JPS5848434A - Electrostatic chuck device - Google Patents

Electrostatic chuck device

Info

Publication number
JPS5848434A
JPS5848434A JP14653681A JP14653681A JPS5848434A JP S5848434 A JPS5848434 A JP S5848434A JP 14653681 A JP14653681 A JP 14653681A JP 14653681 A JP14653681 A JP 14653681A JP S5848434 A JPS5848434 A JP S5848434A
Authority
JP
Japan
Prior art keywords
electrode
sample
force
electrodes
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14653681A
Other languages
Japanese (ja)
Inventor
Haruo Okano
晴雄 岡野
Takashi Yamazaki
隆 山崎
Yasuhiro Horiike
靖浩 堀池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP14653681A priority Critical patent/JPS5848434A/en
Publication of JPS5848434A publication Critical patent/JPS5848434A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To previously prevent an induction material from rotation or movement in the gravity direction by a method wherein a pair of electrodes in an electrostatic chuck device are arranged so that electric line of force traversing said induction material may always be constant against the rotation or movement in the gravity direction of the induction material. CONSTITUTION:With a high voltage in about kV applied across electrodes 22a, 22b, electric line of force is emitted from the electrode 22a in a straight line and enters into a sample 24. In the event of a material with low electric resistance like a wafer S1, no electric field is generated in the sample 24, but electric line of force is emitted from the side facing to the electrode 22b and enters into the electrode 22b in a straight line. Force in (z) direction, namely the magnitude of suction force by static electricity is proportional to the square of the applied voltage and is inversely proportional to the square of the distance as far as the sample 24. In other words, the larger applied voltage V causes the stronger attraction force and stronger adhesiveness between the sample 24 and the electrodes 22a, 22b permits chucking by strong power.

Description

【発明の詳細な説明】 ・ 本発明は、集積回路、の部・品と、して用いられる
at4Psto□尋の誘電材料をチャッキングする静電
チャック装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in an electrostatic chuck device for chucking dielectric materials used as parts and components of integrated circuits.

近年、集積回路は微細化の一途をたど・シ、最近では最
小寸法が1〜2 (Jgm)の超L8Iも試作開発され
゛るに至っている。この超微細化に腺し、例えば工、チ
ング工程では従来のウェットによるエツチングに代わb
f’)Jeマエ、チング等のドライ化が進み、また酸化
、拡散或いは被膜技術においても゛低温化の検討がな・
され、ハードおよびソフト両面に亘りて実”用化が進め
られている。一方、デバイス寸法がサブζ7クロンの領
域に達すると、各fロセスでの微小ffの発生は歩留p
′低下の大きな原因の一つとなシ、全fロセスを通した
fiの管理が急務とな゛りているのが現状である・ 以下、上記し・九fiの発生およびそれによる問題点に
ついて、ドツイエ、チンダニ程を例にと9説明する。第
1I5ill祉高速、エツチングを目的として本発明者
等が最近提案したドライエ、チンダ装置を示す概略構成
図である0図中1は接地された真空容器1.2はガス導
入口、3は排気口、4は高周波印加の電極、5は電極4
を冷却すると共に電極4のリードをなす水冷−譬イグ、
dはマツチング−、クス、1は高周波電源、8は絶縁物
からなるメークスペー゛スシールド、8aは通気孔、9
@alb*96は永久磁石。
In recent years, integrated circuits have been increasingly miniaturized, and recently ultra-L8I circuits with a minimum size of 1 to 2 (Jgm) have been prototyped and developed. As a result of this ultra-fine design, for example, in the etching and etching processes, conventional wet etching can be replaced with b.
f') The drying of materials such as oxidation, diffusion, and coating technologies is progressing, and there is no consideration of lowering the temperature in oxidation, diffusion, or coating technologies.
On the other hand, as device dimensions reach the sub-ζ7 micron range, the generation of minute ff in each f process will reduce the yield rate.
'This is one of the major causes of the decline, and the current situation is that there is an urgent need to manage FI throughout the entire F process.' Below, we will discuss the occurrence of FI and the problems caused by it as described above. I will explain this using Dotsuie and Chindaniho as examples. 1. This is a schematic configuration diagram showing a drying and cinder apparatus recently proposed by the present inventors for the purpose of high speed etching. , 4 is the electrode for high frequency application, 5 is the electrode 4
Water cooling which cools the electrode 4 and forms the lead of the electrode 4.
d is a matching box, 1 is a high frequency power supply, 8 is a make space shield made of an insulator, 8a is a ventilation hole, 9
@alb*96 is a permanent magnet.

10はヨーク、11は駆動棒、12は駆動モータを示し
ている。また、13はStおよび5tO2等からなる試
料(誘電材料)、14は高密度デ、9、eマ領域、15
は底密度プラズマ領域を示している。
10 is a yoke, 11 is a drive rod, and 12 is a drive motor. In addition, 13 is a sample (dielectric material) made of St and 5tO2, etc., 14 is a high density DE, 9 is an e-ma region, 15 is
indicates the bottom density plasma region.

この装置では、高周波印加の電極4上に発生する陰極降
下電圧と、電極4の下方に配置された永久磁石9m、9
b*9eにょシ直流電界と直交する方向に発生する磁界
とによって、電子が(電界)×(磁界)方向にドリフト
電界を受け、N−8間隙近くのドリフト軌道にトラ、デ
されることになシ、その付近のイオン化効率が周辺に比
して着しく増大する。その結果、例えばSiOの場合C
HF、 + )!2の混合ガスを用いて約1〔μm//
h〕とい、う速い、工、チング速度を達成でき、しかも
81基板の工9.チ、ング速度は極めて遅<、5tO2
の81に対する工!チング比を30以上にすることがで
きた。
In this device, the cathode drop voltage generated on the electrode 4 when high frequency is applied, and the permanent magnets 9m and 9 placed below the electrode 4.
b*9e Due to the magnetic field generated in the direction orthogonal to the DC electric field, the electrons receive a drift electric field in the (electric field) x (magnetic field) direction, and are moved into a drift orbit near the N-8 gap. However, the ionization efficiency in the vicinity increases significantly compared to the surrounding area. As a result, for example, in the case of SiO, C
HF, +)! Approximately 1 [μm//
h] It is possible to achieve a faster cutting speed, and moreover, it can process 81 substrates9. The cooling speed is extremely slow <5tO2
Engineering for 81! It was possible to achieve a tinging ratio of 30 or more.

ところで、上記CHF5十H2の混合ガス下の放電にお
いては、他のフロ賞カーーン系のガス、例えばCF4.
 C2F、の場合と同様に高周波印加の電極40対向電
極、すなわち接地側の電極11表−にはC−F結合を有
する弗素樹脂系の重合膜が堆積することが知られている
。(例えば、J 、W、(’oburn 、E、Kay
 : IBM J 、RE8 、DEVELOP。
By the way, in the discharge under the above-mentioned mixed gas of CHF50H2, other fluorochemical gases such as CF4.
As in the case of C2F, it is known that a fluororesin-based polymer film having C--F bonds is deposited on the electrode 40 opposite to the electrode 40 to which high frequency is applied, that is, on the surface of the ground-side electrode 11. (For example, J, W, ('oburn, E, Kay
: IBM J, RE8, DEVELOP.

23(1)、33.1979)この重合膜は、ステンレ
ス叫の金属からなる電極1aをプラズマから保饅し、デ
バイスへの金属汚染を防ぐ意味で重要な役割を果・たす
ものである。しかし、その膜厚が厚くなると内部応力に
よシ膜のひび割゛れ”が生じ、これが工、チング中に試
料13上に落下し、その部分が工、テングされずに残る
等りl−トモードの不良の大きな原iとなっている。こ
れは、岐記第1図に示したように重力方向に試゛料IJ
が置かれている@シ避けることはできないものである。
23(1), 33.1979) This polymer film plays an important role in protecting the electrode 1a made of stainless steel metal from plasma and preventing metal contamination of the device. However, as the film becomes thicker, the internal stress causes the film to crack, which falls onto the sample 13 during cutting and cutting, and that part remains unprocessed and cracked. This is a major cause of failure of the sample IJ in the direction of gravity, as shown in Figure 1.
It is impossible to avoid @shi where is placed.

そして、このような装置構成は、例えば真空容器1内を
排気する際その初期において舞い上がる塵芥に対しても
致命的な欠陥となる。
Such an apparatus configuration also has a fatal flaw, for example, with respect to dust flying up in the initial stage when the inside of the vacuum container 1 is evacuated.

そこで、第2図に示す如く高周波印加の電極4を働直に
立て、静電チャ、り装置を用いて試料2Bを上記電極4
上に固定することが考えられた。静電チャ、り装置を使
用した場合においては、前記フ′ロロカーゴン膜からな
る対向電極11からのflの付着がなくなシ、歩留シの
大幅□な向上が゛達成される。しか□しながら、実際に
工、チングおよび搬送を繰シ返した一合一、試小113
が電極4表面から平行にずれ裕ちると云う事故が多発し
・、とれが岐記ドツイエ、チング装置の実用化の点で大
きな問題となった。
Therefore, as shown in FIG. 2, the electrode 4 to which high frequency is applied is erected, and the sample 2B is transferred to the electrode 4 using an electrostatic charging device.
The idea was to fix it on top. When an electrostatic charging device is used, there is no adhesion of fl from the counter electrode 11 made of the fluorocargon film, and a significant improvement in yield is achieved. However, 113 test pieces were actually assembled, combined, and transported repeatedly.
There were many accidents in which the electrode deviated parallel to the surface of the electrode 4, and this became a major problem in the practical application of the cutting device.

本発明は上記事情を考慮してなされたもので、その目的
“とする−ところは、Siや5SO2等の誘電材料な靜
、電的にチャ゛、′キング・す・るに際し、誘電材料の
回転成いは重力方向への移動を防止する□と4とができ
、I電材料を強固にチャ、′キングし得る静電チャ′、
り装置を提供すると之とにあ−るみまず、本゛発明の詳
細な説明する0本発明は、誘電材料をチャッ午ングする
静電、チャ、り装置の一対の電極を、上記誘電材料の回
転成いは・重力方向の移動′に対し該誘電材料を横ぎる
電気力線が常に一定となるよう配設したものである。
The present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to improve the quality of dielectric materials such as Si and 5SO2 when electrically controlling them. The rotational structure has □ and 4 that prevent movement in the direction of gravity, and an electrostatic cha that can firmly chuck and 'king' the I-electric material.
First of all, the present invention provides a detailed explanation of the present invention.The present invention provides a pair of electrodes of an electrostatic charge device for charging a dielectric material. The dielectric material is arranged so that the lines of electric force that traverse the dielectric material are always constant with respect to rotation or movement in the direction of gravity.

したがって、誘電材料を回転成いは重力方向に動かすに
は大きな力を必要とする。すなわち、誘電材料の回転成
いは重力方・向への移動を未然に防止するととができ、
誘電材料の強固なチ゛ヤ、キングを行い得る。6′これ
によシζ紡述した搬送中やエツチング中にシける試料の
落下と云う事故を防止し、゛高周波印加の電極を垂直に
立て九ドツイエ、チング装置の実用化に寄与し得る等の
効果を奏する。 ゛         ・以下、本発明
の詳細を図示の実施・例によって説明する。    ′ 第3図(a) (b)は本発明の第1の実施例を示すも
ので第3図(1)は平面図、tsa図伽)は同図(1)
の矢視ムーム断面図である。′図中11はサファイア醇
の結像基板であ)、この基板21上には半円形の静電電
極1・2&*11bが゛対称に形成されている。また、
電極J J a e 、J j b上にはマイラフィル
ム等の絶縁膜2J′が被着されている。
Therefore, a large force is required to rotate or move the dielectric material in the direction of gravity. In other words, the rotational structure of the dielectric material can prevent movement in the direction of gravity,
Strong chirping and kinging of dielectric materials can be performed. 6' This prevents accidents such as dropping of the sample during transportation or etching, and contributes to the practical application of etching equipment in which the electrodes for applying high frequency waves are erected vertically. It has the effect of゛ - Details of the present invention will be explained below with reference to illustrated embodiments and examples. ' Figures 3(a) and 3(b) show the first embodiment of the present invention; Figure 3(1) is a plan view, and Figure 3(1) is a plan view, and Figure 3(1) is a plan view.
FIG. 11 in the figure is an imaging substrate made of sapphire. On this substrate 21, semicircular electrostatic electrodes 1, 2 & *11b are formed symmetrically. Also,
An insulating film 2J' such as a Mylar film is deposited on the electrodes JJae and Jjb.

そして、との絶縁膜21上に試料(誘電材料)24が載
置される4ものとなっている。   −、このように構
成された本装置において、前記電極2211.22bM
JKl(kV)程度IZ)高11圧を印加すると、第3
図(b)に示す如く電気力線は電極221かも真直ぐ出
て試料24内に入D、stウェハのように電気抵抗が低
い材料の場合には試料24内には電界が発生せず、電極
22bに対向する側から出て電極23bに真直ぐ、入る
と考えてよい・ことで、X方向の男、すなわち静電気に
よる吸引力Fを電場によ、る/fン7ヤルエネルゼの位
置の微妙によシ算出すると、次式で与えられる。
A sample (dielectric material) 24 is placed on top of the insulating film 21. - In the present device configured in this way, the electrode 2211.22bM
When a high 11 pressure of about JKl (kV) is applied, the third
As shown in Figure (b), the lines of electric force come straight out of the electrode 221 and enter the sample 24. In the case of a material with low electrical resistance, such as a st wafer, no electric field is generated within the sample 24, and the It can be thought that it exits from the side opposite to electrode 22b and enters straight into electrode 23b. Therefore, the attractive force F caused by static electricity in the X direction is caused by an electric field, When calculated, it is given by the following formula.

ただし、C1は試料24の比誘電率、1゜は真空誘電率
、人は電極面積、■は印加電圧、2は電極表面からの距
離である。上記第1式よシ吸引力Fの大11さけ、印加
電圧702乗に比例し、試料24までの距gzの2乗に
反比例することが判る。すなわち、印加電圧Vが大きい
相吸引力Fは大きく、まだ試料24と電極22m・zx
bとの間の書着性が大きい程強い力でチャッ命ソダされ
るととになる@ 一方、X方向゛の微小のずれに対して−M”、試料24
の裏面と電極12&、Ixbとの間の各静電容量がそれ
ぞれ変化するために、カの均衡を失い比較的簡単に動か
すことが可能である。これに対し、1方向Oず”れに対
しては第3図(a)よp明らかなように静電容量は変化
せず、□試料24を横ぎる電気力線の数は全く変わらな
い。
Here, C1 is the relative dielectric constant of the sample 24, 1° is the vacuum dielectric constant, human is the electrode area, ■ is the applied voltage, and 2 is the distance from the electrode surface. According to the above first formula, it can be seen that the magnitude of the attraction force F is proportional to the applied voltage to the 702nd power, and inversely proportional to the square of the distance gz to the sample 24. That is, the phase attraction force F where the applied voltage V is large is large, and the sample 24 and the electrode 22m.zx
The greater the adhesion between B and B, the stronger the force will be applied. On the other hand, for a small deviation in the
Since the capacitances between the back surface of the electrode 12 & and the electrodes 12 & Ixb vary, the force can be unbalanced and the electrode 12 & Ixb can be moved relatively easily. On the other hand, for a deviation in one direction, the capacitance does not change as is clear from FIG. 3(a), and the number of electric lines of force crossing the sample 24 does not change at all.

このため、1方向へ試料24を動か゛すには、X方向の
場合に比較してかなシ大きな力を必要とするととになる
Therefore, moving the sample 24 in one direction requires a much larger force than in the X direction.

かくして本装置によれば、試料24の特定方向(1方向
)へのずれを確実に防止するととがで龜る。したがって
、試料24を垂直に立てて工、チングするドライ匣、チ
ング装−に本装置を用いる場合、第3図、(1)におけ
る1方向を重力方向とすることによシ、前述した搬送中
或いはエツチング中の試料24の落下と云う事故を未然
に防止することがで龜る・ ゛第4図は第2の実施例を示す平面図である。
Thus, the present apparatus has the advantage of reliably preventing displacement of the sample 24 in a specific direction (one direction). Therefore, when this device is used for dry boxes and ching equipment in which the sample 24 is vertically erected and chucked, by setting one direction in (1) of Fig. 3 as the direction of gravity, it is possible to Alternatively, it is possible to prevent accidents such as dropping of the sample 24 during etching. FIG. 4 is a plan view showing the second embodiment.

なお、第3図(、)と同一部分には同一符号を付して、
その詳しい説明は省略する。この実施例が先に説明した
実施例と異なる点は、紡紀電極22*、22bの代シに
扇形の電極25&。
The same parts as in Fig. 3 (,) are given the same reference numerals.
A detailed explanation thereof will be omitted. The difference between this embodiment and the previously described embodiment is that the fan-shaped electrodes 25& are used instead of the spindle electrodes 22* and 22b.

jllb、1se、2!;dを用いたことである。jllb, 1se, 2! ;d was used.

すなわち、電極25a〜354は十字対称に形成され、
電極21h、25aと電極25b。
That is, the electrodes 25a to 354 are formed cross-symmetrically,
Electrodes 21h, 25a and electrode 25b.

jJdとの間に高電圧が印加されるものとなっている。A high voltage is applied between jJd and JJd.

このような構成であれば、試料24のX方向および1方
向のずれに対して該試料24を横ぎる電気力線の数は常
に一定となる。このため、先の第1の実施?jと同様に
1方向のずれのみならず、X方向のずれをも防止し得る
と云う効果を奏する・ま九、第4図から明らかな如く試
料140回転方向のずれに対しても同様の効果がある。
With such a configuration, the number of electric lines of force that cross the sample 24 is always constant regardless of the displacement of the sample 24 in the X direction and in one direction. For this reason, the first implementation? As with j, it has the effect of preventing not only the deviation in one direction but also the deviation in the There is.

さらに、試料24の自公転方向のずれに対しては、電極
を放射状に、かつ互いに対称にすればよシ効果的となる
Furthermore, the deviation of the sample 24 in the rotational direction can be more effectively prevented by arranging the electrodes radially and symmetrically with each other.

第5図−)伽)は第3の実施例を示すもので、第5図−
)は平面図、第51iE(b)ハfjl 図(a)o 
矢a B −B断面図である。なお、第3図(a) (
b)と同一部分には同一符号を付して、その詳しい説明
は省略する。ヒの実施例は、試料24に対し一方の電極
2σat該試料24の径よシ小さく、他方の電極jib
を電極2−1と同心円状に、かつ電極26亀と同面積と
なるように形成したものである。
Figure 5-) shows the third embodiment; Figure 5-)
) is a plan view, 51iE(b) C fjl Figure (a)
It is a sectional view taken along arrow aB-B. In addition, Fig. 3(a) (
The same parts as in b) are given the same reference numerals, and detailed explanation thereof will be omitted. In the second embodiment, one electrode 2σat is smaller in diameter than the sample 24, and the other electrode jib is smaller than the diameter of the sample 24.
is formed concentrically with the electrode 2-1 and has the same area as the electrode 26.

とのような構成であれば、試料24のX方向およびV方
向拡勿論のこと、自公転の回転方向のずれをも効果的に
抑えるととが可能となる。
With such a configuration, it becomes possible to effectively suppress not only the expansion of the sample 24 in the X direction and the V direction, but also the deviation in the rotational direction of rotation and revolution.

なお、本発明は上述し丸缶実施例に限定されるものでは
ない0例えば、前記静電電極の形状中数等紘、仕様に応
じて適宜定めればよい。また、ドライエ、チンダ装置に
限らず、自公転の回転機構を有し九f9ネタリーに試料
をチャ。
Note that the present invention is not limited to the above-mentioned embodiment of the round can; for example, the shape, size, etc. of the electrostatic electrode may be determined as appropriate depending on the specifications. In addition, it is not limited to dryer and cinder devices, but also has a rotation mechanism that rotates around its axis to transfer the sample to a 9F9 netary.

キングして蒸着を行う装置等にも適用するとと第1図は
マグネトロン1.放電によるドライエツチング装置を示
す概略構成図、第2図は上記装置においてゴミの発生を
抑えた工、チング方式を説明する丸めの図、第31W、
(a)(b)は本発明の第1の実施例に係、わる静電テ
4ヤ、り装置をグす平面図および断面図、第4図は第2
の実施例を示す平面図、第5図(a)伽)は第3の実施
例を示す平面図お、よび断面図である。
Figure 1 shows a magnetron 1. A schematic configuration diagram showing a dry etching device using electric discharge; FIG. 2 is a rounded diagram illustrating a method for suppressing the generation of dust in the above device;
(a) and (b) are a plan view and a cross-sectional view of a different electrostatic coating device according to the first embodiment of the present invention, and FIG.
FIG. 5(a) is a plan view and a sectional view showing the third embodiment.

21・−絶縁基板、22**22b*257〜x 56
 * 2 a a t z g b−・・電極、:J 
3 ・・・絶縁膜、24・・・試料(n電材料)。
21・-insulating substrate, 22**22b*257~x56
*2 a a t z g b-...electrode, :J
3... Insulating film, 24... Sample (n-electronic material).

出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 第3図 (a) (b) 第4図Applicant's agent: Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 (a) (b) Figure 4

Claims (1)

【特許請求の範囲】 相互に対称で、か一つ電気的にフローティングの状態で
配列された一対の電極間に葛篭・圧を印加することによ
シ誘電材料をチャ、キンーグす′る静電チャック装置に
おいて、上記電極を上記誘電材料の回転成いは重力方向
の移動に対し該鱒。 電材料を横ぎる電気力線が常に一定となるよう配設して
なることを特徴とする静電チャ、り装置・      
     ゛    −
[Claims] An electrostatic device that charges or quenches a dielectric material by applying pressure between a pair of electrodes arranged symmetrically with each other, one of which is electrically floating. In the chucking device, the electrode is rotated or moved in the direction of gravity of the dielectric material against the trout. An electrostatic charger device characterized by being arranged so that the lines of electric force that cross the electrical material are always constant.
゛ −
JP14653681A 1981-09-17 1981-09-17 Electrostatic chuck device Pending JPS5848434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14653681A JPS5848434A (en) 1981-09-17 1981-09-17 Electrostatic chuck device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14653681A JPS5848434A (en) 1981-09-17 1981-09-17 Electrostatic chuck device

Publications (1)

Publication Number Publication Date
JPS5848434A true JPS5848434A (en) 1983-03-22

Family

ID=15409862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14653681A Pending JPS5848434A (en) 1981-09-17 1981-09-17 Electrostatic chuck device

Country Status (1)

Country Link
JP (1) JPS5848434A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119787A (en) * 1984-07-04 1986-01-28 Nippon Boshoku Kogyo Kk Method for preventing corrosion of outer surface of bottom plate of outdoor tank for storing high temperature substance such as asphalt
JPS62107447U (en) * 1985-12-24 1987-07-09
US5600530A (en) * 1992-08-04 1997-02-04 The Morgan Crucible Company Plc Electrostatic chuck

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764950A (en) * 1980-10-08 1982-04-20 Fujitsu Ltd Electrostatically attracting device and method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764950A (en) * 1980-10-08 1982-04-20 Fujitsu Ltd Electrostatically attracting device and method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119787A (en) * 1984-07-04 1986-01-28 Nippon Boshoku Kogyo Kk Method for preventing corrosion of outer surface of bottom plate of outdoor tank for storing high temperature substance such as asphalt
JPS62107447U (en) * 1985-12-24 1987-07-09
JPH0249719Y2 (en) * 1985-12-24 1990-12-27
US5600530A (en) * 1992-08-04 1997-02-04 The Morgan Crucible Company Plc Electrostatic chuck

Similar Documents

Publication Publication Date Title
US6706155B2 (en) Sputtering apparatus and film manufacturing method
US5250137A (en) Plasma treating apparatus
KR100291648B1 (en) Separated Electrostatic Chuck and Excitation Method
JP3292270B2 (en) Electrostatic suction device
JPH0585634B2 (en)
US5410122A (en) Use of electrostatic forces to reduce particle contamination in semiconductor plasma processing chambers
JP3095790B2 (en) Electrostatic chuck
JPH04279044A (en) Sample-retention device
JPH10154745A (en) Electrostatic attracting device
JPS5848434A (en) Electrostatic chuck device
JPH05175318A (en) Attaching and detaching method for board of electrostatic chuck
JP3663392B2 (en) Plasma etching processing equipment
JPS6114660B2 (en)
JP2003100720A (en) Plasma apparatus
JPH0618182B2 (en) Dry etching equipment
JPS62287950A (en) Electrostatic attracting device
JPH0518908B2 (en)
JP4018935B2 (en) Plasma processing equipment
JPH118291A (en) Electrostatic attraction device
JPS6129128A (en) Plasma treating device
CN107534002A (en) Apparatus and method for substrate to be statically secured to mobile vehicle
JPS6045024A (en) Dry etching device
JPH0578171B2 (en)
JPH03145151A (en) Electrostatic chuck device
JPS5848421A (en) Dry etching device