JPS5848729A - Method of starting electronically controlled fuel- injection engine - Google Patents

Method of starting electronically controlled fuel- injection engine

Info

Publication number
JPS5848729A
JPS5848729A JP14459781A JP14459781A JPS5848729A JP S5848729 A JPS5848729 A JP S5848729A JP 14459781 A JP14459781 A JP 14459781A JP 14459781 A JP14459781 A JP 14459781A JP S5848729 A JPS5848729 A JP S5848729A
Authority
JP
Japan
Prior art keywords
starting
fuel injection
temperature sensor
engine
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14459781A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Mizuno
水野 和好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14459781A priority Critical patent/JPS5848729A/en
Publication of JPS5848729A publication Critical patent/JPS5848729A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To minimize the quantity of fuel injected for starting an engine, by judging the period for stopping injection of starting fuel based upon the engine temperature and the engine speed. CONSTITUTION:According to the present invention, there are provided a first temperature sensor 56 for detecting the engine temperature at the time when a starter switch 63 is closed and a second temperature sensor 58 for detecting the temperature during the while when the switch 63 is kept closed. In case of first starting of an engine, the maximum injection time of a starting fuel injection valve 45 is determined on the basis of the output of the first temperature sensor 56, while in case of second starting after failure of the first starting, the maximum injection time of the injection valve 45 is determined from the difference of the outputs of the two temperature sensors 56, 58. Here, arrangement is such that injection of starting fuel is stopped when the engine speed is greater than a prescribed value, or the starter switch 63 is opened, or the maximum injection time of the valve 45 has been passed. With such an arrangement, it is enabled to minimize the quantity of fuel injected for starting an engine and to thereby reduce the amount of unburnt substances contained in the exhaust gas.

Description

【発明の詳細な説明】 本発明は、各気筒に対応して設けられている主燃料噴射
弁の他に始動用燃料噴射弁を吸気系に備えている電子制
御燃料噴射機関の始動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for starting an electronically controlled fuel injection engine in which an intake system is provided with a starting fuel injection valve in addition to the main fuel injection valve provided corresponding to each cylinder.

従来の始動方法を、第1図ないし第3図を参照して材明
する。直流電源としての蓄電池1はヒユーズ2を介して
運転室の点火スイッチ3の基端子4へ接続されている。
A conventional starting method will be explained with reference to FIGS. 1 to 3. A storage battery 1 serving as a DC power source is connected via a fuse 2 to a base terminal 4 of an ignition switch 3 in the driver's cab.

始動スイッチを兼ねる点火スイッチ3はST(始動)端
子5、ON(オン)端子6、およびOFF (オフ)端
子7を備え、基端子4と端子5ないし7と9接続が摺動
部材8により制御される。ST端子5はニュートラルス
イッチ11を介して始動電動機120制御端子13へ接
、続、されている。ニュートラルスイッチ11は自動変
速機のシフトレ、?−に取付けられて、シフトレノ々−
が二′ユートラルおよびパーキングのの停止レンジにあ
る場合には閉じられている・また、制御端子13に所定
の電流が供給されると・始動電動機12内の所定の回路
が作動して給電線14を介して蓄電池lから電力が始動
電動機12へ供給される。タイマ18はアースへ接続さ
れている固定接点19、ノ々イメタル20の一端に固定
されている可動接点21、両端なそれぞれ制御端子13
とノ々イメタル20とへ接続されている第1の加熱コイ
ル22・および両端をそれぞれ制御端子13と固定接点
19とへ接続されている第2の加熱コイル23をもつ。
The ignition switch 3, which also serves as a starting switch, has an ST (start) terminal 5, an ON (on) terminal 6, and an OFF (off) terminal 7, and the connection between the base terminal 4 and terminals 5 to 7 and 9 is controlled by a sliding member 8. be done. The ST terminal 5 is connected to a control terminal 13 of a starting motor 120 via a neutral switch 11. Is the neutral switch 11 a shift lever for the automatic transmission? - Attached to the shift leno -
is closed when it is in the 2'-utral and parking stop ranges. Also, when a predetermined current is supplied to the control terminal 13, a predetermined circuit in the starting motor 12 is activated and the power supply line 14 is closed. Electric power is supplied from the storage battery 1 to the starting motor 12 via the storage battery 1. The timer 18 has a fixed contact 19 connected to ground, a movable contact 21 fixed to one end of the metal 20, and control terminals 13 at both ends.
It has a first heating coil 22 connected to the Nonoimetal 20 and a second heating coil 23 connected at both ends to the control terminal 13 and the fixed contact 19, respectively.

始動用燃料噴射弁24は両端においてそれぞれノ々イメ
タル20と1151J #端子13とへ接続されている
。寒冷時の始動〒はノζイメタル21が同定接点19の
方へ湾曲していて固定接点19と可動接点21とは接触
状態にある。したがってニュートラルスイッチ11が閉
じている場合に点大スイッチ3がST位置になると・始
動電動機12が作動するとともに、始動用燃料噴射弁2
4に電流が流れ、始動用燃料噴射弁24から燃料が噴射
される。始動用燃料噴射弁冴の作動中、第1および第2
の加熱コイル22 、23にも電流が供給され・ノZイ
メタル20は第1および第2の加熱コイル22.23に
よって加熱される0こうして所定時間後、可動接点21
は固定接点19から離れ、始動用燃料噴射弁24は非作
動状態となる・可動接点21が固定接点19から離れた
後は第1の加熱コイル22への”電流供給も中止される
が、第2の加熱コイル23は・点大スイッチ3がST位
置にある期間中・電流を供給され、・々イヌタル20を
加熱するので、可動接点’21は固定接点19から離れ
た状態に維持される。始動失敗後の再始動では、ノ々イ
メタル20が前回の始動中における加熱により1回目の
始動時の温度よりは高い温度から第1および第2の加熱
コイル22 、23により再加熱されるので、可動接点
21が固定接点19から離れるのに要する時間が短縮さ
れ、タイマ1Bによって規定される始動用燃料噴射弁あ
の最大噴射時間は短縮される0第2図は1′回目の始動
時および再始動時における始動電動機12および始動用
燃料噴射弁24の作動状態、および機関回転速度の時間
変化を示している。オンは始動電動機12および始動用
燃料噴射弁24が作動状態にあること、オフはそれらが
不作動状態にあることを表わしている。
The starting fuel injection valve 24 is connected at both ends to the Nonoimetal 20 and the 1151J# terminal 13, respectively. When starting in cold weather, the metal 21 is bent toward the identification contact 19, and the fixed contact 19 and the movable contact 21 are in contact. Therefore, when the neutral switch 11 is closed and the point large switch 3 is in the ST position, the starting motor 12 operates and the starting fuel injection valve 2
4, and fuel is injected from the starting fuel injection valve 24. While the starting fuel injection valve is in operation, the first and second
The heating coils 22 and 23 of
moves away from the fixed contact 19, and the starting fuel injection valve 24 becomes inactive. After the movable contact 21 separates from the fixed contact 19, the current supply to the first heating coil 22 is also stopped; The heating coil 23 of No. 2 is supplied with electric current during the period when the large point switch 3 is in the ST position, and heats the inlet 20, so that the movable contact '21 is maintained apart from the fixed contact 19. When restarting after a startup failure, Nonoi Metal 20 is reheated by the first and second heating coils 22 and 23 from a temperature higher than the temperature at the first startup due to heating during the previous startup. The time required for the movable contact 21 to separate from the fixed contact 19 is shortened, and the maximum injection time of the starting fuel injection valve specified by the timer 1B is shortened. The graph shows the operating states of the starting motor 12 and the starting fuel injection valve 24 and the changes in engine rotational speed over time. On indicates that the starting motor 12 and starting fuel injection valve 24 are in the operating state, and OFF indicates that they are in the operating state. indicates that it is in an inactive state.

1回目の始動時では時刻t1において点火スイッチ3が
ST位置にされ、すなわち始動スイッチが閉じられ・始
動電動機12および始動用燃料噴射弁24は作動状態と
なる。時刻t2においてタイマ18の接点19 、21
が離れ、始動用燃料噴射弁24が不作動となり、時刻t
3において点大スイッチ3がST位置以外の位置となっ
て、すなわち始動スイッチが開いて始動電動機12は不
作動となる。
During the first start, the ignition switch 3 is set to the ST position at time t1, that is, the start switch is closed, and the starting motor 12 and the starting fuel injection valve 24 are put into operation. At time t2, contacts 19 and 21 of timer 18
is separated, the starting fuel injection valve 24 becomes inoperable, and at time t
3, the large point switch 3 is in a position other than the ST position, that is, the starting switch is opened and the starting motor 12 is inoperative.

始動失敗後の再始動時では時刻t4において点火スイッ
チ3が再びST位置になり、時刻t 5において接点1
9 、21が離れて始動用燃料噴射弁24が不作動とな
り・時刻上6において完爆が起こる。前述の理由により
、始動失敗後の再始動における始動用燃料噴射弁24の
噴射時間T2は、1回目の始動における始動用燃料噴射
弁24の噴射時間TIより短い。1回′目の始動時に始
動用燃料噴射弁24から十分な量の燃料が噴射され、始
動失敗後の再始動時に始動用燃料噴射弁24から1回目
の始動時の燃料噴射量と等しい量の燃料噴射が行なわ−
れると、燃焼、室の点火プラグに多量の燃料が付着して
失火を生じるが、T2がT1に対して適当に小さい値に
選定されることにより、このような失火を回避すること
ができる。第3図は始動・成功時の始動電動機12およ
び始動用燃料噴射弁24の作動状態、および機関回転速
度の時間変化2示している。接点19 、21が接触状
態にある場合、始−動電動機12および始動用燃料噴射
弁24は、点火スイッチ38がST位置にある限り(時
刻tllからt13まで)、途中f完爆(機関が始動電
動機の援助なしに回転を継続〒きるようになること)が
生じても(時刻t12)、作動状態に維持される。した
がって時刻t12からt13までに燃料が無駄に消費さ
れているとともに・始動直後に混合気が異常に過濃とな
り・これが排気ガス中の有害な未燃成分量を増大させ点
火プラグのくすぶりに因る機関回転速度の落ち込みの原
因となっている。なお始動用燃料噴射弁あは夏期にも適
当に燃料噴射を行なって噴射開口が燃料により洗われな
いと、始動用燃料噴射弁24の噴射開口に残る燃料が乾
燥してガム質体となって噴射開口をふさぎ次の冬期にお
ける始動時に始動用燃料噴射弁24の作動不良が生じ、
したがってタイマ18における設定時間を短くして消費
燃料の抑制等を図ることは、始動用燃料噴射弁24が作
動する機関温度が低くなり、夏期等に始動用燃料噴射弁
24が全く作動しなくなるので、困難である。
When restarting after a startup failure, the ignition switch 3 returns to the ST position at time t4, and contact 1 switches to the ST position at time t5.
9 and 21 are separated and the starting fuel injection valve 24 becomes inoperable, and a complete explosion occurs at time 6. For the above-mentioned reason, the injection time T2 of the starting fuel injection valve 24 in restarting after a starting failure is shorter than the injection time TI of the starting fuel injection valve 24 in the first starting. At the first start, a sufficient amount of fuel is injected from the starting fuel injection valve 24, and when restarting after a starting failure, an amount equal to the amount of fuel injected from the starting fuel injection valve 24 at the first starting is injected. Fuel injection is performed.
If this occurs, a large amount of fuel will adhere to the ignition plug in the combustion chamber, causing a misfire. However, such a misfire can be avoided by selecting T2 to be an appropriately smaller value than T1. FIG. 3 shows the operating states of the starting motor 12 and the starting fuel injection valve 24 at the time of successful starting, and the temporal change 2 of the engine rotational speed. When the contacts 19 and 21 are in contact, the starter motor 12 and the starter fuel injector 24 are activated during full explosion (when the engine starts) as long as the ignition switch 38 is in the ST position (from time tll to t13). Even if it becomes possible to continue rotating without the assistance of the electric motor (time t12), the operating state is maintained. Therefore, fuel is wasted from time t12 to t13, and the air-fuel mixture becomes abnormally rich immediately after starting, which increases the amount of harmful unburned components in the exhaust gas and causes the spark plug to smolder. This causes the engine speed to drop. Note that if the starting fuel injection valve 24 does not properly inject fuel even in the summer and the injection opening is not washed with fuel, the fuel remaining in the injection opening of the starting fuel injection valve 24 will dry up and become a gummy substance. If the injection opening is blocked, the starting fuel injection valve 24 will malfunction when starting the next winter.
Therefore, shortening the set time in the timer 18 to suppress fuel consumption, etc. is useful because the engine temperature at which the starting fuel injector 24 operates becomes low, and the starting fuel injector 24 does not operate at all in summer or the like. ,Have difficulty.

本発明の目的は、夏期における始動用燃料噴射弁の適当
な使用を確保しつつ、始動用燃料噴射弁からの燃料噴射
を最小限に抑えて・燃料消費を抑制し、排気ガス中の未
燃成分量を減少させ、かつ始動直後の機関回転速度の落
せ込みを回避することが1きる。さらに始動失敗後の再
始動〒は始動用燃料噴射弁の最大噴射時間を短縮するこ
とが1きる電子制御燃料噴射機関の始動方法を提供する
ことであるO この目的を達成するために本発明の電子制御燃料噴射機
関の始動方法によれば、始動スイッチが閉じられた時の
機関温度を検出する第1の温度センサと、機関温度を検
出〒きる個所に設けられ始動スイッチの閉期間中は加熱
され続ける第2の温度センサとを設け、機関回転速度か
ら始動の成否を判別し、1回目の始動の場合では第1の
温度センサの出力に基づいて始動用燃料噴射弁の最大噴
射時間を定め、始動失敗後の再始動の場合〒は第1の温
度センサの出力と第2の温度−センサの出力との差に基
づいて始動用燃料噴射弁の最大噴射時間を定め、機関回
転速度が所定値より大きい値であること、始動スイッチ
が開かれていること、および前記最大噴射時間が経過゛
したことの3つの条件のうち少なくとも1つが成立する
と、始動用燃料噴射弁からの燃料噴射を中止する。
The purpose of the present invention is to minimize fuel injection from the starting fuel injector and suppress fuel consumption, while ensuring proper use of the starting fuel injector in summer, and to reduce unburned fuel in the exhaust gas. It is possible to reduce the amount of components and avoid a drop in engine speed immediately after startup. Furthermore, it is an object of the present invention to provide a method for starting an electronically controlled fuel injection engine that can shorten the maximum injection time of the starting fuel injection valve for restarting after a starting failure. According to the starting method of an electronically controlled fuel injection engine, there is a first temperature sensor that detects the engine temperature when the starting switch is closed, and a first temperature sensor that is installed at a location where the engine temperature can be detected and that heats up while the starting switch is closed. A second temperature sensor is provided to determine the success or failure of starting from the engine rotational speed, and in the case of the first start, the maximum injection time of the starting fuel injection valve is determined based on the output of the first temperature sensor. , in the case of a restart after a startup failure, the maximum injection time of the starting fuel injection valve is determined based on the difference between the output of the first temperature sensor and the output of the second temperature sensor, and the engine rotation speed is maintained at a predetermined level. When at least one of the following three conditions is met: the value is larger than the starting fuel injection valve, the starting switch is open, and the maximum injection time has elapsed, fuel injection from the starting fuel injection valve is stopped. do.

第4図以降を参照して本発明の詳細な説明するO 第4図において吸気系には上流から順番にエアクリーナ
31 、吸入空気流量を検出するエアフローメータ32
・運転室の加速ペダルに連動する絞り弁33、サージタ
ンク34、および吸気管35が設けられている。吸気管
35は、気筒の個数に等しい個数だけ設けられ、機関本
体36の吸気ボートへ接続されている。燃焼室37は、
シリンダヘッド、ピストン38、シリンダブロック39
により区画され、混合気は、吸気弁40を介して燃焼室
37へ供給され、燃焼後、排気弁4】を介して燃焼室3
7から排出される。主燃料噴射弁44は、各気筒に対応
して吸気管35に取付けられ、1つの始動用燃料噴射弁
45はサージタンク34に取付けられている・主燃料噴
射弁44および始動用燃料噴射弁45へは燃料管46を
介して燃料が圧送される。
The present invention will be described in detail with reference to FIG. 4 and subsequent figures. In FIG. 4, the intake system includes, in order from upstream, an air cleaner 31 and an air flow meter 32 for detecting the intake air flow rate.
- A throttle valve 33, a surge tank 34, and an intake pipe 35 are provided which are linked to the accelerator pedal in the driver's cab. The intake pipes 35 are provided in a number equal to the number of cylinders, and are connected to an intake boat of the engine body 36. The combustion chamber 37 is
Cylinder head, piston 38, cylinder block 39
The air-fuel mixture is supplied to the combustion chamber 37 via the intake valve 40, and after combustion, the mixture is supplied to the combustion chamber 37 via the exhaust valve 4.
It is discharged from 7. The main fuel injection valve 44 is attached to the intake pipe 35 in correspondence with each cylinder, and one starting fuel injection valve 45 is attached to the surge tank 34. Main fuel injection valve 44 and starting fuel injection valve 45 Fuel is pumped to the fuel tank via a fuel pipe 46.

ノζイ、eス通路47は絞り弁33−リ上流の吸気通路
の個所とサージタンク34とを接続しバイメタル式開閉
弁48により開閉される。ノ々イメタル式開閉弁48は
、ノ々イメタルを含み、暖機中はツマイノぐス通路47
を開いている。始動電動機510制御端子52は点火ス
イッチがST位置にある期間では所定の電圧を印加され
、クランク角センサ53は配電器54に取付けられて配
電器54の軸55からクランク角および機関回転速度を
検出し、水温センサ56はシリンダブロック39に取付
けられて機関温度を検出する。温度センサ58は水濡セ
ンサ56の位置とほぼ同じ位置に取付けられているOエ
ア70−メータ32、制御端子52、クランク角セン・
す53、水温センサ56、および温度センサ58の出力
は電子制御装置57へ送られ、電子制御装置57の出力
は主燃料噴射弁44および始動用燃料噴射弁45へ送ら
シる0 第5図は温度センサ58の詳細な構成および結線図を示
している。温度センサ58は温度感知部としてのサーミ
スタ61とサーミスタ61を加熱する加熱コイル62と
を含み、サーミスタ61は電子制御装置57の入力端へ
接続され、加熱コイル62は始動スイッチを兼ねる点火
スイッチ63のST端子へ接続されている。点火スイッ
チ63がST位置にある期間フはフィル62は点火スイ
ッチ63を介して蓄電池例へ接続され、加熱コイル62
は通電状態となってサーミスタ61を加熱する。第6図
は点火スイッチ63がST位置に保持されている場合の
、すなわち始動スイッチが閉じられている場合の経過時
間と温度センサ58の検出温度THHとの関係を示して
いる。点火スイッチ63がST位置になった直後の温度
センサ58の検出温度、すなわち冷却水温度f A (
”C)とすると、約30秒で温度センサ58は加熱コ、
イル62の加熱によりA十5ないし7(℃)の温度とな
る。第7図は点火スイッチ63がST位置からST位置
以外の位置へ移された時から、すなわち始動スイッチが
開かれた時から温度センサ58の検出温度THHの変化
を示している。始動スイッチが開かれた時の温度センサ
58の検出温度A+5(℃)とすると、約5分で温度セ
ンサ58の検出温度は冷却水温度A(”C)に戻る。温
度センサ58の検出温度が変化している期間、水濡セン
サ56の検出温度はAに維持される。
B. The e-pass passage 47 connects the intake passage upstream of the throttle valve 33 and the surge tank 34, and is opened and closed by a bimetallic on-off valve 48. The Nonoimetal type on-off valve 48 includes Nonoimetal, and during warm-up, the Nonoimetal opening/closing valve 48 is closed to the Nonoimetal type on-off valve 48.
is open. A predetermined voltage is applied to the control terminal 52 of the starting motor 510 while the ignition switch is in the ST position, and the crank angle sensor 53 is attached to the power distributor 54 and detects the crank angle and engine rotation speed from the shaft 55 of the power distributor 54. However, a water temperature sensor 56 is attached to the cylinder block 39 to detect the engine temperature. The temperature sensor 58 is attached to the O air 70-meter 32, the control terminal 52, and the crank angle sensor, which is installed at almost the same position as the water wetness sensor 56.
The outputs of the water temperature sensor 53, water temperature sensor 56, and temperature sensor 58 are sent to the electronic control device 57, and the output of the electronic control device 57 is sent to the main fuel injection valve 44 and the starting fuel injection valve 45. The detailed configuration and wiring diagram of the temperature sensor 58 are shown. The temperature sensor 58 includes a thermistor 61 as a temperature sensing section and a heating coil 62 that heats the thermistor 61. The thermistor 61 is connected to the input terminal of the electronic control unit 57, and the heating coil 62 is connected to the ignition switch 63 which also serves as a starting switch. Connected to ST terminal. During the period when the ignition switch 63 is in the ST position, the fill 62 is connected to the storage battery via the ignition switch 63 and the heating coil 62
becomes energized and heats the thermistor 61. FIG. 6 shows the relationship between the elapsed time and the temperature THH detected by the temperature sensor 58 when the ignition switch 63 is held at the ST position, that is, when the starting switch is closed. The temperature detected by the temperature sensor 58 immediately after the ignition switch 63 is set to the ST position, that is, the cooling water temperature f A (
"C), the temperature sensor 58 heats up in about 30 seconds,
By heating the coil 62, the temperature becomes A15 to 7 (°C). FIG. 7 shows the change in the temperature THH detected by the temperature sensor 58 from the time when the ignition switch 63 was moved from the ST position to a position other than the ST position, that is, from the time when the starting switch was opened. Assuming that the temperature detected by the temperature sensor 58 when the start switch is opened is A+5 (°C), the temperature detected by the temperature sensor 58 returns to the cooling water temperature A ("C)" in about 5 minutes. During the period of change, the temperature detected by the water wetness sensor 56 is maintained at A.

第8図は電子制御袋M57の内部のブロック図tある0
エアフローメータ32、水温センサ56、および温度セ
ンサ58のアナログ出力はそれぞれ緩衝増幅器69 、
70 、71を介してマルチプレクサ72へ送られ、マ
ルチプレクサ72は選択した入力をA/I)(アナログ
/デジタル)変換器73へ送る。
Figure 8 is a block diagram of the inside of the electronically controlled bag M57.
The analog outputs of the air flow meter 32, the water temperature sensor 56, and the temperature sensor 58 are connected to a buffer amplifier 69, respectively.
70 and 71 to a multiplexer 72 which sends the selected input to an A/I (Analog/Digital) converter 73.

〜0変換器73の出力は入出力インタフェース74へ送
られる。入出力インタフェース74、CPU(中央処理
装置)75、RAM(任意アクセス記憶・装置)76、
ROM(読出し専用記憶装置)77、および入出力イン
タフェース78 、79 、80 ハン々ス81を介し
て互いに接続されている。クランク角センサ53の出カ
ッξルスは緩衝増幅器84を介してカウンタ85へ送ら
れ・カウンタ85は一定時間におけるクランク角センサ
53からのノξルス3計数しく計数値は機関回転速度に
対応する。)、その出力を入出力インタフェース78へ
送る。点火スイッチ63のST端子および始動電動機5
10制御端子52は入出力インタフェース78へ直接接
続されている。り四ツクパルス発生器86は同期信号あ
るい:は割込み信号としてのクロックパルスを、〜勺変
換・器73、CP U 75、RA M 76、ROM
77、゛およびカウーンタ85へ送る。入出力インタフ
ェース79.80はそれぞれD/A (デジタル/アナ
ログ)変換器87 、88へ接続され、D/A変換器8
7 、88の出力はそれぞれ駆動回路89 、90を介
して主燃料噴射弁44および始動用燃料噴射弁45へ送
られる。
The output of the ~0 converter 73 is sent to an input/output interface 74. Input/output interface 74, CPU (central processing unit) 75, RAM (arbitrary access storage/device) 76,
A ROM (read-only storage device) 77 and input/output interfaces 78 , 79 , 80 are connected to each other via a connector 81 . The output pulse ξ of the crank angle sensor 53 is sent to a counter 85 via a buffer amplifier 84, and the counter 85 counts the output pulse ξ3 from the crank angle sensor 53 during a certain period of time, and the counted value corresponds to the engine rotation speed. ), sends its output to the input/output interface 78. ST terminal of ignition switch 63 and starting motor 5
10 control terminal 52 is connected directly to input/output interface 78. The four clock pulse generator 86 generates a clock pulse as a synchronization signal or an interrupt signal.
77,' and the counter 85. The input/output interfaces 79 and 80 are connected to D/A (digital/analog) converters 87 and 88, respectively, and the D/A converter 8
The outputs of 7 and 88 are sent to the main fuel injection valve 44 and the starting fuel injection valve 45 via drive circuits 89 and 90, respectively.

第9図は本方法を実施す゛るプログラム例のフローチャ
ートである。ステップ95では機関回転速度Nθが所定
値りより大きいか否か2判別し、判別結果が正であれば
ステップ96へ、否fあればステップ97へ進む。所定
値りは完爆直後の機関回転速度であり、機関回転速度N
eが所定値りより大きくなれは完爆があったと推定する
ことができる。ステップ96では始動用燃料噴射弁45
を不作動状態(オフ)にし、フラグ5TAEを0にする
。したがって完爆後は運転者が点火、スイッチ63をな
おST位置に保持していても、始動用燃料噴射弁45か
らの燃料噴射は中止され、これにより燃料消費の抑制等
が図られる。またフラグ5TAEは後述のステップ10
0〜107から理解されるように、始動電動機51が作
動開始した時にのみ始動用燃料噴射弁45の最大噴射時
間を設定するために設けられる判別フラグフある。
FIG. 9 is a flowchart of an example program implementing the method. In step 95, it is determined whether or not the engine rotational speed N.theta. is greater than a predetermined value. If the determination result is positive, the process proceeds to step 96, and if not, the process proceeds to step 97. The predetermined value is the engine rotation speed immediately after the complete explosion, and the engine rotation speed N
If e becomes larger than a predetermined value, it can be presumed that a complete explosion occurred. In step 96, the starting fuel injection valve 45
is inactive (off) and flag 5TAE is set to 0. Therefore, after the complete explosion, even if the driver ignites the engine and holds the switch 63 at the ST position, fuel injection from the starting fuel injection valve 45 is stopped, thereby reducing fuel consumption. Also, flag 5TAE is set to step 10, which will be described later.
As understood from 0 to 107, there is a discrimination flag provided to set the maximum injection time of the starting fuel injection valve 45 only when the starting motor 51 starts operating.

ステップ97では完爆があった時刻から一定時間C1が
経過したか否かを判別し、判別結果が正fあればステッ
プ98へ進み、否fあればステップ99へ進む。ステッ
プ98ではフラグRUNを1にする。したがって完爆時
から所定時間C1の経過後、フラグRUNが1となる。
In step 97, it is determined whether a certain period of time C1 has elapsed since the time when the complete explosion occurred. If the determination result is positive f, the process proceeds to step 98; if the determination result is negative, the process proceeds to step 99. In step 98, the flag RUN is set to 1. Therefore, after the predetermined time C1 has elapsed since the complete explosion, the flag RUN becomes 1.

フラグRUN=1は始動が成功したことを意味する0ス
・テップ99では始動電動機51が作動中か否かを判別
し、判別結果が正であればステップ100へ進み、否〒
あればステップ113へ進む。ステップ100ではフラ
グ5TAEが1かOかを判別し、11あればステップ1
10へ進み、0であればステップ161へ進む。ステッ
プ101では始動電動機51が作動開始した時か否かを
判別し、判別結果が正であればステップ102へ進み、
否フあればステップ113へ進む。ステップ102では
フラグ5TAEを1に(、始動用燃料噴射弁を作動状態
(オン)にする0ステツプ103fはフラグRUNが1
か0かを判別し、フラグRUN251’lであればステ
ツゾ106へ進み、否であればステップ104へ進む。
The flag RUN=1 means that the starting has been successful.0 At step 99, it is determined whether or not the starting motor 51 is operating, and if the determination result is positive, the process proceeds to step 100;
If so, proceed to step 113. In step 100, it is determined whether flag 5TAE is 1 or O, and if it is 11, step 1
If the value is 0, the process proceeds to step 161. In step 101, it is determined whether or not the starting motor 51 has started operating, and if the determination result is positive, the process advances to step 102.
If no, the process advances to step 113. In step 102, the flag 5TAE is set to 1 (and in step 103f, the starting fuel injection valve is turned on), the flag RUN is set to 1.
If the flag is RUN251'l, the process proceeds to step 106, and if not, the process proceeds to step 104.

フラグRUN−1は1回目の始動であることを意味し、
フラグRUN−0は前回の始動が失敗であり、再始動で
あることを意味する。ステップ104フはΔT−THH
−THWを求めろ。ただしT)IHは温度センサ58の
検出温度〒あり、THWは水温センサ56の検出温度f
ある。第6図および第7図の前述の説明から理解される
ように、始動スイッチが閉じられている期間ではΔTは
時間経過とともに増大し、始動スイッチが開かれるとΔ
Tは時間経過とともに減少する。したがって前回の始動
が失敗して始動スイッチが開かれてから今回の再始動操
作までの時間間隔が短い程ΔTは大きい。ステップ10
5ではC3TJ−f(THW、ΔT)とする。C3TJ
は今回の始動における始動用燃料噴射弁45の最大噴射
時間に対応し、冷却水温度THWとΔTとの関数である
。第10図はf(THW、ΔT)の特性を示している。
The flag RUN-1 means that it is the first start,
The flag RUN-0 means that the previous start was a failure and a restart is required. Step 104 is ΔT-THH
-Find THW. However, T) IH is the temperature detected by the temperature sensor 58, and THW is the temperature detected by the water temperature sensor 56 f.
be. As can be understood from the above description of FIGS. 6 and 7, ΔT increases over time during the period when the starter switch is closed, and when the starter switch is opened, ΔT increases.
T decreases over time. Therefore, the shorter the time interval from when the previous start failed and the start switch was opened to the current restart operation, the larger ΔT becomes. Step 10
5, it is set as C3TJ-f(THW, ΔT). C3TJ
corresponds to the maximum injection time of the starting fuel injection valve 45 during the current startup, and is a function of the cooling water temperature THW and ΔT. FIG. 10 shows the characteristics of f(THW, ΔT).

f(T”uw、ΔT)は冷却水温度THWが高いとき程
、かつΔTが大きいとき程(前回の゛始動操作から今回
の始動操作までの時間間隔が短いとき程)減少する。ス
テップ106−?’はフラグRUNを0にする。ステッ
プ107 テはC8TJ−g(THW)とする。C3T
Jは冷却水温度TI(Wのみの関数tある。第11図は
g(THW)の特性を示している。
f(T"uw, ΔT) decreases as the cooling water temperature THW increases and as ΔT increases (as the time interval from the previous starting operation to the current starting operation becomes shorter). Step 106- ?' sets the flag RUN to 0. Step 107 Te is set to C8TJ-g (THW). C3T
J is a function t of only the cooling water temperature TI (W). FIG. 11 shows the characteristics of g(THW).

g(THW)は冷却水温度が低いとき程増大する。g(THW) increases as the cooling water temperature decreases.

このように゛1回目の始動の場合〒はC8TJ−g(T
HW) とな’) 、再始動の場合で#;tcsTJ−
f(THW、ΔT)となる。ステップ110では一定時
間C2が経過したが否かを判別し、判別結果が正であれ
ばステップ111へ進み、否であればこのプログラムを
終了する。ステップ111〒はC3TJ−1を新たなC
3TJとする。ステップ112〒はC3TJ)0か否か
を判別し、判別結果が正であればこのプログラムを終了
し、否であればステップ113へ進む。ステップ113
−t%はフラグ5TAEを0にし、始動用燃料噴射弁4
5を不作動状態(オフ)にする◎すなわちC3TJ(0
となると始動用燃料噴射弁からの燃料噴射が中止される
In this way, for the first start, C8TJ-g (T
HW) Tona'), in case of restart #;tcsTJ-
f(THW, ΔT). In step 110, it is determined whether a certain period of time C2 has elapsed or not. If the determination result is positive, the process proceeds to step 111, and if not, the program is terminated. Step 111: Change C3TJ-1 to a new C
3TJ. Step 112 determines whether or not C3TJ)0. If the determination result is positive, this program is terminated; if not, the program proceeds to step 113. Step 113
-t% sets flag 5TAE to 0 and starts fuel injection valve 4
5 is inactive (off) ◎ That is, C3TJ (0
When this happens, fuel injection from the starting fuel injection valve is stopped.

第12図は本発明の作動説明図である。時刻t21で始
動スイッチが閉じられる(オン)と始動電動!@5Iが
作動状態(オン)になり、始動用燃料噴射弁45が燃料
噴射状態(オン)となり、ΔTは増大する。g(THW
)に対応する時間が時刻t21から経過した時刻t22
において始動用燃料噴射弁45は燃料噴射を中止(オフ
)する。時刻t23において始動スイッチが開かれろ/
(オフ)と、始動電動機51は不作動(オフ)になり、
温度センサ58の加熱コイル62の加熱作用も中止され
てΔTは減少する。時刻t21からの始動操作1は完爆
が起こらず、始動は失敗する。時刻t24f始動スイッ
チが再び閉じられると、始動電動機51は作動状態(オ
ン)となり、始動用燃料噴射弁45は燃料噴射状M(オ
ン)となる。時刻t24からの始動は再始動であるので
1.’r(THW、ΔT)に対応する時間が時刻t24
か−ら経過した時刻t25において始動用燃料噴射弁4
5からの燃料噴射は中止される(オフ)。時刻t26に
おいて完爆が起こり、時刻t27において始動スイッチ
が開かれる(オフ)。時刻t26から一定時間C1が経
過した時刻t28においてフラグRUNが1となるO このように本発明によれば、完爆が終了すると始動用燃
料噴射弁からの燃料噴射が速やかに中止されるので、始
動用燃料噴射弁からの燃料噴射の時間が最小となり、こ
れにより燃料消費量゛が抑制され、排気ガス中の未燃成
分量が減少し、また始動直後の機関回転速度の落ち込み
が回避される。さらに・気温が比較的高い夏期において
も一始動時は完爆が起こるまで始動用燃料噴射弁が作動
し、噴射燃料が噴射開口を適当に洗うので、始動用燃料
噴射弁の噴射開口の燃料が蒸発して残ったガム質体が噴
射開口をふさいで、次の冬期において始動不良が起こる
ことが回避される。
FIG. 12 is an explanatory diagram of the operation of the present invention. When the start switch is closed (turned on) at time t21, the electric start! @5I enters the operating state (on), the starting fuel injection valve 45 enters the fuel injection state (on), and ΔT increases. g(THW
) has elapsed from time t21 to time t22.
At this point, the starting fuel injection valve 45 stops (turns off) fuel injection. The start switch is opened at time t23/
(off), the starting motor 51 becomes inoperative (off),
The heating action of the heating coil 62 of the temperature sensor 58 is also stopped and ΔT decreases. In starting operation 1 from time t21, complete explosion does not occur and the starting fails. When the starting switch is closed again at time t24f, the starting motor 51 enters the operating state (on), and the starting fuel injection valve 45 enters the fuel injection mode M (on). Since starting from time t24 is a restart, 1. The time corresponding to 'r(THW, ΔT) is time t24
At time t25, which has elapsed since then, the starting fuel injection valve 4
Fuel injection from 5 is stopped (off). A complete explosion occurs at time t26, and the starting switch is opened (off) at time t27. At time t28, when a certain period of time C1 has elapsed from time t26, the flag RUN becomes 1. According to the present invention, fuel injection from the starting fuel injection valve is immediately stopped when the complete explosion is completed. The time for fuel injection from the starting fuel injection valve is minimized, thereby suppressing fuel consumption, reducing the amount of unburned components in the exhaust gas, and avoiding a drop in engine speed immediately after starting. . Furthermore, even in the summer when the temperature is relatively high, the starting fuel injection valve operates until a complete explosion occurs during the first start, and the injected fuel washes the injection opening appropriately, so that the fuel in the starting fuel injection valve's injection opening is This prevents the gummy material remaining after evaporation from blocking the injection openings and causing starting failures in the next winter.

さらに本発明によれば、再始動時では始動時の機関温度
を検出する第1の混・度センサの出力と、前1回の始動
操作終了時刻からの時間経過に伴って冷却されて検出温
度が低下する第2の温。
Furthermore, according to the present invention, at the time of restart, the output of the first mixture temperature sensor that detects the engine temperature at the time of startup and the detected temperature that has been cooled with the passage of time from the end time of the previous starting operation The second temperature that decreases.

度センサの出力との差に基づいて、1回目の始動時とは
異なる始動用燃料噴射弁の最大噴射時間が定められるの
で、燃料室の点火プラグが多量の燃料をかぶって再始動
が悪化するという事態を回避することができる。
Based on the difference between the output of the engine speed sensor and the maximum injection time of the starting fuel injector, which is different from the time of the first start, the spark plug in the fuel chamber gets covered with a large amount of fuel, making restarting difficult. This situation can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の始動制御装置の構成図、第2図は1回目
の始動時および再始動における従来の始動制御装置の作
用の説明図、第3図は始動時における始動用燃料噴射弁
からの燃料噴射と完爆との関係を説明する図、第4図は
本発明が適用される電子制御燃料噴射機関の構成図、第
5図は第4図の温度センサの構成および結線状態を示す
図、第6図は始動スイッチが閉じられている期間におけ
る温度センサの検出温度の変化を示す図、第7図は始動
スイッチが開かれてから温度センサの検出温度の変化を
示す図、第8図は第4図の電子制御装置のブロック図、
第9図は本方法を実施するプログラムのフローチャート
・第10図は再始動時における始動用燃料噴射弁の噴射
時間の特性図、第11図は1回目の始動時におけろ始動
用燃料噴射弁の噴射時間の特性図、第12図は本方法に
よる作動の説明図である。 44・・・主燃料噴射弁、45・・・始動用燃料噴射弁
、53・・・クランク角センサ、56・・・水温センサ
、57・・・電子制御装置、58・・・温度セン・す、
61・・・サーミスタ、62・・・加熱コイル、63・
・・点火スイッチ 第6図 経過時間 第10図 〔秒〕 冷却水温度 TRY 冷却水温度’rHw
Fig. 1 is a configuration diagram of a conventional starting control device, Fig. 2 is an explanatory diagram of the operation of the conventional starting control device during the first starting and restarting, and Fig. 3 is a diagram showing the starting fuel injection valve during starting. Figure 4 is a diagram illustrating the relationship between fuel injection and complete explosion, Figure 4 is a configuration diagram of an electronically controlled fuel injection engine to which the present invention is applied, and Figure 5 shows the configuration and wiring state of the temperature sensor in Figure 4. Figure 6 is a diagram showing changes in the temperature detected by the temperature sensor during the period when the start switch is closed, Figure 7 is a diagram showing changes in the temperature detected by the temperature sensor after the start switch is opened, and Figure 8 is a diagram showing changes in the temperature detected by the temperature sensor after the start switch is opened. The figure is a block diagram of the electronic control device in Figure 4,
Figure 9 is a flowchart of the program that implements this method. Figure 10 is a characteristic diagram of the injection time of the starting fuel injector at the time of restart. Figure 11 is the characteristic diagram of the injection time of the starting fuel injector at the time of the first start. The injection time characteristic diagram, FIG. 12, is an explanatory diagram of the operation according to the present method. 44... Main fuel injection valve, 45... Starting fuel injection valve, 53... Crank angle sensor, 56... Water temperature sensor, 57... Electronic control unit, 58... Temperature sensor ,
61... Thermistor, 62... Heating coil, 63...
...Ignition switch Figure 6 Elapsed time Figure 10 (seconds) Cooling water temperature TRY Cooling water temperature 'rHw

Claims (1)

【特許請求の範囲】[Claims] 各気筒に対応して設けられている主燃料噴射弁の他に始
動用燃料噴射弁が吸気系に備えている電子制御燃料噴射
機関の始動方法において、始動スイッチが閉じられた時
の機関温度を検出する第1の温度センサと、機関温度を
検出できる個所に設けられ1始動スイツチの閉期間中は
加熱され続ける第2の温度センサと3設け、機関回転速
度から始動の成否を判別し、1回目の始動の場合では第
1の温度センサの出力に基づいて始動用燃料噴射弁の最
大噴射時間を定め、始動失敗後の再始動の場合では第1
の温度センサの出力と第2の温度センサの出力との差に
基づいて始動用燃料噴射弁の最大噴射時間を定め、機関
回転速度が所定値より大きい値であること、始動スイッ
チが開かれていること、および前記最大噴射時間が経過
したことの3つの条件のうち少なくとも1つが成立する
と、始動用燃料噴射弁からの燃料噴射ご中止することを
特徴とする、電子制御燃料、噴射機関の始動方法。
In the starting method of an electronically controlled fuel injection engine, in which the intake system is equipped with a starting fuel injection valve in addition to the main fuel injection valve provided corresponding to each cylinder, the engine temperature is measured when the starting switch is closed. A first temperature sensor for detecting the engine temperature, and a second temperature sensor that is installed at a location where the engine temperature can be detected and continues to be heated during the closing period of the first start switch are provided, and the success or failure of starting is determined from the engine rotation speed. In the case of the first start, the maximum injection time of the starting fuel injection valve is determined based on the output of the first temperature sensor, and in the case of restart after a starting failure, the maximum injection time of the starting fuel injection valve is determined based on the output of the first temperature sensor.
The maximum injection time of the starting fuel injection valve is determined based on the difference between the output of the second temperature sensor and the output of the second temperature sensor, and the maximum injection time of the starting fuel injection valve is determined based on the difference between the output of the temperature sensor and the output of the second temperature sensor. Starting of an electronically controlled fuel injection engine, characterized in that fuel injection from a starting fuel injector is stopped when at least one of the following three conditions is satisfied: the fuel injection valve is present, and the maximum injection time has elapsed. Method.
JP14459781A 1981-09-16 1981-09-16 Method of starting electronically controlled fuel- injection engine Pending JPS5848729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14459781A JPS5848729A (en) 1981-09-16 1981-09-16 Method of starting electronically controlled fuel- injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14459781A JPS5848729A (en) 1981-09-16 1981-09-16 Method of starting electronically controlled fuel- injection engine

Publications (1)

Publication Number Publication Date
JPS5848729A true JPS5848729A (en) 1983-03-22

Family

ID=15365749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14459781A Pending JPS5848729A (en) 1981-09-16 1981-09-16 Method of starting electronically controlled fuel- injection engine

Country Status (1)

Country Link
JP (1) JPS5848729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147302U (en) * 1985-03-06 1986-09-11

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147302U (en) * 1985-03-06 1986-09-11
JPH0417763Y2 (en) * 1985-03-06 1992-04-21

Similar Documents

Publication Publication Date Title
US4875443A (en) Start control system for internal combustion engine
JPS5848729A (en) Method of starting electronically controlled fuel- injection engine
JP2560386B2 (en) Method and apparatus for starting control of internal combustion engine
US6810860B2 (en) Starting fuel injection control device of internal combustion engine
JPS60159350A (en) Starting controller for diesel engine
JPH0127267B2 (en)
JPS5848723A (en) Starting device of electronic control fuel injection engine
JPS5848722A (en) Method of starting electronic control fuel injection engine
JP3498397B2 (en) Self-diagnosis device in engine air-fuel ratio control device
JPH0634592Y2 (en) Internal combustion engine start control device
JPS63189628A (en) Controlling method for fuel injection at starting time of internal combustion engine
JP2779159B2 (en) Engine fuel control device
JP2005240559A (en) Controller of internal combustion engine
JP2536297B2 (en) Fuel control method for starting internal combustion engine
JP2694654B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6235868Y2 (en)
JPS59138747A (en) Automatic starter of diesel engine
JP2713511B2 (en) Step motor control device for internal combustion engine
JPS59229021A (en) Electronically controlled starting fuel injection device for internal-combustion engine
JPS603456A (en) Fuel feed controlling method for multicylinder internal-combustion engine
JPS6224785Y2 (en)
JPH0681911B2 (en) Fail-safe system when water temperature sensor fails
JPH068619B2 (en) Fuel injection control device for internal combustion engine
JP2002257012A (en) Starting control device for internal combustion engine
JPH0192544A (en) Engine fuel control device