JPS5848705A - Coal gasification power plant - Google Patents

Coal gasification power plant

Info

Publication number
JPS5848705A
JPS5848705A JP14616881A JP14616881A JPS5848705A JP S5848705 A JPS5848705 A JP S5848705A JP 14616881 A JP14616881 A JP 14616881A JP 14616881 A JP14616881 A JP 14616881A JP S5848705 A JPS5848705 A JP S5848705A
Authority
JP
Japan
Prior art keywords
gas
fuel gas
air
coal
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14616881A
Other languages
Japanese (ja)
Inventor
Narihisa Sugita
杉田 成久
Satoshi Tsukahara
聰 塚原
Hidekazu Fujimura
秀和 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14616881A priority Critical patent/JPS5848705A/en
Publication of JPS5848705A publication Critical patent/JPS5848705A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the starting stop load variation characteristic and the partial load characteristic of a power plant by driving an air compressor by a gas turbine using a fuel gas refined from coal and also providing an air storage cavity storing high pressure air. CONSTITUTION:Coal is gasified in a gasification furnace 10, and the gas is desulfurized by a purifying device 16. The purified gas is used as a fuel of a gas turbine 19. An air compressor 35 is driven by the gas turbine 19, and high- pressure air is stored in an air storage cavity 32. When a request for power generation was produced, power generation is performed by the produced fuel gas and stored air. A steam turbine 23 is driven by the steam generated by a fuel gas steam generator 11 and a waste heat recovering boiler 21. In this manner, it is possible to independently handle the load variation of the power plant and the operation of the coal gasification plant, and hence the starting stop load variation characteristic and the partial load characteristic can be improved.

Description

【発明の詳細な説明】 本発明は石炭ガス化発電プラントに係り、特に、発電プ
ラントとして好適に運用する石炭ガス化発亀プラントシ
ステムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal gasification power plant, and particularly to a coal gasification power plant system suitably operated as a power plant.

石炭を空気または酸素を用いてガス化する試みは古くか
ら行なわれておシ、このガス化した燃料ガスによってガ
スタービンを運転し、発電を行なう石炭ガス化発電が、
石油代替発電の有力候補として実用化への検討が推進ら
れている。第1図は、数多くの計画例、検討例から選ん
だ代表例(ASMEpaper・80−GT−106)
であり、この第1図に従って石炭ガス化発電プラントの
構成を説明する。
Attempts to gasify coal using air or oxygen have been made for a long time, and coal gasification power generation uses this gasified fuel gas to operate a gas turbine and generate electricity.
Consideration for practical use is being promoted as a promising candidate for oil-alternative power generation. Figure 1 shows a representative example (ASMEpaper 80-GT-106) selected from many planning examples and study examples.
The configuration of the coal gasification power plant will be explained according to FIG.

石炭ガス化系統の主な構成機器は、石炭前処理および供
給装置9、酸素製造装置8、石炭ガス化炉10、燃料ガ
ス蒸気発生器11、ガススクラッーバ12、燃料ガス加
熱器13、給水加熱器14、ガスクーラ15、そしてガ
ス精製装置16より成立しており、発電プラント系統の
主な構成機器は、圧縮機17、燃焼器18、ガスタービ
ン19によって構成されるガスタービン装置、ガスター
ビン排熱回収ボイラ21、煙突26、蒸気タービン23
、コンデンサ24、低圧ドラム22等から成立している
The main components of the coal gasification system are a coal pretreatment and supply device 9, an oxygen production device 8, a coal gasification furnace 10, a fuel gas steam generator 11, a gas scrubber 12, a fuel gas heater 13, and a feed water heater 14. , a gas cooler 15, and a gas purification device 16, and the main components of the power generation plant system are a gas turbine device consisting of a compressor 17, a combustor 18, a gas turbine 19, and a gas turbine exhaust heat recovery boiler. 21, chimney 26, steam turbine 23
, a capacitor 24, a low-pressure drum 22, etc.

石炭1は前処理装置により粉砕され供給装置によりガス
化炉10に供給される。ガス化炉lOは酸素酸化の噴流
床炉を想定しており、酸素製造装置8は空気2より、外
部電力3を使用し酸素4を分離しガス化炉へ供給する。
Coal 1 is pulverized by a pretreatment device and supplied to a gasifier 10 by a supply device. The gasification furnace IO is assumed to be an oxygen oxidation entrained bed furnace, and the oxygen production device 8 separates oxygen 4 from the air 2 using external power 3 and supplies it to the gasification furnace.

ガス化炉では石炭の部分酸化によって石炭のガス化が行
なわれる。一方、灰分5は溶融状態で炉下部より取り出
される。
In a gasifier, coal is gasified by partial oxidation of the coal. On the other hand, the ash 5 is taken out from the lower part of the furnace in a molten state.

ガス化炉出口のガスは高温であるため、燃料ガス蒸気発
生器11によって蒸気を発生させる。燃料ガス蒸気発生
器11を出たガスはガススフラッパ12で洗浄され、燃
料ガス加熱器13で精製後のガスを加熱し、給水加熱器
14で給水を力U熱し、ガスクーラ15でさらに温度を
低下させられ、ガス精製装置16に入る。ガス精製装置
では脱硫が行なわれ、精製されたガスは、燃料ガス加熱
器13、燃料ガス蒸気発生器11によって加熱されガス
タービン燃焼器18に噴射される。ガスタービン装置は
圧縮機17によって空気6を昇圧し、燃焼器18内で燃
料ガスを燃焼させ、ガスタービン19で仕事を行なわせ
る。ガスタービンを出た燃焼排気ガスは排熱回収ボイラ
21を通り蒸気を発生させ煙突26より排出される。
Since the gas at the outlet of the gasifier is at a high temperature, steam is generated by the fuel gas steam generator 11. The gas exiting the fuel gas steam generator 11 is cleaned by a gas flapper 12, the purified gas is heated by a fuel gas heater 13, the feed water is heated by a feed water heater 14, and the temperature is further lowered by a gas cooler 15. and enters the gas purification device 16. Desulfurization is performed in the gas purification device, and the purified gas is heated by a fuel gas heater 13 and a fuel gas steam generator 11 and injected into a gas turbine combustor 18 . The gas turbine device increases the pressure of air 6 by a compressor 17, burns fuel gas in a combustor 18, and causes a gas turbine 19 to perform work. Combustion exhaust gas leaving the gas turbine passes through an exhaust heat recovery boiler 21 to generate steam, which is then discharged from a chimney 26.

排熱回収ボイラ21や燃料ガス蒸気−発生器llで発生
した蒸気は蒸気タービン23を作動させ、復水器24で
復水され、給水7は給水加熱器14を通り、排熱回収ボ
イラ21に導かれる。この例では排熱回収ボイラにNO
xの発生低減用の蒸気発生低圧ドラム22が設けられて
いる。
The steam generated in the exhaust heat recovery boiler 21 and the fuel gas steam generator ll operates the steam turbine 23 and is condensed in the condenser 24, and the feed water 7 passes through the feed water heater 14 and is supplied to the exhaust heat recovery boiler 21. be guided. In this example, NO is applied to the exhaust heat recovery boiler.
A steam generating low pressure drum 22 for reducing generation of x is provided.

この例に示されるような従来の石炭ガス化発電プラント
では、比較的応答性が良好で、部分負荷特性も良好な発
成プラント以外に、応答性や部分負荷特性の悪い、石炭
ガス化炉101酸素製造装置9、ガス精製装置16を含
んでおシ、プラント全体の応答性や部分負荷特性は、最
も特性の悪い装置によって決められる。
In a conventional coal gasification power plant as shown in this example, in addition to a generation plant that has relatively good responsiveness and good partial load characteristics, there is also a coal gasifier 101 that has poor responsiveness and partial load characteristics. The responsiveness and partial load characteristics of the entire plant, including the oxygen production device 9 and the gas purification device 16, are determined by the device with the worst characteristics.

第2図は一日における需要電力量の時間的変化を発電設
備別に示したもので(火力原子力発電VoJ、 30.
 No、 5 (May 1979 )l、負荷応答性
、部分負荷特性の悪い流れ込み水力、原子力は一定の負
荷運転を行ない、大容量火力は小規模な負荷変化、中小
容量火力および貯水池式水力、調整池式水力は大きな負
荷変化を伴なう。また、揚水式水力はピーク時の負荷を
相当する。将来、原子力発電の割合が増加する事を想定
すると大容量火力に対しても大規模な負荷変化が要求さ
れると考えられ、起動停止、負荷変化が容易に行なえる
事が重要となり、第1図に示したような従来の石炭ガス
化発電プラントでは、これらの要求に十分対応する事は
困難である。  ゛ 本発明の目的は、起動停止負荷変化特性および部分負荷
特性を良好とし、好適な運用性が可能な石炭ガス化発電
プラントを提供するにある。
Figure 2 shows the temporal changes in the amount of electricity demanded per day for each power generation facility (thermal power and nuclear power generation VoJ, 30.
No. 5 (May 1979) l, Run-of-river hydropower with poor load response and partial load characteristics, nuclear power operates at a constant load, large-capacity thermal power plants have small-scale load changes, medium- and small-capacity thermal power plants, reservoir-type hydropower plants, and regulating ponds. Type hydraulic power involves large load changes. In addition, pumped storage hydropower corresponds to the peak load. Assuming that the proportion of nuclear power generation will increase in the future, it is thought that large-scale load changes will be required even for large-capacity thermal power plants, and it will be important to be able to start, stop, and change load easily. It is difficult for conventional coal gasification power plants like the one shown in the figure to fully meet these demands.゛An object of the present invention is to provide a coal gasification power plant that has good start-stop load change characteristics and partial load characteristics and is capable of suitable operability.

本発明により上記の目的は、石炭ガス化炉、酸素製造装
置、ガス精製装置等、石炭ガス化発電プラントの中で、
石炭ガス化装置系統の連続運転を行ない、夜間等におい
てシカ発生の要求が・威少した場合は、発生した燃料ガ
スによりガスタービンを動かし、それによって圧縮機を
駆動し、高圧空気を貯蔵し、電力発生の要求が生じた場
合は、発生した燃料ガスと貯蔵した空気により発成を行
なう事で達成される。また、シカ発生の要求が減少した
場合に、発生した燃料ガスを燃料ガスの顕熱で作動する
蒸気タービンで駆動さする圧縮機で圧縮し、高圧燃料ガ
スを貯蔵し、電力発生の要求が生じた場合は、貯蔵され
た燃料ガスを用いて発電を行なづ事で達成される。
The above object of the present invention is achieved in coal gasification power generation plants such as coal gasification furnaces, oxygen production equipment, gas purification equipment, etc.
When the coal gasifier system is operated continuously and there is a demand or threat of deer outbreaks at night, etc., the generated fuel gas is used to drive the gas turbine, which drives the compressor and stores high-pressure air. When a demand for electricity generation arises, it is achieved by generating electricity using the generated fuel gas and stored air. In addition, when the demand for deer generation decreases, the generated fuel gas is compressed by a compressor driven by a steam turbine that operates using the sensible heat of the fuel gas, and the high-pressure fuel gas is stored, and the demand for electricity generation increases. This can be achieved by generating electricity using stored fuel gas.

以下、本発明の一実施例を第3図により説明する。本実
施例の主な構成は、石炭前処理および供給装置9、酸素
製造プラント8、石炭ガス化炉lO5燃料ガス蒸気発生
器11.ガススフラッパ1゛2、給水加熱器14、ガス
クーラ151.ガス精製装置16、ガスターピン圧縮機
17、ガスタービン燃焼器18、ガスタービ/19、排
熱回収ボイラ21(煙突26、蒸気タービン23、復水
器24、燃料ガス弁27.zci、空気弁30,31゜
39、排気ガスダンパ28,34、モータ36、ギヤボ
ックス37、空気圧縮機35、空気冷却器38、空気貯
蔵空洞32、圧力調整池33より成シ立っている。
An embodiment of the present invention will be described below with reference to FIG. The main components of this embodiment include a coal pretreatment and supply device 9, an oxygen production plant 8, a coal gasifier lO5 fuel gas steam generator 11. Gas flapper 1-2, feed water heater 14, gas cooler 151. Gas purification device 16, gas turbine compressor 17, gas turbine combustor 18, gas turbine/19, exhaust heat recovery boiler 21 (chimney 26, steam turbine 23, condenser 24, fuel gas valve 27.zci, air valves 30, 31 39, exhaust gas dampers 28, 34, motor 36, gear box 37, air compressor 35, air cooler 38, air storage cavity 32, and pressure regulating pond 33.

石炭lは石炭前処理装置で粉砕され、供給装置によって
ガス化炉10へ供給される。一方、空気は酸素製造プラ
ント8によって、酸素4となりガス化炉へ供給される。
Coal 1 is pulverized by a coal pretreatment device and supplied to the gasifier 10 by a supply device. On the other hand, air is converted into oxygen 4 by the oxygen production plant 8 and is supplied to the gasifier.

酸素製造プラントには外部電力3が供給される。ガス化
炉では石炭をガス化し高温となったガスは燃料ガス蒸気
発生器11に導かれる。一方、石炭のガス化した残シの
灰分5は溶融状態で炉下部よシ取シ出される。燃料ガス
蒸気発生器を出たガスはガススフラッパ12で洗浄され
、給水加熱器14に入シ給水を加熱し、ガスクーラ15
でさらに冷却されガス精製装置16に入り脱硫される。
External power 3 is supplied to the oxygen production plant. In the gasifier, coal is gasified and the high-temperature gas is guided to a fuel gas steam generator 11. On the other hand, the ash 5 of the gasified coal residue is taken out from the lower part of the furnace in a molten state. The gas that exits the fuel gas steam generator is cleaned by the gas flapper 12, then enters the feed water heater 14, which heats the feed water.
The gas is further cooled and then enters the gas purification device 16 where it is desulfurized.

夜間または週末などで発電の要求が停止した9、発゛成
の要求が減少し之場合でも、石炭ガス化炉およびその付
属設備は負荷を減少させることなく運転を行ない、発電
の要求が停止した場合は燃料ガス弁29を閉じ、燃料ガ
ス弁27を開け、また、発電の要求が減少した場合は両
燃料ガス弁を適度に開ける事によシガスタービン燃焼器
18に燃料を供給する。ガスタービンは空気6を圧縮機
17で昇圧し、燃焼器18で燃焼させ、ガスタービン1
9で膨張させ仕事を行なう。このガスタービンとモータ
36はギヤボックス37を介して空気圧縮機35を駆動
し、空気を昇圧し、空気冷却器38で冷却された空気は
空気弁39.30を流n1空気貯蔵空洞32に貯蔵され
る。空気貯蔵空洞内には水が満ちており、上方の圧力調
整池33と通じており、空気貯蔵空洞における空気の圧
力を一定に保つ。
Even when the demand for power generation stops at night or on weekends9, the demand for power generation decreases, the coal gasifier and its auxiliary equipment continue to operate without reducing the load, and the demand for power generation stops. In this case, the fuel gas valve 29 is closed and the fuel gas valve 27 is opened, and if the demand for power generation decreases, both fuel gas valves are opened appropriately to supply fuel to the gas turbine combustor 18. The gas turbine increases the pressure of air 6 with a compressor 17 and burns it with a combustor 18.
Expand it at step 9 to do work. The gas turbine and the motor 36 drive the air compressor 35 through the gear box 37 to boost the pressure of the air, and the air cooled by the air cooler 38 flows through the air valve 39, 30 and is stored in the n1 air storage cavity 32. be done. The air storage cavity is filled with water and communicates with the pressure regulating reservoir 33 above to maintain a constant air pressure in the air storage cavity.

部分負荷の発電を行なう場合は、燃料ガス弁27および
29を開け、空気弁39,30.31を′開け、圧縮機
駆動用ガスタービンに燃料ガスをおくり、発電用ガスタ
ービンに燃料ガスと圧縮空−気をおぐる。
When performing partial load power generation, the fuel gas valves 27 and 29 are opened, the air valves 39, 30, and 31 are opened, and the fuel gas is sent to the gas turbine for driving the compressor. Breathe through the air.

発電の含水が大きい場合には、燃料ガス弁27および空
気弁39を閉じ、発或は貯蔵空洞内の貯蔵空気を用いて
行なう。排気ガスダンパ28および34はそれぞれのガ
スタービンが作動している場合に開き、排熱回収ボイラ
21に排気ガスを流す。
When the water content of power generation is large, the fuel gas valve 27 and the air valve 39 are closed, and generation or generation is performed using the stored air in the storage cavity. Exhaust gas dampers 28 and 34 open when their respective gas turbines are in operation, allowing exhaust gas to flow into waste heat recovery boiler 21 .

蒸気タービン23は燃料ガス蒸気発生器1□および排熱
回収ボイラ21によシ発生した蒸気によシ駆動される。
The steam turbine 23 is driven by steam generated by the fuel gas steam generator 1□ and the exhaust heat recovery boiler 21.

復水器を出た給水は空気冷却器381&:通シ給水力U
熱器14へおくら詐る。
The water supply that exits the condenser is passed through the air cooler 381 &: water supply power U
Scam money to Heater 14.

本実施例によれば、石炭燃料ガスのエネルギを空気圧力
へ変換し貯蔵できるため、貯蔵に関して安全性が高い効
果がある。
According to this embodiment, the energy of the coal fuel gas can be converted into air pressure and stored, resulting in a highly safe storage effect.

第4図は本発明の他の実施例を示す。主な構成要素は石
炭前処理および供給装置9、酸素製造プラント8、石炭
ガス化炉10、燃料ガス蒸気発生器11、ガススフラッ
パ12、給水加熱器14、ガスクーラ15、ガス精製装
置16、蒸気タービン23、復水器24、燃料ガス圧縮
機41、モータ36、燃料ガス冷却器46、燃料ガス貯
蔵タンク42、燃料ガス弁43,46.47,48、燃
料ガス膨張タービン44、燃料ガス加熱器45より成り
立っている。
FIG. 4 shows another embodiment of the invention. The main components are a coal pretreatment and supply device 9, an oxygen production plant 8, a coal gasifier 10, a fuel gas steam generator 11, a gas flapper 12, a feed water heater 14, a gas cooler 15, a gas purification device 16, and a steam turbine 23. , condenser 24, fuel gas compressor 41, motor 36, fuel gas cooler 46, fuel gas storage tank 42, fuel gas valves 43, 46, 47, 48, fuel gas expansion turbine 44, and fuel gas heater 45. It's working.

石炭をガス化するプロセスは第3図の実施例と′はぼ同
一であるが、蒸気タービン23は燃料ガス蒸気発生器1
1より発生する蒸気のみにより動く、復水器24を出た
給水は燃料ガス冷却器40、給水加熱器14を通った後
に燃料ガス蒸気発生器11へ供給される。ガス精製装置
を出た燃料ガスはモータ36によって駆動される燃料ガ
ス圧縮機41によって昇圧して、燃料ガス貯蔵タンク4
2に貯蔵する。発電の要求がない場合は、燃料ガス弁4
3.47を閉じ、燃料ガス弁46.48を開放し、全燃
料ガスを燃料ガス貯蔵タンク42に貯蔵する。発電の要
求が生じた場合、燃料ガス弁46.47..48.43
を制御して、燃料ガスをガスタービンへ流す。100%
負荷の電力発生を要求された場合には、燃料ガス弁46
.48を全閉し、モータ、燃料ガス圧縮機を停止し、燃
料ガ・ス弁47.43を全開し、精製された燃料ガスと
貯蔵タンク42に貯蔵された燃料ガスを用いる。
The process of gasifying coal is almost the same as in the embodiment of FIG.
The feed water leaving the condenser 24, which is powered only by the steam generated from the fuel gas cooler 40 and the feed water heater 14, is supplied to the fuel gas steam generator 11 after passing through the fuel gas cooler 40 and the feed water heater 14. The fuel gas exiting the gas purification device is pressurized by a fuel gas compressor 41 driven by a motor 36, and is then transferred to a fuel gas storage tank 4.
Store in 2. If there is no demand for power generation, fuel gas valve 4
3.47 and open the fuel gas valves 46.48 to store all the fuel gas in the fuel gas storage tank 42. When a request for power generation occurs, the fuel gas valves 46, 47. .. 48.43
to flow fuel gas to the gas turbine. 100%
When power generation for the load is required, the fuel gas valve 46
.. 48 is fully closed, the motor and fuel gas compressor are stopped, and the fuel gas valves 47 and 43 are fully opened to use the purified fuel gas and the fuel gas stored in the storage tank 42.

貯蔵された燃料ガスは膨張タービン44でガスタービン
燃料として適当な圧力まで膨張させ、動力を回収する。
The stored fuel gas is expanded to an appropriate pressure as gas turbine fuel in an expansion turbine 44, and power is recovered.

膨張し低温となった燃料ガスは燃料ガス加熱器によって
加熱する。
The expanded and cooled fuel gas is heated by a fuel gas heater.

電力発生の要求がない場合でも石炭ガス化プラントは1
00%負荷で一定運転を行なう、したがって、石炭ガス
化プラントの容量は、発電プラントが全草荷時に要求す
る燃料ガスを発生するに必要な容量よシ小さくする事が
できる。例えば、昼間10時間、全負荷発電を行ない、
夜間14時間発電を停止するパターンが要求される鳩舎
、全負荷時の使用燃料量fGfkg/hrとすれば石炭
ガス化プラントの容量は、Gf xi O/24=0.
417Gfkg/sの燃料ガスを発生すれば良い。本実
施例によれば、石炭ガス化プラントを連続運転させるた
めに、発電容量と比較し、石炭ガス化プラントの容tを
小さくできる効果がある。
Even when there is no demand for electricity generation, coal gasification plants
The capacity of the coal gasification plant can therefore be smaller than that required to generate the fuel gas required by the power plant at full load. For example, full load power generation is performed for 10 hours during the day,
If the pigeon house requires a pattern of stopping power generation for 14 hours at night, and the amount of fuel used at full load is fGfkg/hr, the capacity of the coal gasification plant is Gf xi O/24 = 0.
It is sufficient to generate 417 Gfkg/s of fuel gas. According to this embodiment, in order to operate the coal gasification plant continuously, there is an effect that the capacity t of the coal gasification plant can be reduced compared to the power generation capacity.

本発明によれば、石炭ガス化プラントの運転を連続的か
つ定常に保つ事が可能で、発電プラントの負荷変化と石
炭ガス化プラントの運転とを独立に扱う事が可能である
ため、発電プラントの起動停止負荷変化特性および部分
負荷特性を良好とし石炭ガス化発電プラントの好適な運
用ができる。
According to the present invention, it is possible to maintain the operation of the coal gasification plant continuously and steadily, and it is possible to handle load changes of the power plant and the operation of the coal gasification plant independently. The start/stop load change characteristics and partial load characteristics of the coal gasification power plant can be improved and the coal gasification power plant can be operated suitably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す系統図、第2図は一日の電力需要
変化を示す図、第3態は本発明の一実施例の系統図、第
4図は本発明の他の実施例を示す系統図である。 9・・・石炭ガス化炉、11・・・燃料ガス蒸気発生器
、16・・・ガス精製装置、23・・・蒸気タービン、
32・・・空気貯蔵空洞、33・・・圧力調整池、42
・・・燃料ガス貯蔵タンク。
Fig. 1 is a system diagram showing a conventional example, Fig. 2 is a diagram showing daily power demand changes, the third state is a system diagram of one embodiment of the present invention, and Fig. 4 is another embodiment of the present invention. FIG. 9... Coal gasifier, 11... Fuel gas steam generator, 16... Gas purification device, 23... Steam turbine,
32... Air storage cavity, 33... Pressure regulation pond, 42
...Fuel gas storage tank.

Claims (1)

【特許請求の範囲】[Claims] 1、 ガス化炉により石炭をガス化し、このガスの精製
装置により発生ガスの脱硫を行ない、精製されたガスを
ガスタービンの燃料として使用し、さらにガス化炉出口
の燃料ガスおよび前記ガスタービン出口の排気ガスの顕
熱により、蒸気タービンを作動させる石炭ガス化発電プ
ラントにおいて、前記精製された燃料ガスを用い前記ガ
スタービンを運転し、前記ガスタービンは空気圧縮機を
駆動し、高圧となった空気の貯蔵設備を設けたことを特
徴とする石炭ガス化発電プラント。
1. Gasify coal in a gasifier, desulfurize the generated gas in a gas purifier, use the purified gas as fuel for a gas turbine, and further use the fuel gas at the outlet of the gasifier and the outlet of the gas turbine. In a coal gasification power plant that operates a steam turbine using the sensible heat of the exhaust gas, the purified fuel gas is used to operate the gas turbine, and the gas turbine drives an air compressor, resulting in high pressure. A coal gasification power plant characterized by being equipped with air storage equipment.
JP14616881A 1981-09-18 1981-09-18 Coal gasification power plant Pending JPS5848705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14616881A JPS5848705A (en) 1981-09-18 1981-09-18 Coal gasification power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14616881A JPS5848705A (en) 1981-09-18 1981-09-18 Coal gasification power plant

Publications (1)

Publication Number Publication Date
JPS5848705A true JPS5848705A (en) 1983-03-22

Family

ID=15401664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14616881A Pending JPS5848705A (en) 1981-09-18 1981-09-18 Coal gasification power plant

Country Status (1)

Country Link
JP (1) JPS5848705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231112A (en) * 1983-05-31 1984-12-25 シーメンス、アクチエンゲゼルシヤフト Gas turbine-steam turbine composite installation
JPH06346668A (en) * 1993-06-11 1994-12-20 Mitsui Constr Co Ltd Sealing structure
JP2020051419A (en) * 2018-09-28 2020-04-02 三菱日立パワーシステムズ株式会社 Gas turbine device, gas turbine facility and gasification facility, and operation method of gas turbine device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231112A (en) * 1983-05-31 1984-12-25 シーメンス、アクチエンゲゼルシヤフト Gas turbine-steam turbine composite installation
JPH06346668A (en) * 1993-06-11 1994-12-20 Mitsui Constr Co Ltd Sealing structure
JP2020051419A (en) * 2018-09-28 2020-04-02 三菱日立パワーシステムズ株式会社 Gas turbine device, gas turbine facility and gasification facility, and operation method of gas turbine device
WO2020066459A1 (en) * 2018-09-28 2020-04-02 三菱日立パワーシステムズ株式会社 Gas turbine device, gas turbine facility, and method for operating gasification facility and gas turbine device

Similar Documents

Publication Publication Date Title
US4099374A (en) Gasifier-combined cycle plant
CA1235580A (en) Medium-load power-generating plant with integrated coal gasification plant
JP5951204B2 (en) Fuel heating system
US4212160A (en) Combined cycle power plant using low Btu gas
US20100314878A1 (en) Direct Generation of Steam Motive Flow by Water-Cooled Hydrogen/Oxygen Combustion
GB2075124A (en) Integrated gasification-methanol synthesis-combined cycle plant
JPH05506290A (en) Method and device for creating mechanical energy
JPS61155493A (en) Synthetic composite cycle system
Najjar et al. Combined cycles with gas turbine engines
Xu et al. Process modelling and optimization of a 250 MW IGCC system: Model setup, validation, and preliminary predictions
EP1102926B1 (en) Fuel gas turbo-expander for oxygen blown gasifiers and related method
JPH05248260A (en) Coal gasified compound power generating plant
JPS5848705A (en) Coal gasification power plant
US8118895B1 (en) Method and apparatus for refueling existing natural gas combined cycle plant as a non-integrated gasification combined cycle plant
JPS58211511A (en) Composite power generating plant using gasifyed coal
JP2000120403A (en) Integrated gas combined power generating system
CN105164386A (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
Wang et al. Development and Analysis of an Integrated Mild/Partial Gasification Combined Cycle
Batenin et al. Improvement of thermodynamic efficiency of the humid biofuel application in the distributed generation power suppliers
JP2802504B2 (en) Coal gasifier startup or hot banking system
JPH01273807A (en) Combined plant of high efficiency
JP3225940U (en) Power-saving facility type coal gasification combined cycle power generation facility
Long III et al. Development and Analysis of an Integrated Mild-Partial Gasification Combined (IMPGC) Cycle: Part 2—Comparison With Other Power Generation Systems
Najjar et al. Energy conservation in the refinery by utilizing reformed fuel gas and furnace flue gases
Kuchonthara et al. Energy-recuperative biomass integrated gasification power generation system