JPS5850486B2 - Cable installation method - Google Patents

Cable installation method

Info

Publication number
JPS5850486B2
JPS5850486B2 JP54141626A JP14162679A JPS5850486B2 JP S5850486 B2 JPS5850486 B2 JP S5850486B2 JP 54141626 A JP54141626 A JP 54141626A JP 14162679 A JP14162679 A JP 14162679A JP S5850486 B2 JPS5850486 B2 JP S5850486B2
Authority
JP
Japan
Prior art keywords
cable
pipe
stress
installation method
contraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54141626A
Other languages
Japanese (ja)
Other versions
JPS5666116A (en
Inventor
順夫 安藤
順一 皆藤
公春 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP54141626A priority Critical patent/JPS5850486B2/en
Publication of JPS5666116A publication Critical patent/JPS5666116A/en
Publication of JPS5850486B2 publication Critical patent/JPS5850486B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Electric Cable Installation (AREA)

Description

【発明の詳細な説明】 本発明は電カケーフルの布設方法、特に直接水冷用のケ
ーブル布設方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of laying an electric cable, particularly a method of laying a cable for direct water cooling.

従来は、非可と5性ないしは小町とう性パイプ内にケー
ブルを布設し、パイプ内に水を貫流させてケーブルを強
制冷却する方式が採用されていた。
Conventionally, a method has been adopted in which a cable is laid inside a non-perpendicular or Komachi flexible pipe and water is forced to flow through the pipe to cool the cable forcibly.

ケーブルは負荷電流の変化に対応して温度上昇下降を繰
り返し、これがケーブルの熱膨張収縮を生ぜしめる。
The cable repeatedly rises and falls in temperature in response to changes in load current, which causes thermal expansion and contraction of the cable.

ケーブルの使用最高温度は冷却の有無に関わらず同じで
あり、一方最低温度は冷却水温度とほぼ等しくなるまで
低下するため湿度変化幅すなわち熱伸縮量は冷却なしの
場合に比べ極端に大きくなる。
The maximum operating temperature of the cable is the same regardless of the presence or absence of cooling, while the minimum temperature decreases to almost equal to the cooling water temperature, so the range of humidity change, that is, the amount of thermal expansion and contraction, becomes extremely large compared to the case without cooling.

従来、この伸縮はケーブル線路のある一定間隔毎、多く
はケーブルの接続部付近に設けられたオフセット部で吸
収するようにしていたが、大きい伸縮量に対しては大き
いオフセットを必要とし、それだけ大きい空間を確保し
なければならず、不経済な線路となる。
Conventionally, this expansion and contraction was absorbed by offset sections installed at certain intervals on the cable line, often near the cable connections, but large amounts of expansion and contraction required large offsets, which were correspondingly large. Space must be secured, making the line uneconomical.

また、この伸縮に抗する応力を発揮する固定物によりケ
ーブルを固定すれば、伸縮量は小さくなり、オフセット
も小さくて済むが、固定に要する力は後に詳述するよう
にケーブル−条当り5トンに達することもあり、多条の
ケーブルに対しては数十トンの固定力を要し、その設備
に多大の費用を要する。
In addition, if the cable is fixed with a fixed object that exerts a stress that resists this expansion and contraction, the amount of expansion and contraction will be small and the offset will be small, but the force required for fixing will be 5 tons per cable as will be detailed later. In some cases, tens of tons of fixing force is required for multiple cables, and the equipment requires a large amount of cost.

従って、本発明の目的は従来技術の欠点を解消し、直接
水冷ケーブルの熱伸縮を押え、かつ、その固定力を低減
させることのできる新規なケーブル布設方法を提供する
ことにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a new cable installation method that can eliminate the drawbacks of the prior art, suppress thermal expansion and contraction of a direct water-cooled cable, and reduce its fixing force.

本発明によれば、可撓性の十分あるパイプを直線状に布
設し、ケーブル挿通後パイプおよびケーブルを撓ませて
波打ち形状に予め形成することにより上記目的を達成す
ることができる。
According to the present invention, the above object can be achieved by laying a sufficiently flexible pipe in a straight line and bending the pipe and cable after the cable is inserted to form a wavy shape in advance.

次に、本発明によるケーブル布設方法を図面および実施
例につき詳細に説明する。
Next, the cable installation method according to the invention will be explained in detail with reference to the drawings and examples.

従来の如く、非可撓性ないしは小町撓注のパイプ内にケ
ーブルを布設し、両端を固定して応力を与える場合にも
パイプ内でケーブルは温i上昇に伴って波打ち形状をと
るか、製造から布設までの間に受けたケーブルの曲がり
ぐせ、線路自体の曲り、高低差等により様々な波打ち形
状が生じる。
As in the past, when a cable is installed inside a non-flexible or Komachi-style pipe and both ends are fixed and stress is applied, the cable takes on a wavy shape within the pipe as the temperature increases, or due to manufacturing Various wavy shapes occur due to bends in the cable during the period from installation to installation, bends in the line itself, height differences, etc.

また、その波打ち形状は周囲のパイプによって制限され
るため、伸縮力を十分に低下させるに至らぬ場合がある
Furthermore, since the wavy shape is limited by the surrounding pipes, the expansion and contraction force may not be sufficiently reduced.

このような不十分且つ任意の波打ち形状が生ずると一部
にケーブルを損傷する程の腕曲が集中する結果となる。
If such an insufficient and arbitrary wave shape occurs, the arm bends will be concentrated in a portion to the extent that the cable may be damaged.

一方、ケーブル布設直後にケーブルおよびパイプに所定
の曲りを周期的に与えておくと温度上昇に伴い、その部
分の曲りは犬となり、曲がりが犬となれば軸方向の力に
対してより曲がり易くなるため他の部分に曲がりを生せ
しめる可能性は極めて小さくなる。
On the other hand, if cables and pipes are periodically given a predetermined bend immediately after cable installation, as the temperature rises, the bend in that part will become a dog, and if the bend becomes a dog, it will bend more easily against axial force. Therefore, the possibility of bending other parts is extremely small.

すなわち、初期に強制的に曲がりを与えておけばその後
の熱伸縮はこの曲がりの変化によって吸収され、その曲
がり度合および周期を予め設定しておけば一部に応力の
集中するのな回避することができる。
In other words, if a bend is forcibly applied at the beginning, the subsequent thermal expansion and contraction will be absorbed by the change in bend, and if the degree and period of the bend are set in advance, stress concentration in one part can be avoided. Can be done.

また、外周のパイプにも可撓性を持たせることにより、
ケーブルの曲がりが大きくなってパイプの内壁に当接し
てもケーブルがパイプを押圧して曲がり得るため、非可
撓性パイプの場合のように伸縮力の低下を来たすような
ことはない。
In addition, by making the outer pipe flexible,
Even if the cable bends to a large extent and comes into contact with the inner wall of the pipe, the cable can press against the pipe and bend, so there is no reduction in the elastic force as in the case of non-flexible pipes.

次に、本発明によるケーブル布設方法が従来の技法に比
していかに有効であるかを具体例を挙げて説明する。
Next, how the cable installation method according to the present invention is more effective than conventional techniques will be explained using a specific example.

第1図に示すのは、従来技法によるもので、固定基礎1
間に小可撓性管2(この例ではFRPパイプ、内径15
0mm)を配置し、これにケーブル3を引き込んでその
両端に応力測定器4を配した例である。
What is shown in Figure 1 is based on the conventional technique, with fixed foundation 1
A small flexible pipe 2 (FRP pipe in this example, inner diameter 15
0mm), a cable 3 is drawn into this, and stress measuring instruments 4 are arranged at both ends of the cable 3.

そして、ケープ4J上昇の許容温度である85℃に達し
た時の両端の応力をm1fflした。
Then, the stress at both ends when the cape 4J reached 85° C., which is the permissible temperature for rising, was calculated as m1ffl.

その結果、最大応力45トンを記録した。As a result, a maximum stress of 45 tons was recorded.

次に、内径200朋のFRPパイプを用いて実測した処
、応力は最大約3トンであった。
Next, we actually measured the stress using an FRP pipe with an inner diameter of 200 mm, and found that the maximum stress was about 3 tons.

この場合、ケーブルの金属外被の歪測定を行い、ケーブ
ルの曲り度合の分布を調べた処、第2図に示すようにケ
ーブル3の片側端部付近のみに波打ち5が生じているこ
とが判明した。
In this case, we measured the strain on the metal jacket of the cable and investigated the distribution of the degree of bending of the cable, and it was found that waving 5 had occurred only near one end of the cable 3, as shown in Figure 2. did.

次に、本発明ケーブル布設方法に基づいて同様の実験を
行った。
Next, a similar experiment was conducted based on the cable installation method of the present invention.

内径200皿の補強層入りゴムホース可とう管6(例え
ばネオゾレンゴムで構成され、)耐内特性向上のためゴ
ム層の中間にビニロン糸を編組状に入れた構造)を用い
、ケーブル3(例えば一般に大電力送電用として用いら
れる154KV以上のOFケーブル)を引き入れ後、第
3図に示すように3m毎にパイプ外部から彼打ち形状を
強11拍に形成した。
A rubber hose flexible tube 6 (made of neosolene rubber, for example, with a vinylon thread braided in the middle of the rubber layer to improve internal resistance) with an inner diameter of 200 mm is used, and a cable 3 (for example, generally large After introducing an OF cable (of 154 KV or higher used for power transmission), a strong 11-beat shape was formed from the outside of the pipe every 3 meters as shown in Figure 3.

波打ち形状形成方法としては、例えばホース6とケーブ
ル3は、3m間隔毎で受は金物Tに置かれており、その
間は自重によりたわんでいることから、3m間隔の中央
部をわずかな押し力を加えることにより容易にたわむも
のである。
As for the method of forming the wavy shape, for example, the hose 6 and the cable 3 are placed on a metal fitting T at intervals of 3 m, and since they bend due to their own weight, a slight pushing force is applied to the center part of the hose 6 and the cable 3 at intervals of 3 m. It can be easily bent by adding it.

この際バイブロの振れ幅は約801fLIL、ケーブル
3の振れ幅は約20朋であった。
At this time, the vibration amplitude of the vibro was approximately 801 fLIL, and the vibration amplitude of cable 3 was approximately 20 mm.

この場合のケーブル最高湿度85℃での両端の応力は約
2トンであった。
In this case, the stress at both ends of the cable at the maximum humidity of 85° C. was approximately 2 tons.

以上の具体実施例から明らかなように、本発明によるケ
ーブル布設方法を採用することにより応力は172以下
に低減することができたのである。
As is clear from the above specific examples, by employing the cable installation method according to the present invention, the stress could be reduced to 172 or less.

ケーブルが数条に亘る場合には一層の効果があることは
明らかである。
It is clear that the effect is even more effective when the cable spans several lines.

更に、第3図に示す場合において、温変上昇に伴う波打
ち形状の変化も調査した処、全長に亘り平準化された形
状変化を生ずることも確認された。
Furthermore, in the case shown in FIG. 3, changes in the wavy shape due to temperature increase were also investigated, and it was confirmed that the change in shape was leveled over the entire length.

以上の具体例では、ケーブルの最初の強制的な波打ち形
状を長さ3TrL1振れ幅20rIL1rLとしたが、
これらの値を大きくとれば発生する軸方向応力は更に低
減できることも確認されている。
In the above specific example, the initial forced waving shape of the cable was set to have a length of 3TrL1 and a swing width of 20rIL1rL.
It has also been confirmed that the generated axial stress can be further reduced by increasing these values.

また、可とう性パイプとしては、所要の内水圧に耐え得
ること、所要の年月の劣化に耐え得ること、ケーブルと
同等以下の曲げ剛性であること、パイプ布設、ケーブル
布設時の摩擦に対して十分耐え得ること等の条件を満た
せば材質、構造、寸法上のIIJfJはない。
In addition, flexible pipes must be able to withstand the required internal water pressure, withstand deterioration over the required years, have bending rigidity equal to or lower than that of cables, and withstand friction during pipe and cable installation. There is no IIJfJ in terms of material, structure, and dimensions as long as the conditions such as sufficient durability are met.

最後に、従来のオフセット方式、従来の両端固定方式、
および本発明方式について比較してみると次表のように
なる。
Finally, the conventional offset method, the conventional both-end fixed method,
A comparison of the methods of the present invention and the method of the present invention is shown in the following table.

上表から明瞭に理解できるように、本発明によるケーブ
ル布設方法は従来の両方式の長所を併せ持った実用的効
果大なるものである。
As can be clearly understood from the above table, the cable laying method according to the present invention has great practical effects by combining the advantages of both conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および2図ば従来のケーブル布設方法において熱
応力測定を示す説明図、第3図は本発明の一実施例を示
す説明図である。 1・・・・・・固定基礎、2・・・・・・可とう性小な
るパイプ、3・・・・・・ケーブル、4・・・・・・応
力測定器、5・・・・・・波打ち形状の集中、6・・・
・・・可とう性パイプ、7・・・・・・受げ金物。
FIGS. 1 and 2 are explanatory views showing thermal stress measurement in a conventional cable installation method, and FIG. 3 is an explanatory view showing an embodiment of the present invention. 1... Fixed foundation, 2... Small flexible pipe, 3... Cable, 4... Stress measuring device, 5...・Concentration of wavy shape, 6...
...Flexible pipe, 7...Bracket.

Claims (1)

【特許請求の範囲】[Claims] 1 ケーブルをパイプ内に挿通し、冷却水の貫流により
ケーブルを直後冷却するシステムにおいて、該ケーブル
を布設するに際し、可とう性パイプを所定間隔に配置さ
れた受は金物上に直線状に布設し、ケーブル挿通後、受
は金物間の略中央部に押し力を加えることによりパイプ
およびケーブルをたるませて、彼打ち形状に予め形成す
ることを特徴とするケーブル布設方法。
1. In a system where a cable is inserted into a pipe and the cable is immediately cooled by the flow of cooling water, when installing the cable, the supports with flexible pipes arranged at predetermined intervals are laid in a straight line on the hardware. A cable laying method characterized in that, after the cable is inserted, the receiver applies a pushing force to the approximate center between the metal fittings to make the pipe and cable slack and form them in a rounded shape in advance.
JP54141626A 1979-11-01 1979-11-01 Cable installation method Expired JPS5850486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54141626A JPS5850486B2 (en) 1979-11-01 1979-11-01 Cable installation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54141626A JPS5850486B2 (en) 1979-11-01 1979-11-01 Cable installation method

Publications (2)

Publication Number Publication Date
JPS5666116A JPS5666116A (en) 1981-06-04
JPS5850486B2 true JPS5850486B2 (en) 1983-11-10

Family

ID=15296407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54141626A Expired JPS5850486B2 (en) 1979-11-01 1979-11-01 Cable installation method

Country Status (1)

Country Link
JP (1) JPS5850486B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269417A (en) * 1986-05-16 1987-11-21 Sumitomo Electric Ind Ltd Drive circuit for circuit element having diode characteristic
JPS62269416A (en) * 1986-05-16 1987-11-21 Sumitomo Electric Ind Ltd Drive circuit for circuit element having diode characteristic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269417A (en) * 1986-05-16 1987-11-21 Sumitomo Electric Ind Ltd Drive circuit for circuit element having diode characteristic
JPS62269416A (en) * 1986-05-16 1987-11-21 Sumitomo Electric Ind Ltd Drive circuit for circuit element having diode characteristic

Also Published As

Publication number Publication date
JPS5666116A (en) 1981-06-04

Similar Documents

Publication Publication Date Title
EP0400687B1 (en) Corrugated heat pipe
US4399319A (en) Thermally insulated composite flexible hose
JP2636029B2 (en) Heating and insulation equipment
US3750058A (en) Waveguide structure utilizing compliant helical support
JPS5850486B2 (en) Cable installation method
RU181518U1 (en) Thermally insulated bellows expansion device
US20060186663A1 (en) Expansion-deflection coupling
US2306331A (en) Method and apparatus for protecting cables
JPH0789690B2 (en) How to install a cryogenic cable
EP3633694B1 (en) Thermal-insulated multiple pipe for superconducting power transmission and laying method therefor
RU176459U1 (en) Bellows Compensation Device
SU1138587A1 (en) Flexible bent pipeline
US2378214A (en) Expansion means
JPH0116338Y2 (en)
JPS585907A (en) Hot spot cooler for power cable
KR100656876B1 (en) Piping system for compensating thermal expansion
CN2290749Y (en) Multi-section compound thermal insulation structure
FI79603C (en) An underground insulated heat pipe system with bend and method for providing this system
JP2000331545A (en) Compressed gas insulated transmission line in pipe line
JP2015019486A (en) Device and method for supporting power cable connection part
JPH0431775Y2 (en)
CA1171480A (en) Restraint apparatus for pipe type electric cables
JPS5838766Y2 (en) Catenary type conduit cable
JPH054594B2 (en)
JPS5830010A (en) Power cable with cooling tube