JPS5849422A - Desulfurizing method for waste gas - Google Patents

Desulfurizing method for waste gas

Info

Publication number
JPS5849422A
JPS5849422A JP56147428A JP14742881A JPS5849422A JP S5849422 A JPS5849422 A JP S5849422A JP 56147428 A JP56147428 A JP 56147428A JP 14742881 A JP14742881 A JP 14742881A JP S5849422 A JPS5849422 A JP S5849422A
Authority
JP
Japan
Prior art keywords
slurry
absorption
waste gas
exhaust gas
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56147428A
Other languages
Japanese (ja)
Inventor
Naoharu Shinoda
篠田 直晴
Atsushi Tatani
多谷 淳
Michio Oshima
大島 道雄
Susumu Okino
進 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP56147428A priority Critical patent/JPS5849422A/en
Publication of JPS5849422A publication Critical patent/JPS5849422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To prevent the degradation in desulfurization performance occuring in the Al compds. contained in the slurry in an absorption stage in a wet type lime gypsum desulfurization method for waste gases by supplying phosphoric acid or phosphoric acid compds. into the absorption stage. CONSTITUTION:The waste gas from a coal firing installation 1 is conducted to an absorption tower 3, where SO2, HF, and dust are absorbed away from the waste gas by the slurry from a spray nozzle 6. A purified gas 4 is discharged from said tower. The slurry contg. the Ca compds. such as the CaSO3 and CaSO4 formed by absorption of SO2, the CaCO3, etc. in the absorbents, and the Al-F complex ions, etc. formed by the reaction of the Al compds. and HF dissolved in the slurry in the absorption stage originating in the dust, the absorbents, and makeup water is circulated in the tower 3 by a pump 5. Here, the concn. of the fluorine in the waste gas 2 and the flow rate of the waste gas are detected, and the inflow rate of the F compd. is determined. A phosphoric acid compd. 13 of the amt. conforming to said rate is added to decompose the Al-F complex ions, whereby the desulfurization performance is recovered.

Description

【発明の詳細な説明】 本発明は排煙脱硫方法に関するもので詳しくは石灰石や
消石灰を吸収剤原料として燃焼排ガス中のSO,を除去
するいわゆる湿式石灰石膏法排煙脱硫方法の改R’に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flue gas desulfurization method, and more particularly to an improved R' of the so-called wet lime-gypsum flue gas desulfurization method that removes SO from combustion flue gas using limestone or slaked lime as an absorbent raw material. It is something.

湿式石灰石膏法排煙脱硫装置における吸収工程では、s
o、′ta:含む燃焼排ガスと、  Ca(OR)*。
In the absorption process in wet lime plaster method flue gas desulfurization equipment, s
o, 'ta: Containing combustion exhaust gas, Ca(OR)*.

CaC0,* Ca80. al12H20,CaSO
4@2)!、o のような溶解度の小さなカルシウム化
合物乞含む2ラリ−とを接触させ排ガスからso、 y
吸収する訳であるがそのSO,吸収反応を総括反応式で
表わ丁と。
CaC0, *Ca80. al12H20, CaSO
4@2)! So, y is removed from the exhaust gas by contacting it with two rallies containing calcium compounds with low solubility such as ,
Although SO is absorbed, the absorption reaction can be expressed as a general reaction equation.

So、+Ca(OH)*→CaSO3aunt O+%
Ht O(1)SO2+CaC0,+%BHy O−*
 Ca5O,・’72H1O+CO,(21であり、排
ガス中の#R素によって次の酸化反応を生じる。
So, +Ca(OH)*→CaSO3aunt O+%
Ht O(1)SO2+CaC0,+%BHy O-*
Ca5O, .'72H1O+CO, (21), and the #R element in the exhaust gas causes the following oxidation reaction.

CaSO3・% H20+’J O! + 5/2 H
20→CaSO4・2 H,O(3)このような総括反
応式は単純であるが、実際の反応機構はかかる単純なも
のではな(1種々のイオコが極めて複雑に関与したもの
であるとされており、吸収工程での脱硫性能に影41を
及ぼ丁化学的因子は多種多様である。このことは現在も
尚、いろいろな研究に基づいて種々異なった解析が行な
われ、多様な脱硫づotスが提案されていることからも
明らかであり、気−液一固の3相系でのSO,吸収反応
の複雑さに加え。
CaSO3・% H20+'J O! +5/2H
20 → CaSO4.2 H, O (3) Although this general reaction formula is simple, the actual reaction mechanism is not so simple (1) It is said that various iodines are involved in an extremely complicated manner. However, there are a wide variety of chemical factors that affect the desulfurization performance in the absorption process. Even now, various analyzes have been conducted based on various studies, and various desulfurization processes have been investigated. It is clear from the fact that SO gas has been proposed, and in addition to the complexity of the SO absorption reaction in a three-phase gas-liquid-solid system.

多穆多岐に亘る微量元素のもたらす影譬についての調査
研究はつきることのないものである。
Research and research into the effects of a wide variety of trace elements is endless.

燃焼排ガス中K G’lo、以外にも微量成分としてア
:Jr:ニア化合物、ハ0ゲコ化合物、゛タスト等の多
くの化合物が含まれ、ダストの組成は排ガス源によって
多様でありその化合物は複絨多岐に亘っていることは化
学分′野KJ1t−置(者であれば想像に難(ない所で
ある。
In addition to KG'lo in the combustion exhaust gas, many other compounds such as A:Jr:nia compound, H0Geco compound, and Tast are included as trace components, and the composition of dust varies depending on the exhaust gas source. It is difficult for anyone in the field of chemistry to imagine that the field is multi-layered.

特に最近のエネルf−事情の変化により、IA電所や工
場のボイラー燃料として石炭が多用されて−おり、この
石炭燃焼排ガスは重油燃焼排ガスと比較するとタストや
へ〇ゲシ化合物が1オーダー高い濃度で存在している。
In particular, due to recent changes in the energy situation, coal is being used extensively as boiler fuel in IA power stations and factories, and this coal combustion exhaust gas has an order of magnitude higher concentration of tasto and hexene compounds than heavy oil combustion exhaust gas. It exists in

これらのダストやハ0ゲシ化合物等はSO,と同じよう
に吸収工程のスラリーに吸収される。
These dusts, bald compounds, etc. are absorbed into the slurry of the absorption process in the same way as SO.

本発明者らは、少ストと八−°0ゲシ化合物が吸収工程
のスラリーに混入した場合、脱硫性能が低下する埃象に
直面し、この原因について種々検討した結果、吸収工程
のスラリー中にアル:ニウム化合物が溶存することによ
って梃硫性能の低下が起こる墨ヲ見出した。
The present inventors were faced with the dust phenomenon in which the desulfurization performance deteriorates when low-strength and 8-°0 Gesi compounds are mixed into the slurry of the absorption process, and as a result of various studies on the causes of this, the inventors found that when the slurry of the absorption process It was discovered that the sulfur sulfur performance deteriorates due to the presence of dissolved Al:Nium compounds.

アル:ニウム化合物が、脱硫性能に及ぼす反応のメカニ
ズムは現在十分解明されていないが第1図に示したよう
に溶解アルミニウム濃度°の増大と共に著しい脱硫性能
の低下をもたら工事を本発明者らは確認している。
The mechanism of the reaction that Al:Nium compounds have on desulfurization performance is currently not fully understood, but as shown in Figure 1, as the concentration of dissolved aluminum increases, the desulfurization performance significantly decreases, causing the construction work to be carried out by the inventors. has been confirmed.

この溶解アルミニウムの由来は、排ガス中のダスト、吸
収剤及び補給水などがあり、吸収工程に流入する排ガス
、吸収剤及び補給水のそれぞれに濃度の多少はあるもの
リアルミニウム化合物が含まれている。吸収工程に流入
したアルミニウム化合物が丁べて溶解したアルミニウム
として存在するか、一部が溶解して残部は固相のアルミ
ニウム化合物で存在するかは、アル:ニウム化合物の履
歴や、その場の雰囲気・条件によって異なる。
The origin of this molten aluminum is dust in the exhaust gas, absorbent, make-up water, etc., and the exhaust gas, absorbent, and make-up water that flow into the absorption process each contain real aluminum compounds in varying concentrations. . Whether the aluminum compounds that flow into the absorption process exist as dissolved aluminum or partially dissolved and the remainder as solid aluminum compounds depends on the history of the aluminum compounds and the atmosphere at the time.・Varies depending on conditions.

例えば、アルミニウム化合物が、吸収工程において溶出
した場合でも1通常の湿式排煙脱硫装置の吸収工程の如
くスラリー−5以上の液性では(1)式の反応によって
、J(OH)、 t’影形成るf、−メ、 溶j51 
L ! : ’)’ム濃度は10  I!1ot/l 
(am AJ)以下の低濃度となる事が知られている。
For example, even if an aluminum compound is eluted in the absorption process, J(OH), t' influence will be affected by the reaction of formula (1) in a liquid slurry of 5 or more as in the absorption process of a normal wet flue gas desulfurization equipment. form f, -me, melt j51
L! :')'Mu concentration is 10 I! 1t/l
It is known that the concentration is as low as (am AJ) or less.

Al1”+30H−→AJ? (0H)i↓     
   (4)しかし1本発明者らは6員燃焼排ガスを吸
収した場合において、吸収塔スラリー−=5〜6の液性
でも第11!!!Iに示した如(アルミニウムが5 x
 t O−3mol/l (as AI )も安定して
溶解している事を確認、している。
Al1”+30H-→AJ? (0H)i↓
(4) However, when the present inventors absorbed 6-membered combustion exhaust gas, even when the absorption tower slurry was 5 to 6, it was 11th! ! ! As shown in I (aluminum is 5 x
It has been confirmed that t O-3 mol/l (as AI) is also stably dissolved.

この現象を種々検討した結果、溶解したアルミニウムは
排ガスによってもたらされるフッ素化合物と反応し安定
なAl1・F  、MゆFt−An・F、。
As a result of various studies on this phenomenon, it was found that molten aluminum reacts with fluorine compounds brought by exhaust gas, resulting in stable Al1.F and MyuFt-An.F.

M * F4−I A、”Fニーe M *ル′。ア、
エエ’Jlh−79素錯イオコの形態で存在している事
を見い出した。匡2図は吸収工程ガス5リ−における、
溶解フッ素濃度と溶解アルミニウム濃度の関係の一例を
示したもので、溶解アル−ニウム一度番ヱ溶解フ・シ素
磯度とほぼ一定の比率F/Al  =、3〜4(nol
/mol)で存在している。これは俗解アルミニウム濃
度が溶解フッ素濃度で決足される事を意味している。
M * F4-I A, "Fnee e M * Ru'. A,
It was discovered that it exists in the form of AE'Jlh-79 elementary complex Ioko. Figure 2 shows the absorption process gas at 5 lees.
This shows an example of the relationship between the dissolved fluorine concentration and the dissolved aluminum concentration.
/mol). This means that the generally understood aluminum concentration is determined by the dissolved fluorine concentration.

この溶解フ・シ素の供給源としては排ガス中のフ・!I
素化合物や吸収剤などがあるが、特に最近エネルf−事
情の変化により多用されている石炭の燃焼排ガス中には
、SO,ガスの1/10〜1/100に相当する数十〜
数p−のフッ素化合物が存在しており、かかる排ガスを
湿式排煙処理装置にて処理する場合には、吸収工程Ct
) 浴解アルミニウムイオコ濃度が増大する。
The source of this dissolved fusilicium is fu! in exhaust gas. I
There are elementary compounds, absorbents, etc., but especially in coal combustion exhaust gas, which has been frequently used due to recent changes in the energy situation, SO, which is equivalent to 1/10 to 1/100 of gas, contains several tens of SO, which is equivalent to 1/10 to 1/100 of gas
Several p fluorine compounds are present, and when such exhaust gas is treated with a wet flue gas treatment device, the absorption step Ct
) The concentration of aluminum iodine dissolved in the bath increases.

現在このアルミニウム化合物による脱硫性能の低下?防
止する対策の一つとしてアルミニウム化合物の系外への
排出を促進する方法がある。
Is the desulfurization performance decreasing due to this aluminum compound? One of the preventive measures is to promote the discharge of aluminum compounds from the system.

これは排水量ン多(したり、脱硫装置系内の循環液にア
ルカリ金属又はアルカリ土類金属の水酸化物を添加し、
液性を高pHに維持する事によつ″′clW解アルエニ
ウムンアルカリで中和処理し^1(OR)、の沈殿とし
て分離したり、することによって吸収工程でのスラリー
の溶解アルミニウム磯度を低く押え、脱硫性能の低下を
小さくするものである。
This can be achieved by adding alkali metal or alkaline earth metal hydroxide to the circulating fluid in the desulfurization equipment system.
By maintaining the liquid at a high pH, the dissolved aluminum in the slurry in the absorption process can be separated as a precipitate by neutralizing it with a ClW-decomposed alkali and separating it as a precipitate. This is to keep the degree of desulfurization low and reduce the decrease in desulfurization performance.

しかしながら、アルミニウム化合物の中和処理による沈
殿分離処理操作は厄介であり、経済性を損うこと及び排
水責め増大は排水による2次公書防止の観点から時代の
ニーズに合致しないも−のである。
However, the precipitation separation treatment operation by neutralizing the aluminum compound is troublesome, impairs economic efficiency, and increases the burden of wastewater, which does not meet the needs of the times from the viewpoint of preventing secondary official documents due to wastewater.

本発明は石灰石や消石灰ン吸収剤原料として燃4排ガス
中のSO,を除去する湿式石灰石膏法排煙脱硫方法に於
いて、吸収1轡のスラリー中に含まれるアルミニウム化
合物によってもたらされる脱硫性能の低下を防止するた
めに、吸収工程にす:1fll又はリン酸化合物を供給
する事を特徴とするものである。
The present invention uses limestone and slaked lime as absorbent raw materials to improve the desulfurization performance brought about by the aluminum compound contained in the slurry of one ton of absorption in the wet lime-gypsum flue gas desulfurization method for removing SO from the flue gas. In order to prevent deterioration, 1 fl. of phosphoric acid compound is supplied to the absorption step.

本発明によれば、溶解したアルミニウム化合物を排除す
る操作子なわち中和処理による沈殿分離や排水量の増大
が不要となつ工脱硫性能の低下乞防止することが出来る
According to the present invention, there is no need for an operator to remove dissolved aluminum compounds, ie, precipitation separation by neutralization treatment or an increase in the amount of water discharged, and it is possible to prevent deterioration in the desulfurization performance.

即ち本発明は吸収工程における脱硫性能の低下をまね(
主因である浴解アル三二〇乙化合物を分解除去する方法
に関するものであり、詳細を以降に述べる。− 吸収工程において俗解しているアルミニウム化合物は、
アルミニウムーフッ素錯イオコとして存在している事は
前述の通りであるが1本発明者らはこリアル!ニウムー
フ・シ素錯イオシを含むスラリーによって燃焼排ガス中
のgo2Y吸収するに際し、リン酸化合物乞添加丁Φと
第6図のようにリン酸添加量に見合って脱硫性能が回復
する事を見い出したことによって本発明を成し得たもの
である。
That is, the present invention mimics the deterioration of desulfurization performance in the absorption process (
This relates to a method for decomposing and removing the main cause of the bath decomposition, Al-320, and the details will be described below. − In the absorption process, aluminum compounds are commonly
As mentioned above, it exists as an aluminum-fluorine complex. It was discovered that when GO2Y in the combustion exhaust gas is absorbed by a slurry containing Ni-F-Si complex sulfur, the desulfurization performance recovers depending on the amount of phosphoric acid added, as shown in Figure 6, when the phosphoric acid compound is added. The present invention was made possible by this.

リン酸化合物によるアルミニウムーフー!J票錯イオコ
リ分解反応は次の通りである。
Aluminum-fu caused by phosphoric acid compounds! The J-vote complex iocolli decomposition reaction is as follows.

リン酸化合物を吸収工程のスラリーに添加するとスラリ
ー中に含まれるCa5O,a 2 H2Oとリン酸化合
物とが反応しり:JNRカルシウムを生成する。
When a phosphoric acid compound is added to the slurry in the absorption step, the phosphoric acid compound reacts with Ca5O and a 2 H2O contained in the slurry to produce JNR calcium.

2M”、−PO,+3CaS04・2H10−+Ca5
(PO4)+3−・SO4+2H10(51(ここでM
:1価の陽イオンを示す。)このす:/+1!カルシウ
ムはフ1素イ才コが共存すると(6)式罠よってフルオ
ロアパタイトを生成する。このフルオロアパタイトは極
めてaS解性の化合物であるため、アルミニウムーフー
!IX錯イオコは次の反応によって分解し、フッ素イオ
シは固体に固定され同時にアシ!ニウムイオシは(4)
式によって、L/(OH)、の沈殿となり除去されるこ
とがわかった。
2M", -PO, +3CaS04・2H10-+Ca5
(PO4)+3-・SO4+2H10(51(here M
: Indicates a monovalent cation. ) Konosu:/+1! When calcium coexists with fluorine, fluoroapatite is produced by the trap of formula (6). Since this fluoroapatite is an extremely aS-decomposable compound, aluminum-hu! The IX complex iodine is decomposed by the following reaction, and the fluorine iodine is fixed in the solid and at the same time reed! Nium iosi is (4)
According to the formula, it was found that L/(OH) was precipitated and removed.

!(1−Fn)”−”−?6Ca3PQ)t+ca”−
+2Caa(POa”F+”AA””  (615+ AJ  + 5 H,O→ kl(0■)、↓+3B 
         (4)従って上記反応によってアル
ミニウム〒フッ素錯イオコが分解除去されたため脱硫性
能が回復したものと考えられる。
! (1-Fn)”-”-? 6Ca3PQ)t+ca"-
+2Caa(POa"F+"AA"" (615+ AJ + 5 H, O→ kl(0■), ↓+3B
(4) Therefore, it is considered that the desulfurization performance was restored because the aluminum-fluorine complex was decomposed and removed by the above reaction.

吸収工程に供給するリン酸化合物は反応成分であるり:
、I酸カシカルシウム以外例えばリン酸カリウム、リン
酸ナトリウム及びリシ酸アシtニウムなどのリン酸イ才
り乞含む可溶性の化合物やリン酸であっても有効である
。尚り:/酸化合物の供給は吸収工程にとどまらずアル
ミニウムーフ、素錯イオコが存在する液例えば*  s
Q。
The phosphoric acid compound supplied to the absorption process may be a reactive component:
In addition to calcium phosphate, soluble compounds including phosphoric acids such as potassium phosphate, sodium phosphate, and acinium phosphate, and phosphoric acid are also effective. Note: / The supply of acid compounds is not limited to the absorption process, but also to liquids containing aluminum complexes and iodine complexes, for example * s
Q.

を吸収して生成したCa 803・17H20Y空気に
よってCa Boa・2H20に酸化する酸化工程や、
固液分離工程からの上澄液や、上澄液と吸収剤であるC
aC0,が混合される原料調製工程であっても有効であ
る。
An oxidation process in which Ca 803.17H20Y produced by absorbing oxidizes to Ca Boa.2H20 by air,
Supernatant liquid from solid-liquid separation process, supernatant liquid and absorbent C
It is also effective in the raw material preparation process where aC0, is mixed.

吸収工程へのリン酸化合物の供給量P(moA!/Hr
)は、吸収塔に流入するフ嚇素化合物の流入量F(mo
A’41F)との比P/F (mol/mo l)が6
以上の領域でアルミニウム化合物による脱硫性能への悪
影響は完全に阻止出来るが、  P/Fが6以下の領域
でヘリコ酸化合物添加量に見合って脱硫性能は回復する
。吸収工程に流入するフッ累化合物は排ガスから°の流
入が主体であるので排ガス中のフン累濃度と排ガス流量
を同時に検知すればフッ素化0合物流人量が求まるので
その量からリン酸化合物の供給量Y決定すれば良い。
The amount of phosphoric acid compound supplied to the absorption process P (moA!/Hr
) is the inflow amount F (mo
A'41F) ratio P/F (mol/mol) is 6
In the above range, the adverse effect of aluminum compounds on desulfurization performance can be completely prevented, but in the range where P/F is 6 or less, desulfurization performance recovers in proportion to the amount of helicate compound added. The fluorinated compounds that flow into the absorption process are mainly from the exhaust gas, so if the cumulative concentration of feces in the exhaust gas and the flow rate of the exhaust gas are detected at the same time, the amount of fluorinated compounds transported can be determined from that amount. It is sufficient to determine the supply amount Y.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例1 本発明の実施例を第5図′によって説明する。Example 1 An embodiment of the present invention will be explained with reference to FIG. 5'.

石炭燃焼炉、ガスクー5−0乾式集じん器をもって構成
された石炭燃焼設備1を出た排ガス2はSo、 120
0ppm 、  ダスト10〜200019/m”N。
The exhaust gas 2 leaving the coal combustion equipment 1, which is composed of a coal combustion furnace and a Gascoo 5-0 dry dust collector, is So, 120
0ppm, dust 10~200019/m”N.

HF 5−25 ppm ’に含む約70℃のガスであ
り、約2000 w?N/Hrで吸収塔3に導かれる。
It is a gas at about 70°C containing HF 5-25 ppm' and about 2000 W? It is guided to the absorption tower 3 with N/Hr.

吸収塔3ではスプレーノズル6より噴射されるスうリー
と排ガスを接触させSOlとダストIFを除去された排
ガス4として吸収塔6から排出される。吸収塔3ではS
o、 Y吸収して生成したCa8G1・In、。
In the absorption tower 3, the exhaust gas is brought into contact with the exhaust gas injected from the spray nozzle 6, and is discharged from the absorption tower 6 as the exhaust gas 4 from which SOI and dust IF have been removed. In absorption tower 3, S
o, Ca8G1.In produced by Y absorption.

と酸化生成したCa5O6・i馬0 それに吸収剤であ
るCaC0,などのガルシウム化合愉と、HFを吸収し
て生成したアルミ二りムーフ9累錯イオシと、−!2ス
トを含んだスラリーが吸収塔tfI環ポジづ5からスプ
レーノズル6を介して循環する。
and the oxidized Ca5O6・iuma0, as well as the absorbent CaC0, which is a galsium compound, and the aluminum two-moof 9 complex sulfide produced by absorbing HF, -! A slurry containing two strokes is circulated from the absorption tower tfI ring positive 5 through the spray nozzle 6.

循環流量は30 rrl/Hr とした。The circulation flow rate was 30 rrl/Hr.

力IL:/リム化合物とアルエニウムーフラ素錯イオコ
を含むスラリーは吸収塔循環ポンプ5 K−よって循環
する一方一部なライシフより約1001/Hrで固液分
l1li機8に送りCa5O1* 2 H,Oを主体に
した固形物14と上澄液9に分けた。上澄液9は吸収剤
タコク10へ送られ炭カルスラリ−11と混合され約8
wt%の炭カルスラリ−としてうイ:J12より吸収塔
3へ約125 l/Hで供給した。
The slurry containing the /rim compound and the aluenium-fluorine complex is circulated by the absorption tower circulation pump 5K, while being sent to the solid-liquid separation machine 8 from a portion of the lifecycle at a rate of about 1001/Hr.Ca5O1*2 It was divided into a solid substance 14 mainly composed of H and O and a supernatant liquid 9. The supernatant liquid 9 is sent to the absorbent takoku 10 and mixed with the charcoal slurry 11.
It was supplied as a wt% carbon slurry to the absorption tower 3 from the pipe J12 at a rate of about 125 l/H.

排ガス2に含まれるダスト濃度とHF濃度を種々変化さ
せた時の吸収塔循環スラリー中の溶解アL!ニウムイオ
コ濃度と排ガス4中の吸収導出ロSo、濃度の相関デー
タを第1図に示した。
Dissolution a in the absorption tower circulation slurry when the dust concentration and HF concentration contained in the exhaust gas 2 are varied! Correlation data between the nium iococoncentration and the concentration of absorption and derivation So in the exhaust gas 4 is shown in FIG.

fI!IPflアルミニウムイオン濃度の増大と共に吸
収導出ロSo、濃度が増大して脱硫性能が低下している
事がわかる。
fI! It can be seen that as the IPfl aluminum ion concentration increases, the absorption and extraction So concentration also increases and the desulfurization performance decreases.

吸収嗜循環ス5り一部の溶解アシ!二つムイオシ濃度と
溶解71素イオシ濃度の相関データな耐2図に示した。
Some dissolution of the absorption circulation system! Correlation data between the concentration of two sulfur sulfur and the concentration of dissolved 71 element sulfur are shown in Figure 2.

溶解アルミニウムイオ:JI11度と溶解フ豐素イオコ
濃度の増大の割合はほぼ一定の比率F/AJ=3〜4 
(mol/mol)となっている事がわかる。
Dissolved aluminum iodine: JI 11 degrees and the rate of increase in dissolved fluorine iodine concentration are almost constant ratio F/AJ = 3 to 4
It can be seen that (mol/mol).

次に5イコ13よりリン酸化合物を吸収塔で種々濃度に
なるように供給した時の脱硫性能回復の様子を第3図に
示した。著しい脱硫性能回復効果が得られた。尚ライ:
J13より吸収塔に供給J−たリン酸化合物はリシ酸ア
ク℃ニウム。
Next, Fig. 3 shows how the desulfurization performance recovered when a phosphoric acid compound was supplied from Ico 13 to the absorption tower at various concentrations. A remarkable recovery effect on desulfurization performance was obtained. Nao Rai:
The phosphoric acid compound supplied to the absorption tower from J13 was acunium ricinate.

リン酸のいずれも同程度の効果を示した。Both phosphoric acids showed similar effects.

実施9112 本実施例は第5図に示す脱硫装置によりSO。Implementation 9112 In this example, SO was produced using the desulfurization apparatus shown in FIG.

1200ppm、 HF7ppm、 タスト150 W
/dN v含む石炭燃焼炉排ガスを脱硫し上部液9の組
成分析を行なったところA/  11度はt 7 mm
ol/lでF−良度は5.2 m rnol/l  で
あった、この上澄液にリコ酸力しレウムCa3 (PO
4)*を種々濃度となる様添加した場合のAA’  濃
度及びF−一度とリコ酸、jJルシウム添加量の相関を
第4図に示した。
1200ppm, HF7ppm, Tast 150W
/dN v was desulfurized from the coal combustion furnace exhaust gas and analyzed the composition of the upper liquid 9. A/11 degrees is t 7 mm.
The F-quality was 5.2 mrnol/l in ol/l. This supernatant was treated with licorice and rheum Ca3 (PO
4) Figure 4 shows the correlation between the AA' concentration and F-1 and the amount of licic acid and jJ lucium added when various concentrations of * were added.

Pdr/F’E L 比6.0 テA7?5+1111
度ハ全A、 と存在L7てない事がわかる。
Pdr/F'E L ratio 6.0 TeA7?5+1111
The degree is all A, and you can see that there is no L7.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸収塔循環スラリー中のAe3+イオン濃度の
増加によって脱硫性能が低下した実験結果の相関図。 第2図は吸収塔循環スラリー中のAl  イオン濃度と
F−イオ:J#度の比率を示した液組成分析結果の相関
図。 第3図はA15+イオコが含まれる吸収塔循環スうり−
にり:J酸酸化物物乞添加た時脱硫性能が回復した実験
結果の相関図。 第4図はAl  イオン及びF“イオンが含まれる上澄
液にリン酸カルシウムを添加した時のAlS+lS+イ
オン−イオンが除去されるIIY示した実験結果の相関
図。 第5図は本発明の一実施態様図である。 0/2345
FIG. 1 is a correlation diagram of experimental results in which desulfurization performance decreased as the concentration of Ae3+ ions increased in the circulating slurry of the absorption tower. FIG. 2 is a correlation diagram of liquid composition analysis results showing the Al ion concentration in the absorption tower circulation slurry and the ratio of F-io:J# degree. Figure 3 shows the absorption tower circulation stream containing A15+ioco.
Garlic: Correlation diagram of experimental results in which desulfurization performance was recovered when J acid oxide was added. Figure 4 is a correlation diagram of experimental results showing IIY that AlS + lS + ions - ions are removed when calcium phosphate is added to the supernatant containing Al ions and F'' ions. Figure 5 is an embodiment of the present invention. This is a diagram. 0/2345

Claims (1)

【特許請求の範囲】[Claims] アルミニウム含有ダスト、  SO,ガスおよびHPガ
スを含む燃焼排ガスとカルシウム化合物およびアルミニ
ウム化合物′を含むスラリーとを接触させて上記燃焼排
ガス中のSO,を吸収するに当り吸収剤中に該吸収剤中
へ流入するツー5菓化合物の量に見合う重のリコ酸又は
リシ酸化合物を供給することl特徴とする排煙脱硫方法
In order to absorb the SO in the combustion exhaust gas by contacting the combustion exhaust gas containing aluminum-containing dust, SO, gas and HP gas with a slurry containing a calcium compound and an aluminum compound', the SO in the combustion exhaust gas is absorbed into the absorbent. A flue gas desulfurization method characterized by supplying a heavy licic acid or ricic acid compound in proportion to the amount of inflowing sucrose compounds.
JP56147428A 1981-09-18 1981-09-18 Desulfurizing method for waste gas Pending JPS5849422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147428A JPS5849422A (en) 1981-09-18 1981-09-18 Desulfurizing method for waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147428A JPS5849422A (en) 1981-09-18 1981-09-18 Desulfurizing method for waste gas

Publications (1)

Publication Number Publication Date
JPS5849422A true JPS5849422A (en) 1983-03-23

Family

ID=15430089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147428A Pending JPS5849422A (en) 1981-09-18 1981-09-18 Desulfurizing method for waste gas

Country Status (1)

Country Link
JP (1) JPS5849422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305833A (en) * 2003-04-03 2004-11-04 Kawasaki Heavy Ind Ltd Method for stabilization treatment of waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305833A (en) * 2003-04-03 2004-11-04 Kawasaki Heavy Ind Ltd Method for stabilization treatment of waste

Similar Documents

Publication Publication Date Title
Meng et al. Simultaneous removal of SO2 and NOx from flue gas using (NH4) 2S2O3/steel slag slurry combined with ozone oxidation
US6534024B2 (en) Exhaust gas treatment process
US4000991A (en) Method of removing fly ash particulates from flue gases in a closed-loop wet scrubbing system
MX2008005635A (en) System and method for obtaining load measurements in a wellbore.
CN113856441B (en) Ammonia desulfurization method and ammonia desulfurization apparatus
CN110479057A (en) A kind of method of chemical oxidation absorbing treating smoke pollutant
JP2015085242A (en) Method of treating combustion furnace exhaust gas containing fluorine
GB2178734A (en) Flue gas desulfurization/denitrification using metal-chelate additives
US4976937A (en) Sulfur dioxide removal from flue gases with sulfite oxidation inhibition
US4472364A (en) Process for removal of sulfur oxides from hot gases
CA1047739A (en) Method of removing sulfur-containing gases from waste gas
US5266285A (en) Sodium-enhanced lime scrubbing method for removing sulfur dioxide from gaseous streams
US3961021A (en) Method for removing sulfur dioxide from combustion exhaust gas
CN101862590A (en) Desulfuration process for sintering flue gas
JPH0833826A (en) Treatment of boiler waste combustion gas for coal fired thermal power plant and device therefor
JPS5829251B2 (en) Wet flue gas desulfurization gypsum recovery method
EP3368192A1 (en) Process and system for removing sulfur dioxide from flue gas
CN102688677B (en) Method for enhancing total mercury recovery rate of metallurgical fume by reducing bivalent mercury
CN1351898A (en) Process for treating waste gas containing SO2
JPS5849422A (en) Desulfurizing method for waste gas
CN105498509B (en) A kind of calcium-magnesium combined desulfurization and denitration method meeting flue gas pollutant deep removal
US4178348A (en) Process for removing sulfur oxides in exhaust gases
CN106621753B (en) Desulfurization treatment method for ceramic industrial kiln
JPH06165912A (en) High performance stack gas desulfurizing method
JP2010005583A (en) Device for removing trace component in exhaust gas and method