JPS5849635A - Crystalline glass having high strength and low expansion - Google Patents

Crystalline glass having high strength and low expansion

Info

Publication number
JPS5849635A
JPS5849635A JP14118981A JP14118981A JPS5849635A JP S5849635 A JPS5849635 A JP S5849635A JP 14118981 A JP14118981 A JP 14118981A JP 14118981 A JP14118981 A JP 14118981A JP S5849635 A JPS5849635 A JP S5849635A
Authority
JP
Japan
Prior art keywords
glass
li2o
crystallized glass
crystals
zro2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14118981A
Other languages
Japanese (ja)
Inventor
Masakazu Umetsu
梅津 理和
Norio Kobayashi
紀男 小林
Hisakuni Ito
寿国 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Ishizuka Glass Co Ltd
Original Assignee
Toyota Motor Corp
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Ishizuka Glass Co Ltd filed Critical Toyota Motor Corp
Priority to JP14118981A priority Critical patent/JPS5849635A/en
Publication of JPS5849635A publication Critical patent/JPS5849635A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To provide the titled glass having low thermal expansion and high mechanical strength, and useful as an industrial material, by heat-treating a glass material composed of specific amounts of SiO2, Al2O3, Li2O, TiO2, ZrO2, F, and As2O3. CONSTITUTION:The objective glass is prepared by heat-treatment of a glass material composed of 50-73(wt)% SiO2, 12-35% Al2O3, 2-10% Li2O, 0.1-6% TiO2, 0.1-6% ZrO2, 0.1-6% F, and 0.05-8% As2O3, wherein SiO2+Al2O3+ Li2O+TiO2+ZrO2+F+As2O3 is >=90%, SiO2+Al2O3+Li2O is >=81%, the con tent of Na2O, K2O, CaO, MgO and B2O3 is <=5%, and that of PbO, ZnO, BaO, SrO, and P2O5 is <=3%. The crystalline glass obtained by this process has a thermal expansion coefficient of <=20X10<-7>/ deg.C, between 50 deg.C and 500 deg.C, can be cut, machined or ground without loss of mechanical strength, and has excellent heat resistance and thermal-shock resistance.

Description

【発明の詳細な説明】 本発明は、殊に機械的強度が大きくかつ低熱膨関 腸性を有する結晶化ガラスに暖する。更に詳述すれば、
工業材料として特に有利に使用で門る高い機械的強度を
維持し得る元膨張性結晶化ガラスに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is particularly directed to crystallized glass having high mechanical strength, low thermal expansion, and enteric property. To be more detailed,
The present invention relates to expansible crystallized glass that can maintain high mechanical strength and can be particularly advantageously used as an industrial material.

従来、約1!OX 10 ”′b(50〜50000)
以下の熱膨張係数を有する低膨張性結晶化ガラスは、L
i2O−ム1□03’−8i02系の結晶物例えばβ・
スボジュウメン或はβ・ニークリ1タイト若しくはそれ
らを主成分とする構成から成ることは良く知られている
Conventionally, about 1! OX 10”’b (50-50000)
Low expansion crystallized glass having the following coefficient of thermal expansion is L
i2O-mu1□03'-8i02-based crystals, such as β.
It is well known that it is composed of subodumene or β-niquelinitite or a structure containing these as the main components.

係る結晶化ガラスの機械的強度殊に曲げ強度はほぼ20
00〜300 Qkg/ctA 程度の範囲内に限られ
ていた。
The mechanical strength, especially the bending strength, of such crystallized glass is approximately 20
It was limited to a range of about 00 to 300 Qkg/ctA.

一方、別異の結晶構造の結晶化ガラスであって高い機械
的強度例えば曲げ強度で5000〜6000kg/cd
前後を有するものも種々開発されているが、いずれも熱
膨張係数が70〜s o x i o−7//′a (
50〜500°0)前後若しくはそれ以上であって、耐
熱性、−耐熱ml撃性については満足できるものではな
かった。したがって、このような結晶化ガラスは高温度
で薦負荷が要求される工業材料用としては不向きな素材
となっている。このような実態の中で、その後、高い曲
げ強度を有する低膨張性結晶化ガラスが開発され、例見
げ特公昭45−3555 、特公昭45−4sqo 、
特公昭46−5835.特公昭46−42918等の各
公報にて提案され泥が、これべの結晶化ガラスはいす。
On the other hand, it is a crystallized glass with a different crystal structure and has a high mechanical strength, for example, a bending strength of 5000 to 6000 kg/cd.
Various types have been developed that have front and back sides, but all of them have thermal expansion coefficients of 70 to s o x i o -7//'a (
50 to 500[deg.]0) or more, and the heat resistance and heat-resistant ml impact resistance were not satisfactory. Therefore, such crystallized glass is an unsuitable material for industrial materials that require high temperatures and high loads. Under these circumstances, low-expansion crystallized glass with high bending strength was subsequently developed, and examples include Mige Tokko Sho 45-3555, Sho 45-4 SQO,
Tokuko Showa 46-5835. The crystallized glass was proposed in various publications such as Japanese Patent Publication No. 46-42918.

本内部結晶物ど表面結晶物とを鼻にする構造を有し、各
々の結晶物の熱膨張係数の相違から生ずる表面圧縮応力
によって高い機械的強度を得ているものすある。したが
って、これらの結晶化ガラスは切断、切削、研磨等の2
次加工により、圧縮応力が解放されると、前記強度を維
持することができなくなるという致命的な欠点を有して
いるので、前記2次加工を必要とする工業材料用素材と
して特に高機械的強度を必要とするものへの使用はほと
んど不可能であった。
Some have a structure in which the inner crystalline material and the surface crystalline material form a nose, and high mechanical strength is obtained by the surface compressive stress resulting from the difference in the coefficient of thermal expansion of each crystalline material. Therefore, these crystallized glasses can be cut, cut, polished, etc.
It has the fatal disadvantage of not being able to maintain its strength once the compressive stress is released by the secondary processing, so it is particularly suitable for use as a material for industrial materials that require the secondary processing. It was almost impossible to use it for things that required strength.

本発明者らは これらの実態を鑑み、切断・切削、研磨
等の2次加工を経ても、1柴材料として使用しうる高機
械的強度を維持しうる素材を提供すぺ〈鋭意研究を重ね
た結果、高機械的強度が表面圧縮応力によらず、結晶物
本来の強度を′維持し2次加工によって強度低下を来た
さない新規な高強度低膨張性結晶化ガラスを見い出した
。すなわち、本発明は、特許第854465号(特公昭
5l−j1926)明細書に記載されているFとム52
03の相乗的効果に着目し、それらの併存と結晶核形成
剤との組合せが特定ガラス体において核形成の微細化な
すとの知見に基づく。
In view of these circumstances, the inventors of the present invention have conducted extensive research to provide a material that can maintain high mechanical strength and can be used as a Shiba material even after undergoing secondary processing such as cutting, cutting, and polishing. As a result, we have discovered a new high-strength, low-expansion crystallized glass whose high mechanical strength is not dependent on surface compressive stress, maintains the original strength of the crystalline material, and does not suffer from a decrease in strength due to secondary processing. That is, the present invention is based on
Focusing on the synergistic effect of 03, it is based on the knowledge that the combination of their coexistence and a crystal nucleating agent results in finer nucleation in a specific glass body.

本発明の目的は、80X10 ?/’o(50〜500
°0)を越えない熱膨張係数を有する結晶化ガラスであ
って、切断、切削、研磨等の2次加工を経ても機械的強
度が低下せず依然として高い機械的強度を維持する高強
度低膨張性結晶化ガラスを提供することである。
The object of the present invention is 80X10? /'o(50~500
High strength, low expansion crystallized glass with a coefficient of thermal expansion not exceeding °0), which maintains high mechanical strength without decreasing its mechanical strength even after secondary processing such as cutting, cutting, and polishing. An object of the present invention is to provide a transparent glass-ceramic.

前記目的を達成するに必要な本発明の要旨は重量%で8
40250〜73%、ム1,0312〜35%+ Li
202〜lO%+ TiO20−1〜6%、ZrO20
,1〜6%、及びFo、1〜6%。
The gist of the present invention necessary to achieve the above object is 8% by weight.
40250~73%, Mu10312~35%+Li
202~1O% + TiO20-1~6%, ZrO20
, 1-6%, and Fo, 1-6%.

ム8□030.05〜8%を必要成分とするガラス体を
熱処理することにより得られる結晶化ガラスに存する。
It consists in crystallized glass obtained by heat-treating a glass body containing 0.05 to 8% of Mu8□03 as a necessary component.

本発明の結晶化ガラスにおいて、その強度増大に最も大
きく寄与するものは、上記成分にあってFとム5203
の併存と結晶核形成剤(’rio、l+ ZrO2)と
の組合せであり、構造にあっては目20・ム1□03・
48i02結晶の多量かつ緻密な存在である。
In the crystallized glass of the present invention, the components that contribute most to the increase in strength are F and M5203 among the above components.
It is a combination of the coexistence of and a crystal nucleating agent ('rio, l + ZrO2), and the structure is 20, 1, 03,
48i02 crystals are abundant and dense.

更に詳述すれば、前記特許第854465号明細書には
、L i20 8 i 02系又はLS20− At2
03−8i02系のガ3− ブスにおいて、Fと五a2O3の組合せが核形成剤とし
てはたらき、Li20・28i02結晶の析出起点とな
るべく極めて多量な結晶核となる旨が記載されているが
、本発明はこのFとム8□03の組合せがLi20−ム
1203−8 + 02系のガラスにおいて、Li20
−ム1203・4810、結晶の析出のために作用する
核形成剤(Tie2十ZrO2)による結晶核の生成に
関し、その核の微細化及び多量化に大きく寄与するとの
知見に基づきなされたものである。係るLi20−ム1
203−8 i 02系ガラス体が、一定の熱処理を受
けることによって、第1段階でFとム8□03との相乗
的効果を受けて微細かつ多量のTl02(/レチル)・
ZrO2(パップフィト)の共晶核が生成しかつ当該核
を起点としてL1□0・ムl、 03・48i02結晶
が開始されそして第2段階で前記結晶の成長が進む。し
かしながら、結晶核が極めて多量であるところから結晶
の成長が相互に干渉し、一定範囲内でその゛成長が進む
がほとんどは微細結晶のまま停止し、全体としてガラス
体は極めて微細かつ多量なLi2O・ム1□03・48
io□結晶より一番− 出したLi2O・^1203・48 * 02結晶体は
、それ自体微細結晶を緻密に結合した安定な結晶結合構
造を維持するので、結晶相互の結合強度が大きく、外力
負荷が大きくなったにしても内部応力の発生が少なく結
晶間のズレ等結晶構造欠陥の発生がほとんどなく、結晶
体の機械的強度の維持及び増大につながっている。更に
I−+20・A1203・481O□結晶それ自体は約
−2,4×10−7100(2o 〜6oo°o ) 
ノ熱g脹係数を有するので、実際上マトリックスガラス
と前記結晶物を官有する結晶化ガラス体において、前記
結晶を40%Lu上含有する結晶化ガラスでは約25X
107/’o (50〜500°0)以内の熱膨張係数
を得ることができる1、なお、前記結晶の含有敏が多い
ほど、得られる結晶化ガラスの熱膨張係数は小さくなる
傾向にある。
More specifically, in the specification of the above-mentioned patent No. 854465, L i20 8 i 02 series or LS20-At2
In the 03-8i02 series gas, it is stated that the combination of F and 5a2O3 acts as a nucleating agent and forms an extremely large number of crystal nuclei that serve as the starting point for the precipitation of Li20.28i02 crystals. is a Li20-mu1203-8 + 02 series glass in which the combination of F and Mu8□03 is Li20
- 1203/4810, was made based on the knowledge that a nucleating agent (Tie20ZrO2) that acts for crystal precipitation greatly contributes to the miniaturization and increase in the number of crystal nuclei. . The Li20-mu1
When the 203-8 i02 glass body is subjected to a certain heat treatment, a fine and large amount of Tl02 (/retyl) is formed in the first step due to the synergistic effect of F and Mu8
A eutectic nucleus of ZrO2 (Papphyto) is generated, and L1□0.mul, 03.48i02 crystal is started from this nucleus, and the growth of the crystal proceeds in the second stage. However, due to the extremely large number of crystal nuclei, the growth of crystals interferes with each other, and although the growth progresses within a certain range, most of the crystals stop as fine crystals, and the glass body as a whole is made up of extremely fine and large amounts of Li2O.・Mu1□03.48
The Li2O・^1203・48*02 crystal that is released from the io□ crystal itself maintains a stable crystal bond structure in which fine crystals are tightly bonded, so the bond strength between the crystals is high and it can withstand external force loads. Even if the crystal structure increases, internal stress is generated little and crystal structure defects such as misalignment between crystals hardly occur, leading to the maintenance and increase of the mechanical strength of the crystal body. Furthermore, the I−+20・A1203・481O□ crystal itself is approximately −2,4×10−7100 (2o ~ 6oo°o)
In practice, in a crystallized glass body containing a matrix glass and the crystalline material, a crystallized glass containing 40% Lu or more of the crystalline material has a thermal g-expansion coefficient of about 25X.
It is possible to obtain a coefficient of thermal expansion within 107/'o (50 to 500°0).The more the crystal content is, the smaller the coefficient of thermal expansion of the obtained crystallized glass tends to be.

一7/℃ 本発明において特に25X10   (50〜500°
C)以下の熱膨張係数を有する結晶化ガラス体を得んと
する。1、β・スボジュウメン結晶が約40%以90%
以上含有し、その中で■、+20十ム1□03 + 8
+ 02が81%占めていることが必要となる。
-7/℃ In the present invention, especially 25X10 (50~500°
C) Try to obtain a crystallized glass body having the following thermal expansion coefficient. 1. Approximately 40% to 90% β-subodumene crystals
Contains more than ■, +200m1□03 +8
+02 must account for 81%.

なお、Fとム畠203  との組合せによる作用効果は
、殊Gに、第11一段階の熱処理で結晶核の多量形成及
び第2段階で結晶の微細化を相乗的に達成させることに
ある。すなわち、核形成補助剤として、Fのみの或はム
S20.のみの添加でもその含有量を増大させることに
よって、前記該の多量形成化及び結晶の微細化はある程
度図れ得るが、前記目的を達成させるためには不十分で
ある。
The effect of the combination of F and Muhata 203 is particularly that G synergistically achieves the formation of a large amount of crystal nuclei in the first step of heat treatment and the refinement of crystals in the second step. That is, as a nucleation aid, F alone or S20. Although it is possible to increase the formation of a large amount and to make the crystals finer to some extent by increasing the content even by adding just a single amount, it is not sufficient to achieve the above objectives.

Fとム畠、03とを組合せて添加した結晶化ガラスの曲
げ強度が各々の一つを添加しない結晶化ガラスのそれに
比して約1.5〜2倍程大きくなることが実験データに
基づく第1表・及び@2表から理解することができる。
Based on experimental data, the bending strength of crystallized glass to which F and Muhata and 03 are added is approximately 1.5 to 2 times greater than that of crystallized glass without the addition of either one of them. This can be understood from Table 1 and @Table 2.

(第1表のム5203は外分比で示す。)7− 第   2   表 (第2表のFは外分比で示す。) B− 第1表、第2表から、F、ム’203のそれぞれ一方を
含有しない結晶化ガラスの曲げ強度はそれぞれ1aOO
kg/i、 2050に9/cdであるのに対し、Fl
 as、o。
(Mu5203 in Table 1 is shown as an external ratio.) 7- Table 2 (F in Table 2 is shown as an external ratio.) B- From Tables 1 and 2, F, Mu'203 The bending strength of crystallized glass that does not contain either one of these is 1aOO, respectively.
kg/i, 9/cd in 2050, whereas Fl
as, o.

を組合せて含有させるとその機械的強度は飛躍的に増大
し、約5000に9/dK達する高い曲げ強度を有する
結晶化ガラスが得られることがわかる。なお、第1表、
第2表のデータはいずれも表面を約11ゝ程度研磨した
加工ズミの試料を測定したもので、試料数n=20の平
均値である。ちなみに果研磨の試料の曲げ強度は第1表
階lが3850 kg/cJ 。
It can be seen that when these are contained in combination, the mechanical strength increases dramatically, and a crystallized glass having a high bending strength of about 50009/dK can be obtained. In addition, Table 1,
The data in Table 2 are all measured on samples with machining scratches on the surface polished by about 11 degrees, and are the average values of n=20 samples. By the way, the bending strength of the fruit-polished sample is 3850 kg/cJ in Table 1.

No3が411・kg/l、dであった。No. 3 was 411 kg/l, d.

本発明において、8102.ム1□03 + Li2O
* T轟02゜ZrO□、及びF、λ−203の必須成
分の含有量を上記の如く限宗したが、そめ限定理由は次
の如くである。
In the present invention, 8102. Mu1□03 + Li2O
* The content of the essential components of Tdoro02°ZrO□, F, and λ-203 was limited as described above, and the reason for the limitation is as follows.

sio□が56%未満であるとき、iJ(られる結晶化
ガラスは耐化学性が悪く、又夾雑結晶物の析出が多くな
って、所望の機械的強度、低膨張性が得られ難くなる。
When sio□ is less than 56%, the crystallized glass produced by iJ(iJ) has poor chemical resistance and precipitation of contaminant crystals increases, making it difficult to obtain the desired mechanical strength and low expansion property.

一方、73%を越える場合、ガラス質な結晶物が得られ
難く、所望する特性が得られない。したがって、8i0
2は50〜73%に限定される。
On the other hand, if it exceeds 73%, it is difficult to obtain a glassy crystalline substance, and desired characteristics cannot be obtained. Therefore, 8i0
2 is limited to 50-73%.

ム1□03が12%未満であるとき、浴融時 ガラスの
液相温度が高くなり作業性に支障を来たし、又夾雑結晶
物の析出が多くなって、所望の緒特性が得られ難くなる
。一方、35% を越える場合はガラスが難溶性となり
又作業性も悪くなりそして所望の結晶物及び所望の強度
、低膨張性が得られない。したがって、ム1203は1
2〜35%に限られる。
When Mo1□03 is less than 12%, the liquidus temperature of the glass during bath melting becomes high, which hinders workability, and the precipitation of contaminant crystals increases, making it difficult to obtain the desired properties. . On the other hand, if it exceeds 35%, the glass becomes poorly soluble and the workability deteriorates, making it impossible to obtain the desired crystalline material, desired strength and low expansion properties. Therefore, mu 1203 is 1
Limited to 2-35%.

LizOが2〜10%の範囲を逸脱すると、30×1 
o −7/’() (δO〜500°0)以下の線熱膨
張係数を示す結晶化ガラスが得られない。したがって、
Li2Oは2〜lO%の範囲に限られる。
If LizO deviates from the range of 2-10%, 30×1
A crystallized glass exhibiting a coefficient of linear thermal expansion of less than o −7/′() (δO˜500°0) cannot be obtained. therefore,
Li2O is limited to a range of 2-10%.

TjO□は前記した如< ZrO2と共に核形成剤とし
て作用し、極めて微細な結晶核(Ivチル結晶)が析出
する。殊にTiO□はZrO□よりも晶出速度が早く、
L A20・ムl、03・48 * 02結晶の析出に
優先的に作用する。0.1%未満の場合、F及びム〜0
.の相乗効果を受けても核形成の絶体量が少なく、所望
する1−A20・At203・4810.結晶の緻密性
を欠き、充分な機械的強度が得られない。7%を越える
とガラスの溶融性が豊くなると共に失透が発生し易すく
なり、諸性能に影響する夾雑結晶物の析出原因となる。
As described above, TjO□ acts as a nucleating agent together with ZrO2, and extremely fine crystal nuclei (Iv chill crystals) are precipitated. In particular, TiO□ has a faster crystallization speed than ZrO□,
LA20.ml, 03.48 * Acts preferentially on the precipitation of 02 crystals. If less than 0.1%, F and Mu~0
.. Even with the synergistic effect of 1-A20, At203, 4810. The crystal lacks denseness and sufficient mechanical strength cannot be obtained. If it exceeds 7%, the melting properties of the glass will increase and devitrification will easily occur, causing the precipitation of contaminant crystals that will affect various performances.

したがって、T I A2は0.1〜7%の範囲内に限
られる。
Therefore, TIA2 is limited to a range of 0.1 to 7%.

Z r 02は 前記した如(TiO2と共に核形成剤
としテ作用するが、殊に7トリツクスガラヌの存在量を
減少させる効果を有する。すなわち、結晶化ガラスにお
ける結晶緻密性を更に向トさせ強度を向上させるには、
夾雑結晶物であったとしても マトリックスガラスの存
在よりも結晶物の存在のほうが有利である。ZrO□は
Tin2の併存下で 核形成条件の相趨から特にマトリ
ックスガラスの結晶化に作用する。更にZrO2は結晶
化ガラスの耐化学性を向上させるはたらきがある。0.
1%未満のときは前記効果が発揮されず、殊に機械的強
度のもう一歩の向上に不十分である。一方、6%を越え
ると、スカムが生じてその溶融性を悪くすると共に失透
の大きな原因となり、夾雑結晶物が多量に析11− 出し 殊に所望の低膨張性が得られない。したがって、
7rO□は0.1〜6%の範囲に限られる。
As mentioned above, Zr02 acts as a nucleating agent together with TiO2, but has the effect of reducing the amount of 7-trix galanus in particular. In other words, it further improves the crystal density in crystallized glass and improves its strength. To let
Even if it is a contaminant crystal, the presence of the crystal is more advantageous than the presence of matrix glass. In the coexistence of Tin2, ZrO□ particularly acts on the crystallization of the matrix glass due to the trend of nucleation conditions. Furthermore, ZrO2 has the function of improving the chemical resistance of crystallized glass. 0.
If it is less than 1%, the above effect is not exhibited, and it is particularly insufficient to further improve mechanical strength. On the other hand, if it exceeds 6%, scum is formed, which impairs the meltability and becomes a major cause of devitrification, and a large amount of contaminant crystals precipitates out, making it particularly difficult to obtain the desired low expansion property. therefore,
7rO□ is limited to a range of 0.1 to 6%.

Fは、A・203の存在下でその相乗作用で、TiO2
の核形成を補助し、その結J&核の多量析出に必要であ
る。そして、ZrO2の溶融性を補助する作用を有し 
又ZrO□の核形成を早める作用を示す。したがって、
k゛が0.1%未満のときは1.is□03との組合せ
相乗効果を得ても、前記効果を充分に得ることができな
い。又、その過少はfR融待時スカム発生傾向増大し、
溶融条件の厳しい調整を余鍜なくされる。一方、6%を
越えるとガラス溶融時、炉材の損傷を著しくし かつ溶
融面からのFの揮散が著しくなるためガラスが不均質に
なって最終製品にとける均質な結晶の析出を妨ける。し
たがって、Fは0.1〜6%の範囲内でなければならな
い。
In the presence of A.203, F has a synergistic effect on TiO2
It assists in nucleation and is necessary for its formation and precipitation of a large amount of nuclei. It also has the effect of assisting the melting properties of ZrO2.
It also shows the effect of accelerating the nucleation of ZrO□. therefore,
1 when k゛ is less than 0.1%. Even if a synergistic effect is obtained in combination with is□03, the above effect cannot be sufficiently obtained. In addition, its deficiency increases the tendency for scum to occur during fR merchandising.
Strict adjustment of melting conditions is required. On the other hand, if it exceeds 6%, damage to the furnace material will be significant during glass melting, and the volatilization of F from the melting surface will become significant, making the glass non-uniform and preventing the precipitation of homogeneous crystals in the final product. Therefore, F must be within the range of 0.1-6%.

他方、A3203はFとの共存において核形成剤Tie
2゜Zr、02の核形成を補助し、その結晶核及び所望
結晶の多量形成に欠かせない。丈に、結晶化のための熱
処理時のF揮散によって内部結晶物と表面結晶物とが相
違して析出するのを防ぐ効果がある2゜Ig− ム8203が 0.05% 未満のとき、充分な量のF
が存在していても充分な量のTiO2・Z r 02共
晶結晶核の形成を補助しψft < 、切断、切削、研
磨等の2次加工による弛度低下を防止し得る緻密な微結
体全得ることができない。一方、8%を越えると結晶物
が脆弱化し、所望の強度が得られなくなる。したがって
、ム5203は0.05C−8%の範囲に限られる。
On the other hand, A3203 has a nucleating agent Tie in coexistence with F.
2°Zr assists in the nucleation of 02 and is indispensable for the formation of large amounts of crystal nuclei and desired crystals. When the content of 2゜Ig-me 8203 is less than 0.05%, it is effective in preventing different precipitation of internal crystals and surface crystals due to F volatilization during heat treatment for crystallization. amount of F
Dense microcrystals that can assist in the formation of a sufficient amount of TiO2 Z r 02 eutectic crystal nuclei even in the presence of I can't get it all. On the other hand, if it exceeds 8%, the crystalline material becomes brittle and the desired strength cannot be obtained. Therefore, Mu 5203 is limited to a range of 0.05C-8%.

々お、前記8i02 + Al2O3+Li2O+Ti
O2+ ZrO2+F+ム1□03の合計が90%未満
のとき若しくは8i0□+ム1iiO3+Li2Oの合
計が81%未満のとき、マトリックスガラス、夾雑結晶
物の占める1合が大きくなって所望とするβ・スボジュ
ウメン結晶が少なくなるので、十分な低膨張性が得られ
難くなる。
8i02 + Al2O3 + Li2O + Ti
When the sum of O2+ ZrO2 + F + Mu1□03 is less than 90%, or when the sum of 8i0□+Mu1iiO3+Li2O is less than 81%, the proportion of matrix glass and impurities increases to form the desired β-subodumene crystal. Since this decreases, it becomes difficult to obtain sufficient low expansion properties.

したがって、殊に20X10 ”00 (50〜500
°0)以下の熱膨張係数を有する結晶化ガラスを得んと
するときは、8i02 + Al2O3+ Li2O+
 TiO2+ZrO2+F’+Aa703の合計を93
%以上、その中で8s02 +Al2O3+ Li2O
が86%以上占めていることが必要である。
Therefore, in particular 20X10"00 (50-500
When trying to obtain crystallized glass having a coefficient of thermal expansion of less than °0), 8i02 + Al2O3 + Li2O+
The total of TiO2 + ZrO2 + F' + Aa703 is 93
% or more, among which 8s02 +Al2O3+ Li2O
must account for 86% or more.

なお、その他Na201 K20+ PbO,ZnO,
Halt 8rl)+0&OI Ml()+ B203
 + PgoS等の1種又は2種以上を本発明の特性に
大なる影響を与えない程度、たとえば、Na2O,に2
Q+ OaOIMIO+ B2O3については5%以下
、PbO,ZnO+ Eao、8rO+ B2O5につ
いては3%以下添加しても差支えない。これらの成分は
ガラスの溶融性9作業性の向上等のために使用されるも
のであるが、一定量以上の含有はマトリックスガラスの
含有量の増加、夾雑結晶物の多量生成等によって、強度
の低下、熱膨張係数の増大を招くので好ましくない。
In addition, other Na201 K20+ PbO, ZnO,
Halt 8rl)+0&OI Ml()+B203
+ One or more types of PgoS etc. are added to an extent that does not significantly affect the characteristics of the present invention, for example, Na2O, 2
Q+ OaOIMIO+ B2O3 may be added in an amount of 5% or less, and PbO, ZnO+ Eao, 8rO+ B2O5 may be added in an amount of 3% or less. These components are used to improve the meltability and workability of the glass, but if they are contained in excess of a certain amount, the strength may be deteriorated due to an increase in the content of matrix glass, the formation of a large amount of contaminant crystals, etc. This is not preferable because it causes a decrease in the coefficient of thermal expansion and an increase in the coefficient of thermal expansion.

次に本発明に基づ〈実施例を記載する。Next, examples based on the present invention will be described.

第   3   表  −−−−一 ガラス組成が第3表のm 1−5に示す値となるように
原料調合したバッチをガラス炉に投入し約16− 1500〜1600°0で3〜6時間溶融した後、直径
約6rnya・長さ約100T&”の丸棒を成形した。
Table 3 ----- A batch of raw materials prepared so that the glass composition would be the value shown in m 1-5 in Table 3 was put into a glass furnace and melted at about 16-1500 to 1600°0 for 3 to 6 hours. After that, a round bar with a diameter of about 6rnya and a length of about 100T&'' was formed.

このガラス棒を電気炉中で5°0/分の加熱速度で約7
5080まで昇温し、その温度で1・5時間保持し、そ
の後約1100’Oまで約3°0層の速度で昇温しその
温度で約2時間保持することによってガラス体を結晶体
に変質させた。そしてその後炉外へ取出し、放冷した。
This glass rod was heated in an electric furnace at a heating rate of about 7°C.
The glass body is transformed into a crystalline substance by increasing the temperature to 5080°C, holding it at that temperature for 1.5 hours, then increasing the temperature to about 1100'O at a rate of about 3°0 and holding it at that temperature for about 2 hours. I let it happen. Then, it was taken out of the furnace and left to cool.

得られた結晶化ガラス棒の表面を約11″切削し、各々
について曲げ強度、熱膨張係数を測定した。なお、第3
表の測定値は試料数n−20本による平均値を示す。
The surface of the obtained crystallized glass rod was cut by approximately 11 inches, and the bending strength and coefficient of thermal expansion of each rod were measured.
The measured values in the table show the average value based on the number of samples (n-20).

以上、詳述した如く、本発明は従来の結晶化ガラスにな
い、切断、切削、研磨等の2次加工をしず ても、機械的強度の低下をはとんと来ださか−かつ す
ぐれた耐熱性、耐熱衝撃性を保有する結晶化ガラスを提
供し得たものであり、前記緒特性が年、々高度な水準で
要求される工業材料用素材として正に適合するものであ
る。
As described in detail above, the present invention can reduce mechanical strength without undergoing secondary processing such as cutting, cutting, polishing, etc., which conventional crystallized glass does not have, and has excellent heat resistance. The present invention has provided a crystallized glass having high properties and thermal shock resistance, and is suitable as a material for industrial materials, which are required to have the above-mentioned properties at increasingly higher levels.

その他、結晶の微細性、緻密性によって 結晶化ガラス
の表面硬度は、2次加工の有無にかかわ16− らす、ビツカーヌ硬度(300を荷重)で約720に9
/71Lm2以上、を保有するので、前記機械部品、電
子部品等の工業材料用のみならず、建築材料、装飾用素
材1日用品材料等その他 その用途は極めて広範である
In addition, depending on the fineness and density of the crystals, the surface hardness of crystallized glass is approximately 720 to 9 on the Bitcane hardness (loaded at 300), regardless of the presence or absence of secondary processing.
/71Lm2 or more, its uses are extremely wide, not only for industrial materials such as the mechanical parts and electronic parts, but also for building materials, decorative materials, daily necessities materials, and others.

特許出願人 石塚硝子株式会社Patent applicant: Ishizuka Glass Co., Ltd.

Claims (1)

【特許請求の範囲】 l)重量%で8!0250〜73%、ム120312〜
35%。 Li、02〜10%、  〒to、  0.1〜6 %
 +  ZrO2o、 1〜6% 。 7091〜6%、ム畠2o、 0.05〜8%を必須成
分とするガラス体を熱処理して得られた高強度低膨張性
結晶化ガラス。 9 ) 8 i 02+ム1203 + Li2O+ 
TiO2+ ZrO2+ F + Ag2O3の合計が
90% 以上であって、その中で5io2+ム120.
 + Ll、Oが81%以上占めている特許請求の範囲
第1項記載の高強度低膨張性結晶化ガラス。
[Claims] l) 8!0250 to 73% by weight, 120312 to 73% by weight
35%. Li, 02~10%, 〒to, 0.1~6%
+ ZrO2o, 1-6%. A high-strength, low-expansion crystallized glass obtained by heat-treating a glass body containing as essential components 7091-6%, Muhata 2o, 0.05-8%. 9) 8 i02+mu1203+Li2O+
The total of TiO2+ ZrO2+ F + Ag2O3 is 90% or more, of which 5io2+ M120.
+ The high-strength, low-expansion crystallized glass according to claim 1, in which Ll, O accounts for 81% or more.
JP14118981A 1981-09-08 1981-09-08 Crystalline glass having high strength and low expansion Pending JPS5849635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14118981A JPS5849635A (en) 1981-09-08 1981-09-08 Crystalline glass having high strength and low expansion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14118981A JPS5849635A (en) 1981-09-08 1981-09-08 Crystalline glass having high strength and low expansion

Publications (1)

Publication Number Publication Date
JPS5849635A true JPS5849635A (en) 1983-03-23

Family

ID=15286226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14118981A Pending JPS5849635A (en) 1981-09-08 1981-09-08 Crystalline glass having high strength and low expansion

Country Status (1)

Country Link
JP (1) JPS5849635A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354446A (en) * 2000-04-08 2001-12-25 Carl Zeiss:Fa Flat float glass
US10626046B2 (en) 2016-10-12 2020-04-21 Corning Incorporated Glass ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354446A (en) * 2000-04-08 2001-12-25 Carl Zeiss:Fa Flat float glass
US10626046B2 (en) 2016-10-12 2020-04-21 Corning Incorporated Glass ceramics

Similar Documents

Publication Publication Date Title
US3157522A (en) Low expansion glass-ceramic and method of making it
JPS63256549A (en) Products from lithium aluminosilicate glass and manufacture
US3597179A (en) Glass treatment and glass-ceramic article therefrom
JPS60221338A (en) Optical glass
JPS63112439A (en) Glass ceramic product
JP2882995B2 (en) Crystallized glass, crystallized glass substrate for magnetic disk, and method for producing crystallized glass
JP2002154840A (en) Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS
JPS63162545A (en) Translucent crystalline glass
US3647489A (en) Glass ceramics
JPS60255634A (en) Lithium aluminosilicate glass ceramic
JP7460947B2 (en) Crystallized glass, crystallized glass, and method for producing crystallized glass
JPH01126239A (en) Glass substrate for electronic equipment
JP2759763B2 (en) Cordierite-based crystallized glass and method for producing the same
JPH01167245A (en) Glass composition for chemical reinforcement
US4022627A (en) Crystallizable glasses and nephetine glass-ceramics containing ZrO2 and ZnO
US4111708A (en) Machinable glasses
JPS5849635A (en) Crystalline glass having high strength and low expansion
US3489577A (en) Thermally crystallizable glasses and glass-ceramic products
JPS62292646A (en) Production of glass ceramic product
US3352698A (en) Method of making glass ceramic and product
JPH06157067A (en) Ultraviolet transmitting glass
JPS5849634A (en) Crystalline glass having high strength and low expansion
JP2881573B2 (en) Method for producing lead-free crystal glass composition
JPS60264345A (en) Glass composition for fiber
JPS5849633A (en) Crystalline glass having high strength and low expansion