-21 1981-09-21 Semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5850789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145807A (en) * 1988-05-11 1992-09-08 Mitsubishi Kasei Corporation Method of making semiconductor laser devices
US5236864A (en) * 1988-12-28 1993-08-17 Research Development Corporation Of Japan Method of manufacturing a surface-emitting type semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145807A (en) * 1988-05-11 1992-09-08 Mitsubishi Kasei Corporation Method of making semiconductor laser devices
US5236864A (en) * 1988-12-28 1993-08-17 Research Development Corporation Of Japan Method of manufacturing a surface-emitting type semiconductor laser device

Similar Documents

Publication Publication Date Title
JPS60229389A (en) Semiconductor laser element
JPS5850789A (en) Semiconductor laser device and manufacture thereof
JP2525788B2 (en) Method for manufacturing semiconductor laser device
JP2559373B2 (en) Method for manufacturing semiconductor laser device
JPH10270786A (en) Etching method of compound semiconductor, manufacture of compound semiconductor, and semiconductor laser
JPS6223191A (en) Manufacture of ridge type semiconductor laser device
JPH08204285A (en) Semiconductor laser and its manufacture
JPS62108591A (en) Manufacture of semiconductor laser
JPH06112592A (en) Fabrication of semiconductor laser element
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JP3689733B2 (en) Manufacturing method of semiconductor device
JPS637691A (en) Semiconductor laser device
JPS62179790A (en) Semiconductor laser
JPH07131110A (en) Manufacture of semiconductor laser device
JPH01217990A (en) Semiconductor laser device and manufacture thereof
JPH01115186A (en) Buried hetero type semiconductor laser element
JPH05121822A (en) Manufacture of semiconductor laser device
JP2525776B2 (en) Method for manufacturing semiconductor device
JPH05283799A (en) Manufacture of semiconductor laser device
JPS6372178A (en) Manufacture of semiconductor laser device
JPH09246665A (en) Semiconductor laser and manufacture thereof
JPS6372175A (en) Buried type semiconductor laser device and its manufacture
JPH0427185A (en) Refractive index waveguide type semiconductor laser device
JPH03125489A (en) Manufacture of semiconductor laser
JPH04130691A (en) Manufacture of semiconductor laser